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Abstract: Head and neck cancers (HNCs) are among the ten leading malignancies worldwide. Despite
significant progress in all therapeutic modalities, predictive biomarkers, and targeted therapies for
HNCs are limited and the survival rate is unsatisfactory. The importance of telomere maintenance
via telomerase reactivation in carcinogenesis has been demonstrated in recent decades. Several
mechanisms could activate telomerase reverse transcriptase (TERT), the most common of which
is promoter alternation. Two major hotspot TERT promoter mutations (C228T and C250T) have
been reported in different malignancies such as melanoma, genitourinary cancers, CNS tumors,
hepatocellular carcinoma, thyroid cancers, sarcomas, and HNCs. The frequencies of TERT promoter
mutations vary widely across tumors and is quite high in HNCs (11.9–64.7%). These mutations have
been reported to be more enriched in oral cavity SCCs and HPV-negative tumors. The association
between TERT promoter mutations and poor survival has also been demonstrated. Till now, several
therapeutic strategies targeting telomerase have been developed although only a few drugs have
been used in clinical trials. Here, we briefly review and summarize our current understanding and
evidence of TERT promoter mutations in HNC patients.

Keywords: head and neck cancer; telomerase reverse transcriptase (TERT); promoter mutations; prognosis

1. Introduction

Head and neck cancers (HNCs) arising in the oral cavity, oropharynx, larynx, and
hypopharynx were the seventh most common cancer worldwide in 2018 [1] and approxi-
mately seven to eight hundred thousand new cases are diagnosed each year worldwide [2].
The most common type, squamous cell carcinoma, is a highly lethal group of heterogeneous
neoplasms often diagnosed at an advanced stage [3]. Tobacco and alcohol consumption
are the main etiological factors [4]. Betel quid chewing and infection by oncogenic human
papillomavirus (HPV) types 16 and 18 have emerged as important etiological factors for a
subset of HNCs in the oral cavity and oropharynx, respectively [5–10]. HPV-positive malig-
nancies represent 5–20% of all HNCs and 40–90% of those arising from the oropharynx [11].
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The prevalence of HPV-driven HNCs has been dramatically increasing in developed coun-
tries, predominantly affecting middle-aged white men, non-smokers, non-drinkers, or
mild-to-moderate drinkers with a higher socioeconomic status and better performance
statuses than those with HPV-unrelated SCCs [11,12]. The treatment of HNC is generally
multimodal, including surgery, chemotherapy, and radiotherapy, and differs according to
disease stage, anatomical location, and surgical accessibility. However, despite significant
progress in all therapeutic modalities, the 5-year overall survival (OS) rate of HNC patients
remains unsatisfactory [13–15].

In the era of biomarker-driven personalized cancer therapy, several biomarkers have
been proposed as prognostic and predictive factors in different cancers, such as KIT mu-
tations in gastrointestinal stromal tumors, EGFR mutations in lung cancer, and HER2
overexpression in breast cancer [16]. However, unlike other cancer types, there are limited
predictive biomarkers and targeted therapies for HNCs [4,16–18]. With the development
of advanced technical approaches, genome, and exome analyses have provided a com-
prehensive view of genetic alterations in HNC and uncovered potential new therapeutic
opportunities [17,19–24]. In addition to commonly mutated genes, such as TP53, CDKN2A,
CCND1, PIK3CA, and NOTCH1, telomerase reverse transcriptase (TERT) promoter muta-
tions have been detected in a significant proportion of HNC patients [3,4,12,13,15,25–29].
TERT is located on chromosome 5p15.33 in humans and is an integral and essential part
of the telomerase holoenzyme, which plays a key role in cancer formation. Mostly, telom-
erase activity was increased by upregulation of TERT expression via several genetic and
epigenetic alterations, and TERT promoter mutations are known as the most important [30].
However, the incidence of TERT promoter mutations varies in the head and neck subsites,
and the association between TERT promoter mutations and outcomes is unclear. Therefore,
in this review, we summarize our current understanding and evidence of TERT promoter
mutations in HNC patients.

2. Telomeres and Telomerase in Normal Cells

Telomeres are the physical ends of eukaryotic linear chromosomes [31,32]. In human
cells, telomeres are composed of TTAGGG nucleotide repeats with a 3′ single-stranded
overhang, and the variation ranges from 3 to 20 kilobase pairs [12,33]. They are bound by a
six-member protein complex known as shelterin. Telomeres cover the coding DNA at the
end to avoid loss of genetic information in linear DNA, act as a cap to prevent degradation
by a nucleolytic attack, and prevent aberrant activation of a DNA damage response (DDR),
which could lead to inappropriate processing of telomeres and as sites for double-strand
break repair [31,34,35].

Telomerase, a specialized reverse transcriptase, is a large multi-subunit ribonucleopro-
tein complex that synthesizes telomeric DNA sequences and provides a molecular basis
for unlimited proliferative potential [36]. Telomerase comprises two major components:
the telomeric RNA component (also known as the telomerase RNA component: TERC or
TR) and the telomerase reverse transcriptase (TERT), which is encoded by the TERT gene.
The TERT is located in the human chromosome band 5p15.33, and the TERC is located at
3q26.3 [37]. The TERC serves as the template for telomere hexamer repeat additions onto
the DNA, and the TERT is responsible for the reverse transcribing hexamer repeats onto
the chromosomal ends [33,38–40]. TERT expression is silenced during development, unlike
the TERC and other constitutively expressed telomerase components [35].

Telomerase is a key telomere length maintenance mechanism and is present in germline,
hematopoietic, stem, and other rapidly renewing cells [41]. However, in most normal so-
matic cells, telomerase activity is extremely low or absent. Therefore, loss of telomeric
repeats occurs at each round of DNA replication, after which the telomeres are reduced
to a critical length [42]. Critical telomere attrition elicits a DDR that mediates cell cycle
arrest and leads to replicative senescence or apoptosis via the p53 or Rb tumor suppres-
sor pathways [35,43]. Telomere attrition acts as a barrier to replicative immortality, also
called a “mitotic clock” that limits the cell cycle number and further triggers cellular senes-
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cence [33,35]. Although rare, in the absence of telomerase, some cells employ another
DNA recombination mechanism, termed alternative lengthening of telomeres (ALT), which
reverses telomere attrition to bypass senescence [44].

3. Telomere and Telomerase in Cancer Cells

Telomere length and telomerase activity are crucial for cellular immortalization, tu-
morigenesis, and cancer progression. Telomere maintenance via telomerase reactivation
is a nearly universal hallmark of cancer cells [35,45,46]. The vast majority of cancers over-
come replicative senescence by upregulating TERT expression and telomerase activity [35].
Telomerase activity is upregulated in 80–90% of malignancies, enabling unlimited replica-
tion of cancer cells, similar to embryonic and stem cells [13,15,47]. For the remaining 10–15%
of cancers, upregulation of telomerase activity is achieved through the ALT pathway [48].

There are several ways to upregulate telomerase activity and activate the normally
silent human TERT (hTERT) gene. The mechanisms of hTERT activation include chro-
mosomal rearrangements (i.e., duplications, amplifications, insertions, interchromosomal
changes, inverted orientations, or deletions), TERT promoter somatic mutations, epigenetic
modifications (i.e., DNA methylation, or post-transcriptional regulation by microRNAs),
transcriptional activators or repressors, TERT gene polymorphism and alternative splicing
(i.e., pre-mRNA alternative splicing of the TERT gene) [30,49–51]. In a pan-cancer genomics
study, Barthel et al. detected TERT expression in 73% of the 6835 total tumor samples,
which were associated with TERT point mutations, rearrangements, DNA amplifications,
and transcript fusions. Among the TERT-expressing samples, there were 31% TERT pro-
moter mutations, 3% TERT amplifications, 3% TERT structural variants, 5% TERT promoter
structural variants, and 53% TERT promoter methylation [51]. Some of these mechanisms
may interact with each other and have a synergistic effect on TERT expression [30].

Besides the canonical role of telomerase in telomere maintenance, there are also some
non-canonical functions (telomere length-independent mechanisms) in tumorigenesis,
such as the regulation of metabolic mechanisms, epigenetic regulation, and modulation
of chromatin, oxidative stress protection, RNA silencing, signal transduction pathways
(Wnt and c-MYC signaling pathways), enhanced mitochondrial function, cell adhesion,
and migration [30,52–58].

4. Telomerase Reverse Transcriptase (TERT) Promoter Mutations

Among the several mechanisms of hTERT activation, TERT somatic promoter muta-
tions are the most common non-coding driver mutations in cancer [30,59] and occurred at a
high frequency in over 50 cancer types [60]. They have been reported in two major hotspots
(mainly C > T transitions), which are located at −124 and −146 base pairs upstream of
the transcriptional start site on chromosome 5 and are designated as C228T and C250T,
respectively [13,25,32,61,62]. A less frequent hTERT promoter mutation −57 base pairs
upstream of the transcriptional start site with an A > C transition (at position 1,295,161
on chromosome 5) has been found to be a disease-segregating germline mutation in a
melanoma-prone family [63]. Other less frequent, yet recurrent, mutations on chromo-
some 5 have also been discovered in cancers at the following positions: 1,295,228 C > A,
1,295,248–1,295,243 CC > TT, and 1,295,161 A > C [64].

TERT somatic promoter mutations are predominantly heterozygous and lead to
the generation of an 11 bp sequence, CCCGGAAGGGG, which is similar to the E26
transformation-specific (ETS) factor binding motif [60,65]. Then, ETS binding factors,
such as GA-binding protein (GABP), are recruited. This recruitment resulted in direct
transcriptional activation of hTERT expression and promoted an epigenetic shift from a
repressed to active chromatin conformation [35,65–68]. These promoter mutations were
proven to be associated with higher levels of TERT mRNA, TERT protein, telomerase
enzymatic activity, and telomere length in a study of 23 human urothelial cancer cell
lines [69].
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Two TERT promoter hotspot mutations, C228T and C250T are the most common;
however, their frequencies vary widely across tumors from different sites (Table 1). These
mutations occur most frequently in cancers with low rates of self-renewal [25] and are rare
in pediatric and young adult cancers [3,70]. The highest frequencies of TERT promoter
mutations have been reported in melanoma, bladder cancer, urothelial carcinoma, CNS
tumors, hepatocellular carcinoma, thyroid cancer, basal cell carcinoma, and cutaneous
squamous cell carcinoma. Due to the variety of sarcoma subtypes, the prevalence of TERT
promoter mutations varies widely, and the highest TERT promoter mutation rate is reported
in myxoid liposarcoma (79.1%) [25].

Table 1. Frequency spectrum of hTERT promoter mutations across different cancer types.

Cancer Type Mutation Frequency (%) Reference

Malignant melanoma 17.0–85.0 [61,63,71,72]

Genitourinary cancers

Bladder cancer 59.0–85.0 [25,61,73–76]

Urothelial carcinomas 29.5–64.5 [77,78]

Kidney cancers 0 [61]

Prostate Cancer 0 [79]

CNS tumors

Glioblastoma 54.0–84.0 [61,70,73,78,80]

Other gliomas (ependymoma, astrocytoma, mixed glioma,
oligodendroglioma) 2.7–78.0 [25,64,70,78]

Medulloblastoma 33.3–65.0 [70,78]

Hepatocellular carcinoma 31.4–59.0 [25,78,81–84]

Thyroid cancer (papillary, follicular, poorly differentiated, and
anaplastic carcinomas) 3.4–46.3 [61,85–87]

Gastrointestinal stromal tumor 0–3.8 [61,88]

Malignant pleural mesothelioma 11.3 [89]

Atypical fibroxanthomas 93.0 [90]

Sarcomas (chondrosarcoma, fibrosarcoma, myxofibrosarcoma,
myxoid liposarcoma, osteosarcoma, pleomorphic dermal sarcomas) 4.3–79.1 [25,90,91]

Basal cell carcinoma of the skin 73.8 [92]

Squamous cell carcinoma of the skin 20.0–74.0 [25,92,93]

Squamous cell carcinoma of esophageal 1.6 [94]

Squamous cell carcinoma of penile 48.6 [95]

Squamous cell carcinoma of the head and neck 11.9–64.7 [3,4,13,15,25–29,32,93,96,97]

Squamous cell carcinoma of the cervix 0–21.4 [25,26,93,96]

Breast cancer, colorectal cancer, ovarian cancer, esophageal
adenocarcinoma, acute myeloid leukemia, chronic lymphoid
leukemia, pancreatic cancer, and testicular carcinoma

0–5.0 [61,78]

5. TERT Promoter Mutations in Head and Neck Squamous Cell Carcinoma
5.1. The Frequency of TERT Promoter Mutations

For HNCs, the frequency of TERT promoter mutations varied significantly among
previous studies. These differences could be explained by the tumor subsite, sample size,
methodological sensitivity, risk factors, and population ethnicity (Table 2).
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Table 2. Summary of studies evaluating the association between head and neck cancers with TERT
promoter mutations.

Author, Country
(Year) Case Numbers Cancer Sites Prevalence of TERT

Promoter Mutations Special Findings The Association with
Survival

Killela, USA
(2013) [25] 70

31 Oral cavity
23 Oropharynx
4 Supraglottic

12 Others

Total: 17.1% (12/70)
C228T: 14.8%
C250T: 2.8%

Highest frequency in
tongues (47.8%, 11/23) N/A

Schwaederle, USA
(2018) [32] 28 28 HNC Total: 28.6% (8/28) N/A Trend toward shorter

survival

Cheng, USA
(2015) [93] 12 12 HNSCC

Total: 16.67% (2/12)
C228T: 16.67%

C250T: 0%

No significant correlation
was observed. N/A

Barczak, USA
(2017) [15] 61

25 Mouth
25 Voice box

5 Nose/sinuses
6 Throat

C250T
homozygous T/T allele: 36%
heterozygous C/T allele: 26%

Homozygous T/T
mutation is associated
with the grade of the

tumor.

N/A

Yu, USA
(2021) [29] 117

74 Oral cavity
24 Larynx

5 Hypopharynx
14 HPV (-) oropharynx

Total: 53.8% (63/117)
C228T: 33.3%
C250T: 9.4%

C250T, C254T: 6%
C228A: 4.3%

CC434TT: 0.9%

Highest frequency in the
oral cavity (81.1%, 60/74)

Increased risk of
locoregional failure, but not

distant failure or OS.

Morris, USA
(2017) [97] 53

20 Oral cavity
18 Oropharynx

7 Larynx
2 Hypopharynx

6 Others (4 sinonasal
cavity)

Total: 32.1% (17/53)
C228T: 20.8%
C250T: 5.7%
C228A: 1.9%

TERT mutation and HPV
infection may represent

parallel mechanisms.
N/A

Boscolo-Rizzo, Italy
(2020) [3] 101

27 Oral cavity
23 Oropharynx

15 Hypopharynx
36 Larynx

Total: 11.9% (12/101)
C228T: 9.9%
C250T: 2%

Highest frequency in the
oral cavity (37%)

TERT levels did not
significantly differ
according to the

mutational
status of TERT promoter.

No significant association
between TERT promoter

status and OS.
Higher TERT levels, worse

OS (43.6% vs. 60.1%)

Annunziata, Italy
(2018) [96] 24 15 Oral cavity

9 Oropharynx

Total: 37.5% (9/24)
C228T: 8.3%

C250T: 12.5%
Other: 16.7%

No mutation in
oropharynx cancer.

Mutations were
independent of HPV

status.

N/A

Yilmaz, Turkey
(2020) [4] 189

102 Oral cavity
22 Oropharynx
6 Hypopharynx

59 Larynx

Total: 43.9% (83/189)
C228T: 29.6%
C250T: 11.6%
C228A: 2.6%

Highest frequency in the
oral cavity (75.5%, 77/102).

TERT mutations are
associated with younger

age, female gender, and an
inverse relationship to
smoking and alcohol

consumption.

No difference

Arantes, Brazil
(2020) [13] 88

69 Oral cavity
11 Larynx
8 Pharynx

Total: 27.3% (24/88)
C228T: 6.8%

C250T: 20.5%

94.4% C250T were alcohol
consumers.

66.7% C228T were not
alcohol consumers

Decreased 5-year DFS and
OS in C228T

Vinothkumar, India
(2016) [26] 41 41 Oral cavity

Total: 31.7% (13/41)
C228T: 21.9%
C250T: 9.7%

No significant correlation
was observed. N/A

Chang, Taiwan
(2017) [28] 201 201 Oral cavity

Total: 64.7% (130/201)
C228T: 51.7%
C250T: 12.9%

C228T mutation was
associated with betel nut

chewing.
No difference

Qu, China
(2014) [27] 235 235 Laryngeal

Total: 27% (64/235)
C250T: 23.8%
C228T: 3.4%

Not significantly correlate
with any

clinicopathological
variables

Poor survival, especially
C250T mutation

Killela et al. surveyed 70 oral cavity cancers and identified TERT promoter mutations
in 12 of the tumors (17.1%) [25]. Schwaederle et al. analyzed 423 cases of TERT promoter
alterations using next-generation sequencing (NGS). Only 28 patients (6.6%) had HNCs.
The incidence of TERT promoter alternations was 14.4% (61 of 423) in the overall population
and 28.6% (8 of 28) in HNCs [32]. Cheng et al. collected 84 cases of SCC from different
sites, including 12 HNC and C228T mutations, which were detected in 16.67% (2 of 12) [93].
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Barczak et al. analyzed 61 HNC patients to determine the prevalence of the hTERT promoter
C250T mutation. High-resolution melting mutation analysis was used to identify the C250T
hTERT promoter mutation, followed by sequencing verification in 10% of the samples.
The prevalence of the hTERT promoter C250T mutation was 36% [15]. Yu et al. identified
TERT promoter mutations in 117 patients with SCC of the oral cavity (N = 74), larynx
(N = 24), hypopharynx (N = 5), and HPV-negative SCC of the oropharynx (N = 14) using
NGS. Overall, 63 patients (53.8%) had TERT promoter alterations, and the most common
mutations were C228T and C250T [29]. Morris et al. collected 53 patients and 20 oral
cavities, 18 oropharynges, 7 larynges, and 2 hypopharynges. Overall, the frequency of
the TERT alteration was 32.1% (17 of 53), yet it was much higher in HPV-negative tumors
(53% vs. 4.3%). Remarkably, 91% (10 of 11) of the HPV-negative tongue SCCs possessed
TERT mutations [97].

In Italy, Boscolo-Rizzo et al. analyzed cancer tissue and adjacent mucosa specimens
from 101 patients with HNCs and evaluated the prevalence of the TERT promoter mutations
by Sanger sequencing. The tumor subsites in the HNCs included the oral cavity (N = 27),
oropharynx (N = 23), hypopharynx (N = 15), and larynx (N = 36). The TERT promoter
harbored mutations in 12 tumors (11.9%), with C228T and C250T, which accounted for
83.3% and 16.7%, respectively. They also evaluated the TERT mRNA level and found
no significant difference between the TERT mRNA level and the mutational status of the
TERT promoter [3]. Annunziata et al. analyzed tumor biopsies from 15 oral SCCs and nine
oropharyngeal SCCs. The frequency of TERT promoter mutations was 60% (9 of 15) in oral
SCCs and was absent in oropharyngeal SCCs. There were five hotspot mutations (three
C228T and two C250T) and four other mutations. They also investigated the TERT mRNA
levels and identified that the TERT mRNA levels were comparable to those detected in
peri-tumor tissues. However, these data were from six oropharyngeal SCCs and illustrated
that they all lacked mutations in the TERT promoter [96].

In Turkey, Yilmaz et al. collected a total of 189 patients with HNCs, including 102 oral
cavities, 22 oropharynges, 6 hypopharynges, and 59 larynges. The TERT gene expression
was examined by polymerase chain reaction (PCR)-based direct sequencing. TERT promoter
mutations were detected in 43.9% (83 of 189) of the cases. Three TERT promoter region
mutations were detected: C228T (56 of 83; 67.5%), C250T (22 of 83; 26.5%), and C228A
(5 of 83; 6%). The frequency of the C228T mutation was almost twice that of the C250T and
C228A mutations [4]. In Brazil, Arantes et al. collected 88 HNC patients and analyzed the
TERT promoter mutations C228T and C250T using pyrosequencing. The overall prevalence
of the TERT hotspot mutations is 27.3% (6.8% at locus C228T and 20.5% at C250T) [13]. In
India, Vinothkumar et al. analyzed 181 primary tumors of the uterine cervix and oral cavity
using PCR amplification and sequencing. A high frequency of TERT hotspot mutations
was observed in both cervical (30 of 140, 21.4%) and oral (13 of 41, 31.7%) SCCs. Among
the oral cancer samples, the TERT promoter hotspot mutations were frequent, while the
C228T mutation (69.2%) was twice as frequent as the C250T (30.8%) [26].

In Taiwan, Chang et al. included 201 oral cavity SCC tumors and adjacent normal
tissues to detect two TERT promoter mutations (C228T and C250T) using Sanger sequencing.
Overall, the TERT hotspot promoter mutations occurred at a high frequency (64.7%) in
patients with oral cavity SCCs. There were 52.5% (104 of 201) and 12.9% (26 of 201)
oral cavity SCC tumor tissues containing that contained the C228T and C250T mutations,
respectively [28].

In China, Qu et al. obtained 235 laryngeal cancer tissues using a pyrosequencing assay
to detect the TERT promoter mutations C228T and C250T. The TERT promoter hotspot
mutations were present in 27% (64 of 235) of the samples. The TERT C250T mutations
were more common (56 of 235) than the C228T mutations (8 of 235) [27]. In Figure 1, we
summarized the reported frequencies of the TERT promoter mutations in HNCs from the
various studies mentioned above.
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5.2. TERT Promoter Mutations in Different Anatomic Distribution

HNC is a heterogeneous group of tumors involving distinct anatomical sites and sub-
sites with varying etiological factors. Yu et al. showed that TERT promoter mutations were
more abundant in oral cavity SCCs than in laryngopharyngeal cancers (81.1% vs. 7.0%) [29].
Boscolo-Rizzo et al. demonstrated that the prevalence of TERT hotspot promoter mutations
is significantly higher in oral cavity SCCs (37%) [3]. Annunziata et al. also showed that
TERT promoter mutations were predominant in oral SCCs (60%), yet absent in oropharyn-
geal SCCs [96]. Arantes et al. reported that 92% of the mutation cases were located in the
oral cavity [13]. Finally, Yilmaz et al. showed that the frequency of the TERT promoter
mutations in oral SCCs (75.5%) was significantly higher than in the other locations [4]. The
anatomic distribution of cases is strongly associated with TERT promoter mutations, and
the highest frequency is in oral cavity cancers.

As for the subsites in oral cavity SCCs, Arantes et al. noticed that 92% of the mutated
cases were mainly in the tongue [13]. Killela et al. also revealed that 11 out of the 12 cancers
with TERT promoter mutations were in the oral tongue, although only 23 of the 70 oral
cavity cancers originated in the oral tongue [25]. However, Yilmaz et al. demonstrated
that the highest rate was related to the buccal location and the lowest to the floor of the
mouth (82.35% and 61.53%, respectively), although the difference was not statistically
significant [4].

5.3. TERT Promoter Mutation and Human Papillomavirus Status

An association between HPV infection and oropharyngeal SCC has been proven. It
was also clear that the molecular landscape and clinical pattern were different between HPV-
positive and HPV-negative oropharyngeal cancers [10]. Only two studies have investigated
the association between HPV status and TERT promoter mutations.

In a cohort of 53 patients with advanced HNCs, performed by Morris et al., a very
high TERT alternation rate (53%, 16 of 30) was present in 30 HPV-negative tumors, however,
there was only one TERT alternation (4.3%), which was a TERT amplification rather than
a hotspot mutation, in 23 HPV-positive tumors. HPV-negative tongue SCCs showed the
highest TERT mutation rate (91%). This demonstrated that TERT mutations and HPV
infection may represent parallel mechanisms of telomerase activation in HNCs [97]. In
another cohort study conducted by Annunziata et al., among the 9 patients with TERT
promoter mutations in 15 oral SCC patients, 7 were HPV-negative and 2 were HPV-positive
(p = 0.486). The frequency of TERT mutations was also independent of HPV tumor status
in oral cancer [96].
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5.4. TERT Promoter Mutation and Tobacco, Alcohol, and Betel Quid

Aside from HPV infection, tobacco smoking, alcohol consumption, and betel quid
chewing are the other three main etiological factors of HNC [4,5]. Until now, the relationship
between the TERT promoter mutations and these three factors remains inconclusive.

In a Brazilian cohort of 88 patients with HNC conducted by Arantes et al., the fre-
quency of the C250T mutation appeared to be higher in alcohol consumers. Of the patients
harboring the TERT promoter mutation C250T, 94.4% were alcohol consumers, and 66.7%
of the patients harboring the TERT promoter mutation C228T did not consume alcohol [13].
In a Chinese cohort of 235 laryngeal cancer cases reported by Qu et al., hotspot mutations
were not significantly correlated with any clinicopathological variables. However, TERT
promoter mutations, particularly the C250T mutation, were more frequent in smoking
patients (47 of 130) than in non-smoking patients (9 of 49), although no statistical signif-
icance was noted [27]. In a cohort of 201 patients with oral cavity SCC performed by
Chang et al. in Taiwan, the C228T mutation was significantly associated with betel nut
chewing [28]. In contrast, in a Turkish cohort of 189 HNC patients performed by Yilmaz
et al., TERT promoter region mutations in HNC were inversely related to smoking and
alcohol consumption [4].

5.5. TERT Promoter Mutation and Other Factors

Schwaederle et al. demonstrated that TERT promoter alterations are more frequent
in men. They were also associated with brain cancers, skin/melanoma, head, and neck
tumors, and increased median numbers of alterations in the univariate analysis. However,
this association in head and neck tumors was not found in further multivariate analyses [32].
Yilmaz et al. reported that TERT promoter region mutations in HNCs are associated with
younger age and female genders in a cohort from Turkey [4]. Barczak et al. demonstrated
a significant association between the frequency of the homozygous C250T mutation and
tumor grade (T1 = 27%, T2 = 36%, T3 = 35%, T4 = 46%, p ≤ 0.0001) [15]. However, in a
cohort of 41 patients with oral SCCs, performed by Vinothkumar et al. in India, no signifi-
cant correlation was observed between any of the genotypes and the clinicopathological
characteristics [26].

5.6. TERT Promoter Mutation and Survival

TERT promoter mutations in various reports of different cancers have been associated
with aggressive characteristics, poor outcomes, and shorter survival [98–101]. In HNC, Qu et al.
showed that TERT promoter mutations significantly affected the overall survival of laryngeal
cancer patients, particularly those with the C250T mutation. TERT promoter mutations were
significant predictors of poor prognosis in patients with laryngeal cancer, as an independent
variable, with respect to age, tumor localization, TNM stage, tumor invasion, lymph node
metastasis, and smoking history [27]. Schwaederle et al. also demonstrated a significantly
shorter overall survival in patients harboring the TERT promoter alterations in the overall
population in a univariate analysis. Subanalyses of the three tumor types with the highest
prevalence of TERT alterations consistently showed a trend toward shorter survival for patients
with altered TERT promoters in brain tumors, head, and neck cancers, and melanoma/skin
tumors [32]. Arantes et al. demonstrated no statistically significant association between the
presence of hotspot mutations (C228T and C250T) and survival. However, the presence of the
C228T mutation impacted patient outcomes, with a significant decrease in 5-year disease-free
survival (20.0 vs. 63.0%) and 5-year overall survival (16.7 vs. 45.1%) [13].

Similar results were reported by Yu et al. [29]. They reported that the TERT promoter
mutations were associated with locoregional failure (LRF) in the overall cohort and in oral
cavity SCCs. This increased risk for LRF is independent of the oral cavity primary site, TP53
mutation status, extracapsular extension, and positive surgical margins suggesting that the
TERT promoter mutations are an independent biomarker of LRF rather than a surrogate for
OSCCs, or other known prognostic markers. The cumulative incidence of LRF was similar
between the two types of TERT promoter mutations (C250T and C228A/T groups), and
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both were associated with a higher cumulative incidence of LRF compared to wildtype
tumors. Overall, they demonstrated that TERT promoter mutations were associated with
an increased risk of LRF, although not with distant failure or overall survival [29].

In contrast, Yilmaz et al. did not find a significant association between the presence of
TERT mutations and OS, despite patients with HNCs harboring TERT mutations exhibiting
a slightly shorter median OS [4]. Boscolo-Rizzo et al. showed no significant association
between the TERT promoter status and overall survival, although the TERT mRNA level
had an impact on clinical outcomes [3]. Chang et al. also reported that there was no
significant difference in overall survival, disease-specific survival, and disease-free survival
between TERT promoter mutations and the wildtype [28].

6. Anti-Telomerase Therapeutics

The unique feature of overexpression in most cancer cells, although absent or with low
expression in somatic cells, makes telomerase and other telomere components a target for
the development of therapeutics [30]. Several therapeutic strategies have been proposed to
target telomerase, and some have already been evaluated in clinical trials against various
cancer types [30,35,44,102]. However, the development of successful clinical therapies is
hampered by significant challenges [35].

6.1. Direct Telomerase Inhibition

Direct telomerase inhibition by small molecules or oligonucleotides that directly bind
to the TERT or TERC template region suppresses telomere extension.

The first-in-class modified oligonucleotide, GRN163L (Imetelstat), was developed in
2003 [103]. Imetelstat is a lipidated 13-mer thiophosphoramidate oligonucleotide comple-
mentary to the TERC template region, which competitively inhibits telomerase activity and
suppresses cancer cell viability [103]. After showing activity and efficacy against multiple
cancer cell lines and in mouse xenograft models, Imetelstat has moved to early clinical trials
against solid tumor malignancies (such as breast cancer, non-small-cell lung cancer, brain
tumor, and melanoma) and hematologic diseases (such as multiple myeloma, myelodys-
plastic syndrome, and myeloproliferative neoplasms) [35,44,102]. Although Imetelstat
did not meet its efficacy endpoints in trials on non-small cell lung cancer and breast can-
cers [104,105], it showed robust response rates in patients with lower-risk myelodysplastic
syndromes, myelofibrosis, and essential thrombocythemia [106–109], and further late-stage
clinical trials are underway [110].

BIBR1532, 2-[[(E)-3-naphthalen-2-ylbut-2-enoyl]amino]benzoic acid, inhibits telom-
erase by non-competitively binding to the TERT active site [111]. BIBR1532 has generated
promising preclinical results [112–118]. For example, it enhances the radiosensitivity of non-
small cell lung cancer by increasing telomere dysfunction and ATM/CHK1 inhibition [117].
However, this has not yet progressed to clinical testing. Some natural compounds have
also been reported to act as telomerase inhibitors, such as allicin (from garlic), curcumin
(from turmeric), silibinin (from thistle), and epigallocatechin gallate (EGCG, from tea), and
the EGCG’s derivative, MST-312 [30,35,119].

6.2. G-Quadruplex Stabilizers

G-quadruplexes are tetrad planar structures formed in guanine-rich DNA or RNA
sequences, including telomeres [120]. Compounds that would stabilize telomeric G-
quadruplex secondary structures can disrupt telomere extension via telomerase, triggering
a DNA damage response and cell death. Several G-quadruplex stabilizers, including
telomestatin, BRACO-19, RHPS4, TMPyP4, CX-3543 (Quarfloxin), CX-5461 (Pidnarulex)
and AS1411, have been tested in preclinical studies and some already progressed to clinical
trials [30,102,121–130].
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6.3. Nucleoside Analogues

Nucleoside analogs mimic the presence of uncapped telomeres and induce DNA
damage response, apoptosis, and autophagy [102]. To date, several nucleotide analogs,
including T-oligo, 6-thio-2′-deoxyguanosine (6-thio-dG), and 5-fluoro-2′-deoxyuridine (5-
FdU) triphosphate, are under investigation, although have not yet advanced to clinical
trials [131–134].

6.4. Telomerase-Based Cancer Vaccines

Telomerase-based therapeutic cancer vaccines aim to induce T cells that target a tumor
antigen, leading to improved antitumor immune responses and cancer cell death [135].
TERT is an appropriate tumor-associated antigen. To date, telomerase vaccinations, in-
cluding peptide vaccines (such as GV1001, GX301, UV1, and Vx-001), dendritic cell-based
vaccines (such as GRNVAC1), and DNA vaccines (such as INVAC-1) have been evaluated
in many clinical trials spanning almost two decades [35,44,102,135,136]. Clinical studies on
hTERT have been applied to both solid tumors and hematologic malignancies, and some
of them have already moved to the later stages of trials [136]. However, the efficacy of
the TERT vaccines is insufficient [137,138]. Furthermore, therapeutic TERT-based vaccines
can mediate specific T cell responses in a high proportion of cancer patients [35]. A more
robust antitumor activity was observed when combining immune checkpoint blockade
with TERT-based vaccines in preclinical research, proving the synergistic effect between
these two drugs [139].

6.5. TERT or TERC Promoter-Driven Therapy

Owing to the hallmark role of TERT promoter mutation-induced TERT expression in
tumorigenesis, correction of this mutation and reduction of TERT expression has become a
therapeutic method, by using recently developed gene editing techniques, including on-
colytic virus and suicide gene therapy [102]. Telomelysin (OBP-301), a telomerase-specific
replication-component adenovirus with an hTERT promoter element, has shown strong
antitumor effects in various human cancer cells, including HNCs [140,141]. Phase I trials
for solid tumors [142] and advanced hepatocellular carcinoma [143] have already been com-
pleted. Further phase 2 trials on gastric/gastroesophageal junction cancers (NCT03921021),
head and neck cancers (NCT04685499), and esophageal cancers (NCT03213054) are cur-
rently ongoing.

6.6. Other Therapeutics Strategies

In addition to the strategies mentioned above, there are other anti-telomerase therapies.
For example, telomerase interference by altered TERC templates is introduced by lentiviral
infection [144], CRISPR genome editing targeting TERT gene expression [145], inhibition of
oncogenic signaling MAPK pathways that impinge on TERT transcription [35], epigenetic
mechanisms using histone deacetylase [30,146], and Tankyrase inhibitors for telomere
length regulation [102,147]. Furthermore, strategies relying on telomere attrition in the
setting of adjuvant or maintenance therapies rather than frontline therapy are another
consideration [35].

7. Conclusions

Telomeres shorten with each cell division and result in cellular senescence. Telomere
maintenance via telomerase reactivation plays a critical role in tumorigenesis (Figure 2).
Several mechanisms could increase telomerase activity and TERT promoter, C228T and
C250T, mutations are the most well-known alternations, which have already been reported
in several malignancies, including HNCs. The frequency of the TERT promoter mutations
in HNCs is quite high, ranging from 11.9% to 64.7%, and is more enriched in oral cavity
SCCs than in other subsites. In addition, several reports have demonstrated an association
between TERT promoter mutations and poor survival. Over the past 10 to 20 years,
several anti-telomerase therapeutic strategies have been developed. However, only a
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few drugs have been used in clinical trials, and the results are only passable. Studies
on immunotherapies targeting telomerase, such as cancer vaccines and oncolytic viruses,
are very promising, however, trials are still ongoing. In addition, the potential synergy
between TERT vaccines and immune checkpoint blockade may be another way to maximize
anti-telomerase therapy.
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Figure 2. Telomere and telomerase play important roles in cellular biology and tumorigenesis.
Telomeres are specialized structures that are located at the ends of chromosomes. They are composed
of DNA repeating sequences (TTAGGG). Shelterin complexes are specific proteins known to protect
chromosomes and regulate telomere length. Telomerase is a reverse transcriptase that synthesizes
telomeric DNA sequences to maintain telomere length. Telomerase comprises two major components:
the telomeric RNA component (TERC) and the telomerase reverse transcriptase (TERT). Other
proteins, such as dyskerin, are also found in a complex with TERC. Telomeres shorten with each
round of cell division and this mechanism limits the proliferation of cells to a finite number of cell
divisions. Unlike normal cells, cancer cells are characterized by high telomerase activity, which could
be achieved via mechanisms including TERT genetic alterations, TERT epigenetic change, or structural
variants. TERT promoter mutations are the most common alternation and have been reported
in several malignancies such as melanoma, genitourinary cancers, CNS tumors, hepatocellular
carcinoma, thyroid cancers, sarcomas, and HNCs. In HNCs, the frequency of TERT promoter
mutations is high (11.9–64.7% based on different studies).
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