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Abstract: Androgen receptor splice variants (AR-SVs) contribute to the aggressive growth of castration-
resistant prostate cancer (CRPC). AR-SVs, including AR-V7, are expressed in ~30% of CRPC, but
minimally in treatment-naïve primary prostate cancer (PCa). Compared to Caucasian American
(CA) men, African American (AA) men are more likely to be diagnosed with aggressive/potentially
lethal PCa and have shorter disease-free survival. Expression of a truncated AR in an aggressively
growing patient-derived xenograft developed with a primary PCa specimen from an AA patient
led us to hypothesize that the expression of AR-SVs could be an indicator of aggressive growth
both in PCa progression and at the CRPC stage in AA men. Tissue microarrays (TMAs) were
created from formalin-fixed paraffin-embedded (FFPE) prostatectomy tumor blocks from 118 AA
and 115 CA treatment-naïve PCa patients. TMAs were stained with AR-V7-speicifc antibody and
with antibodies binding to the N-terminus domain (NTD) and ligand-binding domain (LBD) of
the AR. Since over 20 AR-SVs have been identified, and most AR-SVs do not as yet have a specific
antibody, we considered a 2.0-fold or greater difference in the NTD vs. LBD staining as indication of
potential AR-SV expression. Two AA, but no CA, patient tumors stained positively for AR-V7. AR
staining with NTD and LBD antibodies was robust in most patients, with 21% of patients staining
at least 2-fold more for NTD than LBD, indicating that AR-SVs other than AR-V7 are expressed in
primary treatment-naïve PCa. About 24% of the patients were AR-negative, and race differences in
AR expression were not statistically significant. These results indicate that AR-SVs are not restricted
to CRPC, but also are expressed in primary PCa at higher rate than previously reported. Future
investigation of the relative expression of NTD vs. LBD AR-SVs could guide the use of newly
developed treatments targeting the NTD earlier in the treatment paradigm.

Keywords: androgen receptor (AR); AR splice variants (AR-SV); prostate cancer; castration-resistant
prostate cancer (CRPC); race; African American (AA); Caucasian American (CA)

1. Introduction

Approximately 270,000 men in the United States were diagnosed with prostate can-
cer (PCa) and 34,000 died of PCa in 2022 [1]. Globally, the number of PCa survivors is
projected to increase to over 4.5 million by 2026 [2]. Current therapeutic strategies for
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castration-resistant prostate cancer (CRPC) include androgen receptor (AR) antagonists
and a CYP17A1 inhibitor [3–5]. Although these drugs extend progression-free survival
(PFS), approximately 30% of tumors do not respond to these therapies, and patients who
initially respond to these therapies develop resistance shortly after treatment initiation [6].
One of the primary reasons for treatment failure and CRPC relapse is the expression of
AR splice variants (AR-SVs) that lack the ligand binding domain (LBD) and are constitu-
tively active [7–9]. AR-SVs contribute to CRPC aggressive phenotype, shorter PFS, and
failure to respond to enzalutamide or abiraterone [7,10–14]. With a subset of primary PCa
not responding to treatment and the reminder developing treatment resistance over time,
AR-SV expression is a potential escape mechanism to androgen independency, treatment
resistance, and disease progression [15].

Studies have shown that AR-SVs are expressed in CRPC, but minimally in primary
PCa [16–18]. Several studies with CRPC specimens and preclinical models identified
multiple AR-SVs (Figure 1A) and found that the AR-SVs contribute to cancer relapse after
radical prostatectomy [16]. Approximately 20 AR-SVs have been identified preclinically and
clinically [10]. Drugs including enzalutamide and abiraterone target the androgen pathway
to inhibit PCa progression. However, the treatments fail after an initial period of response,
and AR-SVs contribute to the treatment failure [6,19]. For example, AR-V7, a commonly
identified AR-SV, in clinical specimens correlated with a unique 59 gene signature in CRPC
that corresponded to shorter survival times and resistance to treatments [19]. However,
there are many known AR-SVs, and expression levels vary from 30 to 70% in CRPC
patients [6,13,19].
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Figure 1. (A) AR and AR-SV structure (created using Biorender.com, accessed on 10 December 2022).
These are representatives of the 20 AR-SVs clinically detected. (B) Diagram representing the method
used to detect AR and AR-SVs.

Advanced CRPC patients treated with enzalutamide and abiraterone expressed AR-
V7 at 39% and 19%, respectively, and AR-V7-positive patients had statistically significant
lower PSA response rates [6]. Several mechanisms including gene rearrangement and
alternate splicing through splicing factors have been attributed to the development of AR-
SVs [9,20,21]. Since the AR NTD is the main coactivator interacting surface, the expression
of this region in the AR-SVs makes AR-SVs constitutively active and allows them to retain
the majority of their activity. Clinically, AR-V7 is detected in both the prostate tissue and
in the circulating tumor cells using both at the transcript and protein levels [22]. AR-V7
expression varies widely in hormone-sensitive PCa between studies, ranging from low
single-digit percents to over 90% [19,23].
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To our knowledge, it is currently unknown whether AR-SV expression levels or pat-
terns differ with race, and no large patient cohorts have been analyzed for a comprehensive
expression of AR-SVs in treatment-naïve primary PCa. Compared to Caucasian Amer-
ican men (CA), African American (AA) men have a 63% higher overall PCa incidence.
These patients are more likely to be diagnosed with aggressive PCa [24], are 2.44-fold
more likely to die from PCa [25], and have shorter disease-free survival [26]. PSA levels
remain higher in healthy AA men compared to CA men even after adjusting for age, BMI,
and insurance [27,28]. High-grade prostatic intraepithelial neoplasia is more prevalent
in younger AA men than age-matched CA men, suggesting an accelerated progression
prior to diagnosis [29–31]. A previous analysis of men undergoing prostate biopsy that
adjusted for clinical and demographic differences found that AA men were 50% more
likely to be diagnosed with PCa and 84% more likely to have high-grade PCa than CA
men [30]. Among men undergoing radical prostatectomy, AA men were 28% more likely
to have a recurrence than CAs [32]. While differential healthcare access may contribute to
racial disparities in PCa detection and treatment patterns, when compared to CAs, AA men
have higher PSA levels, are diagnosed at a higher grade, show higher tumor expression of
adverse molecular markers, and have a higher risk of PCa progression after surgery.

Further characterizing AR-SVs in diverse clinical populations could provide new
treatment approaches. In the last decade, several groups have identified molecules that
bind to the N-terminus domain (NTD) and inhibit and/or degrade AR and AR-SVs [33–36].
Considering that the NTD is conserved, and all AR-SVs express the NTD, targeting the
NTD would be more effective than a receptor–ligand approach through targeting the LBD.
Evaluating the expression of AR-SVs in primary PCa in AA and CA men will determine
whether the expression of AR-SVs contributes to development of aggressive PCa or CRPC
in AA patients. In this case, targeted clinical assays would be developed, such that existing
or new drugs may be administered earlier in the treatment paradigm to improve patient
outcomes and prognosis.

In this study, we evaluated the expression of AR and AR-SVs in treatment-naïve
primary PCa from AA and CA men in the mid-south USA. Only two primary prostatectomy
PCa tumors stained for AR-V7, both in AA men. However, 20% of the patient specimens
stained for NTD at a rate 2.0-fold higher than LBD, indicating AR-SVs other than AR-V7
may serve as potential targets in primary PCa.

2. Materials and Methods

AR NTD antibody was procured from Millipore, Burlington, MA, USA (06-680-MI),
AR-LBD antibody C19 was from Sigma, St. Louis, MO, USA (SAB5500007), and AR-V7
antibody was obtained from Abcam, Cambridge, UK (ab198394).

2.1. TMA Creation and Staining

Patient specimens were collected under an UTHSC Institutional Review Board (IRB)-
approved protocol. Patient details were redacted before the clinical information was
released to the researchers. The patient specimens that were collected and stored since 1990
were obtained from the UTHSC center for cancer research biorepository core. Each patient
specimen had multiple blocks, and sections were made from each block and sent to the
pathologist (FK) for marking the tumor areas. Cores from identified sections were obtained
from each block and TMAs were created with a total of 233 specimens (each TMA containing
30 specimens). Twelve specimens showed insufficient tumors and were excluded from the
study. Staining was optimized using LNCaP and 22RV1 cells that expressed AR and AR
and AR-SV, respectively, with selected PCa slides. Immunohistochemistry protocol was
optimized using an automated processor (Leica, Bond III). Cases (n = 221) were evaluated
for staining with AR NTD and LBD antibodies and 192 cases for AR-V7-binding antibody.
We used three AR NTD antibodies (Cell Signaling D6F11) and AR-441 (in addition to PG-21)
to optimize staining and chose to use PG-21 antibody for the staining of TMAs. Similarly,
the AR-V7 Abcam antibody was compared with RevmAb AR-V7 antibody and chose to
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continue with the Abcam antibody. Results were scored by two independent pathologists
for intensity of staining (0–3) and the number of cells (0–100), and H score was calculated
ranging between 0 and 300.

2.2. Statistical Analysis

Fisher’s exact test was used for an analysis of contingency between the African Ameri-
can and Caucasian population with possible splice variants. A similar test was performed
on the samples with no staining present. Finally, a Welsh’s t test was performed on all
samples comparing the fold change in NTD vs. LBD staining.

2.3. Patient-Derived Xenograft

Animal experiments were performed under an UTHSC Institutional Animal Care and
Use Committee (IACUC)-approved protocol. Animals were maintained in a 12 h light:dark
cycle and were provided with water and food ad libitum. Patient specimens collected from
surgical suites in RPMI medium supplemented with penicillin:streptomycin and fungizone
were fragmented using collagenase and implanted subcutaneously in male NSG mice.

2.4. Western Blot

Tumor tissue from PDX was minced and protein extracted by three freeze thaw cycles
in a lysis buffer that contained protease and phosphatase inhibitors. Western blot was
performed according to a method previous published [36].

3. Results

Since AR-V7 is the only AR-SV with a clinically validated assay, there is a higher
chance that the expression of other AR-SVs could be overlooked. Hence, the actual percent
of AR-SVs expressed in primary PCa or in CRPC is underestimated. We expected that
the approach shown in Figure 1B could provide clarity on the percent of PCa expressing
AR-SVs. Two antibodies, one binding to the NTD and one to the LBD, were optimized
using LNCaP and 22RV1 cells. LNCaP cell line expresses AR, while 22RV1 expresses AR
and AR-SV. LNCaP produced a ratio of 1:1 with the antibodies, while 22RV1 provided a
ratio of greater than 2, suggesting that this approach can distinguish between specimens
expressing AR only or AR and AR-SVs. We used a cut-off of 2.0 to classify a specimen as
AR-positive or AR- and AR-SV-positive. This is similar to the approach adopted earlier [37].

3.1. Patient Characteristics and Demographics

A prostatectomy PCa specimen (UT-1335) from an AA patient aggressively grew from
implantation to 2000 mm [3] in under 40 days. Protein was extracted from the specimen
and Western blot for AR was performed with an antibody directed to the NTD of AR.
Interestingly, the antibody detected a truncated band at ~65 KDa (Figure 2). This led to the
assumption that primary treatment-naïve PCa from AA patients could potentially express
AR-SVs, and that could potentially contribute to aggressive phenotype.
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To address this hypothesis, we created nine tissue microarrays (TMA) from 233
treatment-naïve prostatectomy specimens from AA (118) and CA (115) patients. The
patient characteristics and demographics are provided in Table 1. Serum PSA and Gleason
scores were matched between the races to ensure that the tumor stage and grade do not
contribute to differences in the expression of AR-SVs. The TMAs were stained with AR
NTD and LBD-binding antibodies, and with an AR-V7 antibody. The staining intensity
was quantified, and an H-score was provided for each specimen.

Table 1. Patient demographics and specimen characteristics.

Characteristics African American Caucasian American

n 118 115

Age 59.65 62.12

BMI 29.02 28.05

PSA (ng/mL) 6.2
(n = 67)

4.7
(n = 90)

Gleason score (n)
6 61 61

3 + 4 29 35
4 + 3 17 11

8 3 6
9 4 4

AR-V7 2 0

AR NTD antibody (+ve) n 56 67
AR NTD antibody (+ve) (intensity) 30 30

AR NTD antibody (−ve) n 47 48

AR LBD antibody (+ve) n 73 67
AR LBD antibody (+ve) (intensity) 30 30

AR LBD antibody (−ve) n 60 100

AR NTD and LBD antibody (−ve) n 27 26

Gleason score (NTD-H-score) mean
6 34 25.5

3 + 4 39.7 32.9
4 + 3 15.6 42.3

8 1.7 8.3
9 20 50

Gleason score (CTD-H-score) mean
6 59.4 52.2

3 + 4 103.8 68.2
4 + 3 65.9 70

8 8.3 10
9 62.5 103.3

3.2. Treatment-Naïve Primary PCa Specimens Express AR-SVs

Out of the 221 evaluable specimens, 53 specimens (24%) did not stain for AR with
either antibody. This suggests that these patients may not respond to any AR-targeted
therapeutics and could potentially develop AR-negative neuroendocrine PCa. No racial
differences were observed (27 vs. 26) (Figure 3). The pathological grade of AR-negative
specimens was T2C or higher, with a Gleason score of 7 or higher. Only two patients, both
AA men, stained positive for AR-V7. There were 47 patients with a rate of NTD staining
2-fold greater than that of LBD staining, corresponding to 21% of PCa specimens potentially
expressing AR-SVs. This included 17 from AA men and 30 from CA men. No statistical
significance between the races was identified. Representative IHC images are shown in
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Figure 4. Specimens (n = 6; 3 AA + 3 CA) were randomly selected, RNA was extracted,
and real-time PCR was performed with TaqMan probes binding to the NTD and LBD. The
results at the mRNA level confirmed the observation made with IHC.
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statistical significance was observed between the groups.
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4. Discussion

While most studies are performed to detect the AR-SVs focus on CRPCs, we focused
on primary PCa with the assumption that expression of AR-SVs at an early stage might
correlate with late-stage aggressive cancer. This study is potentially one of a few to take
a distinct approach to identify AR-SVs in prostatectomy specimens with a ratio of N-
terminus to C-terminus staining as a defining measure of AR-SV expression. An earlier
study utilizing the same approach did not identify AR-SVs in primary PCa [37]. This
approach in our patient cohort identified ~20% of primary PCa specimens expressing
AR-SVs, including two AA patients with AR-V7 expression. AR-SVs could potentially
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be expressed in PCa specimens at higher rate than previously known. Considering that
20 AR-SVs [38] have been clinically identified, the proportion of AR-SVs in primary PCa
and CRPC could be underestimated.

AR-V7 was detected in less than 1% of primary PCa specimens, while it was detected
in over 75% of PCa specimens where the patients underwent androgen deprivation therapy
(ADT) [19]. This number further increased in patients treated with abiraterone acetate
or enzalutamide. Not many studies have comprehensively evaluated the expression of
AR-SVs in treatment-naïve primary PCa specimens. At this time, more than 20 AR-SVs
have been detected clinically and preclinically [38]; however, AR-V7 is the only AR-SV
that can be reliably measured clinically. Since the NTD is highly conserved in almost all
of the AR-SVs, our approach might provide a method to determine if there are AR-SVs
expressed in PCa and CRPC specimens. Detecting the overall expression of AR-SVs in PCa
specimens will help with the choice of treatment and will also provide an explanation for
the failure to respond to treatments. With the advent of new AR NTD-targeting treatment
approaches [33–36] comes the ability to detect AR-SVs early in the PCa occurrence, and
using this approach suggests that these new AR NTD-targeting drugs might be beneficial
to a broader spectrum of PCa patients. The IHC results were confirmed using real-time
PCR with the limited availability of the specimens. Unfortunately, the specimens used
in this manuscript are very old and enough tissues are not available to perform Western
blot analysis.

Though we expected a racial disparity in the expression of AR-SVs, with AA patients
expressing at a higher rate than the CA patients, we did not find any statistical difference
between the two races in terms of AR-SV expression. Interestingly, the CA patients had a
higher proportion of AR-SV-positive tumors.

An earlier study with a small number of (n = 10) hormone-responsive bone metastasis
specimens was performed to detect AR, AR-V7, AR-V1, and AR-v567es at mRNA levels.
The study found that mRNA was detected in most of the primary tumors and metastasis,
and this number increased in CRPC patient specimens [10]. Though that study evaluated
the expression at the mRNA level, this study provides an independent validation for the
expression of AR-SVs in early-stage PCa.

Strengths of the analysis include large number of AA and CA specimens with compa-
rable ranges of age, PSA, and Gleason scores. The assumption that higher NTD staining
relative to LBD was indicative of AR-SV expression was based on in vitro analyses with
LNCaP and 22RV1 cell staining. However, there are limitations, including the potential for
the masking of the antibody epitope in specimens that stained weakly at the LBD, hence
providing a false positive interpretation that AR-SVs are expressed in primary PCa. Our
results need to be confirmed using one of the sequencing methods such as probe-capture
sequencing. Irrespective of these limitations, the study provides evidence that the expres-
sion of AR-SVs is not limited to CRPC, as previously thought, but could be expressed in
primary PCa at a much higher rate and that the expression of AR-SVs in primary PCa
might be underestimated clinically.
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