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Abstract: The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious
threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected
individuals, ZIKV infection can result in severe manifestations including neurological complications
in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized
by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion
of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV
evades its host immune system through various immune evasion strategies, including suppressing
the innate immune receptors and signaling pathways, mutation of viral structural and non-structural
proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV
recognition by the host immune system and the evasion strategies employed by ZIKV. Characteri-
zation of the host–viral interaction and viral disease mechanism provide a platform for the rational
design of novel prophylactic and therapeutic strategies against ZIKV infection.

Keywords: immune recognition; immune evasion; pathogen-recognition receptors; RIG-like receptor;
type I interferon; Zika virus

1. Introduction

ZIKV belongs to the genus of Flavivirus in the Flaviviridae family that comprises mul-
tiple deadly human pathogens, including the dengue virus (DENV), Japanese encephalitis
(JEV), the yellow fever virus (YFV), and the West Nile virus (WNV) [1]. First discovered
in 1947 from Macca malatta, a Rhesus monkey in the Zika forest of Uganda [2–4], ZIKV
has caused infection sporadically over the years, but infected individuals are typically
asymptomatic or have mild symptoms such as a low-grade fever and a maculopapular
rash. Following the unexpected 2015 to 2016 outbreak that occurred across 80 countries,
particularly in Latin America [5–7], ZIKV has raised widespread concern and attracted
interest from many researchers due to its clinical significance. This neurotropic virus
preferentially targets human neural progenitor cells (NPCs) and causes sequelae in the
immuno-privileged brain [8–10]. As a result, infection by ZIKV is associated with Guillain–
Barré syndrome in adults [11–14] and congenital birth defects, including microcephaly and
severe neurological defects, in children born to mothers infected during pregnancy [15–19].
There is currently no effective vaccine approved for ZIKV, although some are undergoing
clinical trials [20,21]. Hence, further studies to characterize the host–pathogen interaction
are imperative for minimizing the harm of a future disease outbreak. This review elaborates
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the virus properties, its recognition by human immune cells, and strategies utilized by the
virus to evade its elimination by a human host.

2. ZIKV Properties
2.1. Gene and Structure

The ZIKV genome is made up of 10.8 kb positive-sense, single-stranded RNA flanked
by the 5′ and 3′ untranslated regions (UTRs) with a single open reading frame (ORF) [22,23].
The ORF region encodes a single polypeptide, which is processed into three structural
proteins, including a capsid (C), precursor membrane (prM), and envelope (E), as well
as seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The C
proteins construct the icosahedral viral capsid, which encapsulates the viral genomic RNA,
while the prM and E proteins are anchored on the outer membrane. prM is cleaved by host
cell furin protease to generate mature virion, whereas the E protein is involved in binding
and membrane fusion, which permit viral entry into the host cells [24].

NS1 is a glycoprotein of approximately 60 kDa that serves as an RNA replication
complex in flaviviruses. Due to the importance of its replicative function in flaviviruses,
the NS1 sequence is highly conserved, whereby ZIKV shares a >50% sequence homology
with DENV2 and WNV NS1 [25]. The protein is found in the following different forms in
various locations in the host cells: (i) dimers in membrane-bound vesicles in the lumen
of the endoplasmic reticulum, (ii) dimers in association with the membranes of flavivirus-
infected cells, and (iii) highly immunogenic hexamers that are secreted into extracellular
fluid [26,27].

NS2A is a 22 kDa transmembrane protein located in the endoplasmic reticulum, and it
plays a critical role in the viral replication process [28]. It also interacts with NS2B and NS3
to recruit viral RNA, prM, and E to the virion assembly site for virus morphogenesis [29,30].
It has been suggested that the NS2A protein participates in ZIKV-induced neurological
damage, as it interacted with multiple adherent junctions in an embryonic mouse cortex
and impaired radial glial cell proliferation in human forebrain organoids [31].

NS2B/NS3 forms the viral protease complex that is involved in genome replication and
cleavage of the viral polypeptide [32]. NS3 carries the protease domain at the N-terminus
and the RNA helicase domain at the C-terminus, while NS2B acts as the membrane-bound
domain that positions NS3 to its substrate and forms part of the NS3 catalytic domain for
substrate binding [33,34].

NS4A/NS4B cause neurological impairment via manipulating the cellular survival
and autophagy signaling pathways [35]. The introduction of NS4A or NS4B in human
fetal neural stem cells (NSCs) resulted in impaired neurosphere formation, likely through
inhibiting Akt kinase phosphorylation at Thr308 and Ser473 and mammalian target of
rapamycin (mTOR) phosphorylation at Ser2448, which disrupted autophagy [36]. NS5, on
the other hand, comprises methyltransferase with a short linker to the RNA-dependent
RNA polymerase (RdRP) that is vital for RNA replication. It performs guanylyl transferase
activity to catalyze the de novo formation of a methylated RNA cap structure using a
triphosphorylated RNA transcript [37].

2.2. African and Asian ZIKV Lineages

Phylogenetic analysis has classified the ZIKV into two major genotypes, namely,
the African and Asian lineages; the latter is further subdivided into the local Asian or
contemporary American subclades [38,39]. The African and Asian ZIKV lineages display
differences in virulence, transmissibility, and replication kinetics [40–42], despite sharing
a high degree of similarity (>88.9%) in their genomic sequences [22]. The African ZIKV
strain demonstrates a higher rate of transmissibility in the mosquito vector Aedes aegypti
compared to its Asian counterpart [43]. Its infection results in a higher rate of lethality and
can lead to cases of fetal death [44]. In contrast, the low-virulence Asian lineage does not
induce early cell death, but it may lead to chronic infections in the fetal central nervous
system [45]. The reemergence of ZIKV epidemics in 2015 were dominated by a strain
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of Asian ZIKV lineage that is commonly named the American strain [46]. Preceding the
outbreak, ZIKV Asian lineage had been associated with an evolutionary mutation in the
viral E gene (V473M) during replication and transmission between mosquito and host [47].
This mutation increases its virulence and viremia generation, hence enhancing transmission,
which could be a critical determinant in the epidemics. Intriguingly, an effort to inverse the
V473M substitution in the epidemic ZIKV strain isolated in Puerto Rico in 2015 reversed
the pathogenic phenotypes of the virus [47]. Recent ZIKV outbreaks of the local Asian
lineage have been reported in different states of India in 2018 and 2021 [48–50].

2.3. Transmission and Life Cycle

Similar to other flaviviruses, ZIKV is vector-borne and can be disseminated by infected
female Ae. aegypti and Ae. albopictus mosquitoes. However, it differs from DENV in
that it can be transmitted vertically from a pregnant mother to a baby [51,52], via blood
transfusions [53], and via sexual intercourse [54,55]. Vertical transmission is observed in the
mosquito vectors, Ae. aegypti and Ae. albopictus, to the larvae of infected mosquitoes [51,56].

The life cycle of ZIKV is highly similar to other members of the Flavivirus family; it
begins with the entry of a viral particle into a host cell via clathrin-mediated endocytosis
modulated by the binding of viral protein E. Viral entry is facilitated by the rolling and ac-
cumulation of viral particles along a host cell surface. The differential expression of various
binding factors in a host cell surface dictates the viral tropism. The presence of the trans-
membrane receptor tyrosine kinase protein anexelekto (AXL), which is highly expressed by
neural cells, dendritic cell-specific intracellular adhesion molecule 3-grabbing nonintegrin
(DC-SIGN), tyrosine-protein kinase receptor (TYRO3,) and T-cell immunoglobulin and
mucin domain 1 (TIM-1) on host cells is vital for the viral endocytic event [57,58].

When ZIKV reaches a clathrin-expressing surface, the host cell membrane invaginates
and fuses with the viral membrane in the presence of acidic host cell cytoplasm, allowing
the viral genome to be released into the cytoplasm (Figure 1). Following the release,
protein translation occurs, and the newly synthesized viral proteins will be recruited into
the endoplasmic reticulum for assembly [59]. With help from the NS proteins, new and
immature viral particles migrate to the Golgi body, where precursor prM proteins are
cleaved. Mature virions are subsequently released from the cell and are ready for a new
cycle of infection. Occasionally, an immature viral particle carrying the uncleaved prM can
be released [60].

2.4. Symptoms Caused by ZIKV Infection

During the Yap Island outbreak in 2007, a majority of the cases were mild, with
clinical symptoms that included low-grade fever, maculopapular rash, arthralgia, and
conjunctivitis [61]. Severe neurological complications of ZIKV infection were observed
in a small number of cases during the French Polynesian outbreak. This was highlighted
by the increased prevalence of an autoimmune disease causing acute or subacute flaccid
paralysis, known as Guillain–Barre syndrome, to approximately a 20-fold higher rate
than was expected (1/2 in 100,000 people per year) in adults, approximately 3 weeks
following the ZIKV outbreak [62]. Trends of microcephaly among newborns of infected
mothers were reported during the outbreak in Brazil from 2015 to 2016 [63]. Other forms
of neurological deficits, including meningoencephalitis [64,65], transverse myelitis [66],
ophthalmic manifestation with optic nerve and retina complications [67,68], and other
neuronal developmental defects [69], were identified among infants. Subsequent studies
using human brain organoids [70], as well as animal models using macaques, mice, or
fruit flies [52,71,72], have confirmed the viral neurotropism and developmental impact.
Early neurological impairments, including severe intellectual disability, spastic tetraparesis,
dysphagia, and failure to thrive [73], as well as severe motor impairment, were recently
described in congenital ZIKV-infected children [74].
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SIGN, TYRO3, and TIM-1) via viral protein E and prM and initiates clathrin-dependent viral entry. 
(2) Upon entering the cell, the endosome matures and acidifies, resulting in the release of viral 
RNA and the translational process to synthesize viral proteins. (3) New viral proteins are assem-
bled into an immature viral particle within the endoplasmic reticulum. (4) Immature viral particles 
enter the trans-Golgi network where prM protein is cleaved into a mature virus. Finally, the newly 
formed virus is released to the surrounding areas and is ready for subsequent infection. 
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Figure 1. Life cycle of ZIKV. (1) ZIKV encounters host cells and binds to host receptors (AXL, DC-
SIGN, TYRO3, and TIM-1) via viral protein E and prM and initiates clathrin-dependent viral entry.
(2) Upon entering the cell, the endosome matures and acidifies, resulting in the release of viral RNA
and the translational process to synthesize viral proteins. (3) New viral proteins are assembled into
an immature viral particle within the endoplasmic reticulum. (4) Immature viral particles enter the
trans-Golgi network where prM protein is cleaved into a mature virus. Finally, the newly formed
virus is released to the surrounding areas and is ready for subsequent infection.

ZIKV causes neurological deficits through damaging neuronal development and pro-
liferation. Li, et al. [15] showed that in human NPCs, ZIKV infection caused cell-cycle arrest,
apoptosis, and the inhibition of cell differentiation, which eventually gave rise to cortical
thinning and microcephaly. Gabriel, et al. [10] reported that ZIKV infection resulted in the
premature differentiation of NPCs, which was associated with centrosome perturbation,
progenitor depletion, disrupted ventricular zone proliferation, impaired neurogenesis, and
cortical thinning. In addition, Onorati, et al. [75] utilized a single-cell RNA-sequencing
technique to investigate the effects of ZIKV on the neuropathogenesis of neocortical and
spinal cord neuroepithelial stem cells, and they demonstrated that ZIKV infection caused
disrupted cell mitoses, supernumerary centrosomes, structural disorganization, and cell
death. Treatment with nucleoside analogs inhibited ZIKV replication and ZIKV-mediated
death in neuroepithelial stem cells [75].

3. Innate Immune Recognition

Following the viral invasion of host cells, ZIKV viral components, including nucleic
acids and proteins, are recognized as foreign substances or pathogen-associated molecular
patterns (PAMPs) by the host innate pathogen-recognition receptors (PRRs) [76]. Upon
recognition, these receptors transduce signals into the nucleus to initiate a robust immune
response to eliminate the virus. Toll-like receptors (TLRs), particularly TLR3, TLR7, and
TLR8, as well as retinoic acid-inducible gene I (RIG-I)-like receptors (RLR), including
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RIG-I and the melanoma differentiation-associated gene 5 (MDA5) receptors, are the host
innate receptors located in either the endoplasmic vesicles or cytoplasm. These receptors
play crucial roles in triggering signaling pathways and initiating an antiviral response in
the host [77].

3.1. ZIKV Recognition by RIG-I Receptor

Principally, the ZIKV RNA is recognized by the cytosolic RNA helicase, known
as RIG-I and MDA5, at the early phase of infection (Figure 2) [78–80]. Human iPSC-
derived astrocytes sense ZIKV with both RIG-I and MDA5 to mount a strong antiviral
cytokine response that includes the secretion of type I interferon (IFN-α and IFN-β) and
pro-inflammatory cytokines such as interleukin-6 (IL-6) [81]. The RIG-I receptor binds to
the highly structured and conserved 5′ region of the newly synthesized ZIKV transcripts
before the capping process takes place [82]. At a later stage, MDA5 functions as a secondary
PRR that binds the long viral RNA and augments the innate antiviral response initiated
by RIG-I [83]. Upon detecting the cytoplasmic viral RNA, RIG-I alters its conformation,
exposing the caspase activation and recruitment domain (CARD) which interacts with the
mitochondrial antiviral signaling proteins (MAVS) [78,84–86]. The MDA5 double-stranded
RNA (dsRNA) dimer polymerizes and induces the aggregation of MAVS, resulting in signal
amplification [87]. This initiates a signaling cascade, leading to the expression of type I
IFNs and IFN-stimulated genes (ISGs), as elaborated below.

3.2. ZIKV Recognition by TLR3

A recent study has reported a significant increase in TLR3 expression when cells
are infected with ZIKV [88]. Viral RNA recognition by TLR3 enhances the production of
inflammatory cytokines, including IL-6 [81]. TLR3 also suppresses the type I IFN response
triggered by RIG-I in a suppressor of cytokine signaling 3 (SOCS3)-dependent manner. The
pharmacological inhibition or genetic disruption of TLR3 in astrocytes caused a decrease
in viral titers and in the viral-induced inflammatory response in infected astrocytes, and
partially restored the deficits caused by ZIKV infection [81,89].

Using human embryonic stem-cell-derived cerebral organoids and mouse neuro-
spheres, Dang, et al. [90] showed that ZIKV infection upregulated TLR3 and caused di-
minished organoid volume that was reminiscent of microcephaly. In contrast, a TLR3
blockade reduced the phenotypic effects of ZIKV infection. Therefore, ZIKV-mediated
TLR3 activation likely participates in the mechanistic control of the neurogenesis disruption
that leads to serious neurological disorders, including microcephaly, in newborns [90].

Importantly, a vital role of TLR3 in ZIKV infection has not only been shown in ex-
perimental animal models, but it has also been supported by clinical findings. Clinical
data using ZIKV-infected patient samples have suggested a significant upregulation of
TLR3 mRNA transcript in patients, and its expression level was correlated with the expres-
sion of cytokines such as IL-12, tumor necrosis factor-α (TNF-α), and interferons (IFN-α,
-β and -γ) [88]. Furthermore, the TLR3 gene rs3775291 single-nucleotide polymorphism
(SNP) was associated with the occurrence of a cluster of malformations, which was named
congenital Zika syndrome (CZS) [91]. This missense SNP in TLR3 caused the decreased
binding capacity of dsRNA, resulting in impaired antiviral activity and an increased ZIKV
viral load [92].

3.3. ZIKV Recognition by TLR7/8

In addition to the TLR3 recognition of dsRNA, other endosomal receptors such as TLR7
and TLR8 recognize ZIKV single-stranded RNA (ssRNA). Vanwalscappel, et al. [93] investi-
gated the involvement of TLRs in ZIKV infection by treating monocytes and macrophages
with different TLR agonists. Among the different agonists tested, the TLR7/8 agonist
R848 (resiquimod) demonstrated the most potent inhibitory effect on ZIKV replication [93].
TLR7/8 agonists induced the expression of various genes, including viperin, an interferon-
induced gene. The gene-editing-mediated deletion of viperin in macrophages facilitated
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viral growth in the host cells, whereas a lentiviral-mediated transduction of viperin in
microglial CHME3 cells rendered resistance to viral replication. As such, TLR agonists
have been suggested to be a potential prophylactic or therapeutic treatment option for
ZIKV [93]. Nevertheless, it must be noted that the clinical data show that, in contrast
to TLR3 mRNA, there was no increase in TLR7 or TLR8 mRNA levels detected in the
ZIKV-infected patients [88]. Hence, more studies should be conducted to inspect the role of
TLR7 and TLR8 in ZIKV infection using, for example, a knockout mouse system.
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Figure 2. Immune recognition pathway in ZIKV-infected cells. The endosomal TLRs (TLR3, TLR7, and
TLR8) and the cytosol RIG-like receptors (RIG-I and MDA5) recognize viral invasion through binding
to ZIKV RNA. The TLRs activate MyD88, whereas RIG-I and MDA5 initiate the MAVS signaling
cascade. These result in the activation of TRAF3 or TRAF6. TRAF6 subsequently activates IKKα
and IKKβ, which result in NF-κB nuclear translocation and the transactivation of various immune-
response-associated genes. On the other hand, TRAF3 causes TBK1 and IKKε phosphorylation,
which, in turn, activates IRF-3 and IRF-7 for the transactivation of type I IFN (IFNα and IFNβ). Type I
IFN cytokines are released to stimulate antiviral defense in either an autocrine or a paracrine manner.
The binding of secreted-type I IFN to its receptor leads to JAK1 activation, STAT2 phosphorylation,
and the formation of the ISGF3 complex that is translocated into the nucleus to transcribe ISGs.
The viral particles NS3 and NS4A inhibit MAVS migration to the mitochondria. NS1, NS2A, NS2B,
and NS4B prevent the phosphorylation of TBK1. NS2A and NS4A suppress NF-κB activity, while
NS5 binds to IRF-3 and inhibits its transactivation activity. Furthermore, NS2B and NS3 suppress
JAK1 signal transduction by inducing SOCS-dependent ubiquitination and degradation through
the proteosome, whereas NS5 modulates the proteasomal degradation of STAT2, and, hence, the
downstream signaling is prevented, repressing ISGs production. NS1 and NS2B-NS3 interrupt the
cGAS/STING pathway to weaken the host immunity to ZIKV. Mitochondrial, mt; endoplasmic
reticulum, er.
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3.4. Signaling Pathway Activated by ZIKV Recognition

TLRs activate the myeloid differentiation primary response (MyD88), and they trans-
mit signals via signaling molecules such as TNF receptor-associated factor 3 (TRAF3) and
TRAF6 [94,95]. Both RIG-I and MDA5 migrate to the mitochondria and stimulate the MAVS
signaling cascade. These signaling pathways subsequently activate either the inhibitor of
nuclear factor kappa-B (NF-κB) kinase subunit (IKKα/β) or the IKKε and TANK binding
kinase 1 (TBK1) [96,97], which eventually results in the activation of the transcription
factors NF-κB, IRF-3, and IRF-7 [98]. These events eventually initiate the expression of type
I IFN for antiviral defense [99].

The binding of type I IFN to its receptor induces the transcription of IFN-stimulated
genes (ISGs) that suppress viral infection through the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway [86,95,100]. The release of IFN by
ZIKV-infected cells establishes an antiviral state which stimulates cells in an autocrine or a
paracrine manner to upregulate the expression of RIG-I and MDA5 genes [101,102]. This
generates a positive feedback mechanism, resulting in a higher IFN production rate and the
expression of ISGs to rapidly build up a vigorous antiviral response (Figure 2). Following
the binding of type I IFN to its receptor, JAK1 activation leads to STAT2 phosphorylation
and the formation of the interferon-stimulated gene factor 3 (ISGF3) complex, which consists
of the STAT1, STAT2, and IRF-9 triad. The ISGF3 is then translocated into the nucleus and
transcribes ISGs, as well as the SOCS, which negatively regulate the JAK/STAT pathway by
ubiquitinating JAK1 and promoting degradation through the proteosome [95]. Interestingly,
ZIKV NS4A activates the ISGF3 signaling pathway and induces the upregulation of ISGs to
restrict viral replication while the NS4A blockage removes the antiviral effect [103], which,
presumably, acts as negative feedback to maintain viral persistence.

Mice deficient in type I IFN signaling exhibit severe pathology and succumb to ZIKV
infection [104,105]. Because of the ZIKV infection interferon receptor (Ifnar1-/-) or Irf3-/-
Irf5-/-Irf7-/-, triple-knockout mice developed neurological disease and sustained high viral
loads in the brain, spinal cord, and testes [105]. AG129 mice, with deficient IFN-α, -β, and -γ
receptors, were highly susceptible to ZIKV infection, and they demonstrated rapid viremic
dissemination to visceral organs and the brain and succumbed at approximately one week
post-infection [104]. Using an anti-IFNAR1-treated, Rag1-/- mouse model, vertical ZIKV
transmission in postnatal mice resulted in structural abnormalities and increased cell death
in multiple regions of the brain [106]. These data collectively highlight a crucial role of the
IFN signaling pathway in providing protection against ZIKV infection.

3.5. Low Pattern-Recognition Receptors in the Lower Female Reproductive Tract Enables Viral Replication

A recent study utilized macaque and mouse models to examine PRRs in tissues
derived from uninfected subjects and subjects that were vaginally infected with ZIKV.
It was shown that the basal expression levels of RNA-sensing PRRs are scarce in the
lower female reproductive tract, and vaginal ZIKV infection minimally stimulates PRR
expression [107]. Consequently, ZIKV recognition by PRRs in the lower female reproductive
tract provided limited protection to the host against viral replication, and this rendered
a high viral load following infection. Nevertheless, it was demonstrated that PRRs are
required to prevent further dissemination of ZIKV to the upper female reproductive tract
or to other tissues [107]. This further supports the importance of PRR-mediated innate
immunity in dampening viral replication and systemic dissemination in the host.

4. ZIKV Attenuates Innate Recognition
4.1. ZIKV Modulates the Translocation of RIG-I and MDA5

Previous studies have reported that ZIKV NS proteins antagonize infection-mediated
type I IFN production through various mechanisms to benefit viral replication in the host
cells (Figure 2). Using the ZIKV NS4A-overexpression system, Hu, et al. [108] demonstrated
that ZIKV NS4A binds directly to MAVS to interrupt its interaction with RIG-I through
the CARD and transmembrane domains. This binding disrupts MAVS localization from
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the cytoplasm to the mitochondria and results in the diminished production of type 1
IFN [108].

Furthermore, Riedl, et al. [109] reported that ZIKV NS3 mimics the binding motif of the
14-3-3 molecule. The 14-3-3 family includes two members, i.e., 14-3-3ε and 14-3-3η, which
promote the cytosolic-to-mitochondrial translocation of RIG-I and MDA5, respectively [109].
The binding of ZIKV NS3 to 14-3-3 inhibits the interaction of 14-3-3 with RIG-I and MDA5,
preventing their localization to the mitochondria and resulting in attenuated antiviral
signaling [109].

4.2. ZIKV Degrades the cGAS/STING Pathway

GMP-AMP synthase (cGAS) is one of the key recognition receptors that functions as a
DNA sensor in the cytosol. cGAS activates the stimulator of interferon genes (STING) and
triggers the activation of innate immunity through the TBK1 kinase. Although cGAS is a
DNA sensor, recent studies have suggested its involvement in a host immunity to ZIKV
infection. In the genetically tractable Drosophila system, it has been shown that STING
restricts ZIKV infection by inducing autophagy in the brain [71].

Intriguingly, several studies have shown the ability of ZIKV to avoid STING-mediated
protection in the host cells. Zheng, et al. [110] reported that ZIKV NS1 evades immune sens-
ing through caspase-1-mediated cGAS degradation. On the other hand, Ding, et al. [111]
demonstrated that ZIKV NS2B-NS3 cleaves and degrades the cGAS/STING pathway in
non-human primate cells. Notably, the presence of a protease cleavage site at position
78/79 of the human STING molecule and its absence in a rodent counterpart have been
shown to render viral tropism, specifically in humans and primates [111].

4.3. ZIKV Blocks TBK1 Phosphorylation

The ZIKV NS1 protein hampers IFN-β production in dendritic cells via binding to
TBK1 [86,112]. NS1 binding inhibits the TBK1 kinase phosphorylation of IRF-3 and IRF-7
transcription factors, and, thus, it impairs the downstream transactivation activity of type I
IFN [86,112].

Aside from NS1, the ZIKV NS2A, NS2B, and NS4B proteins participate in the inhi-
bition of TBK1 phosphorylation, whereas ZIKV NS4A impairs IRF-3 phosphorylation,
thus suppressing type I IFN production [112]. In human neuroepithelial stem cells, ZIKV
infection disrupts the localization and activity of TBK1 by sequestering the phosphorylated
TBK1 to the mitochondria during mitosis [75].

4.4. ZIKV Represses the Promoter Activity of the NF-κB and IRF-3 Transcription Factors

The main transcription factors in innate immunity to ZIKV infection include NF-κB,
IRF-3, and IRF-7. Some reports have suggested that the transactivation activity of these
transcription factors can be suppressed by different ZIKV molecules. A Luciferase assay in
HEK293T showed that ZIKV NS2A and NS4A dramatically repress the NF-κB promoter
activity induced by the MDA5/RIG-I signaling pathway [113]. In addition, ZIKV NS5
interacted with and suppressed IRF3 to prevent its transcriptional activity in the host
cells [112].

4.5. ZIKV Disrupts the JAK/STAT Signaling Pathway

In the JAK/STAT signaling pathway, ZIKV NS2B-NS3 inhibits virus-induced apoptosis
and depletes JAK1 to prevent the induction of antiviral ISGs [114]. The inhibition of
JAK1 using ruxolitinib significantly increased ZIKV replication in human Hoffbauer cells,
trophoblasts, and neuroblasts [115]. ZIKV NS2A promoted the degradation of STAT1
and STAT2, which impeded the JAK/STAT cascade [116]. In addition, the ZIKV NS4B
and NS5-noncoding RNA interaction suppressed STAT1 phosphorylation and blocked the
nuclear localization of STAT1 and STAT2, resulting in impaired IFN signaling [117,118].

The ZIKV NS5 protein, on the other hand, promoted the proteasomal degradation of
STAT2 [119,120]. An experiment using a STAT2-deficient mouse model demonstrated a
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high susceptibility to ZIKV infection and viral dissemination to the central nervous system,
gonads, and other visceral organs, and it displayed neurological symptoms [121]. This
suggests the role of STAT2 in limiting ZIKV replication and pathology, and its degradation
by ZIKV molecules could result in severe pathology in a human host.

Additionally, AXL, which is expressed in human glial cells and astrocytes, also medi-
ates ZIKV infection by dampening type I IFN signaling [122]. AXL attenuates the ZIKV-
induced type I IFN signaling genes through modulating SOCS1, a type I IFN signaling
suppressor, in a STAT1/STAT2-dependent manner.

4.6. ZIKV Suppresses Type I IFN Signaling through Inducing Inflammasome Activity

ZIKV infection causes severe inflammation through NOD-, LRR-, and pyrin domain-
containing protein 3 (NLRP3) inflammasome-mediated IL-1β production [110,123,124].
ZIKV NS5 facilitates the assembly of the NLRP3 inflammasome complex through binding to
NLRP3 [123,124]. In addition, ZIKV NS1 inhibited the proteasomal degradation of caspase
1 by recruiting host deubiquitinase, a ubiquitin-specific peptidase 8 (USP8), to cleave
the poly-ubiquitin chains [110]. Cells or mice deficient in NLRP3 exhibited a decreased
secretion of IL-1β and increased type I IFN production following ZIKV infection, as well as
increased host resistance to ZIKV-induced effects in vivo and in vitro [110,124]. Together,
these findings suggest that through enhancing inflammasome activity, ZIKV antagonizes
type I IFN signaling to benefit its replication in host cells.

4.7. ZIKV Antagonizes RNAi-Mediated Antiviral Activity

RNA interference (RNAi), a posttranscriptional gene-silencing mechanism, can act
as an intrinsic antiviral mechanism [125]. In the process of antiflaviviral RNAi, the host
endoribonuclease Dicer recognizes and cleaves the viral dsRNA replicative intermediates
into virus-derived small interfering RNAs (vsiRNAs). Subsequently, the Argonaute protein
(AGO) of the RNA-induced silencing complex (RISC) utilizes vsiRNAs to destruct viral
RNAs in the infected cells [126].

To evade immune response, ZIKV encodes viral suppressors of RNAi (VSR) to antago-
nize RNAi-mediated antiviral immunity [127]. The VSR activity of ZIKV NS2A suppressed
antiviral RNAi in vitro through the inhibition of vsiRNA production [128]. ZIKV C protein
is also a VSR that directly interacts with and antagonizes the endoribonuclease activity
of host Dicers in human NSCs [129,130]. The vsiRNA production is Dicer-dependent, as
evidenced by knockdown of Dicer in the RNAi pathway resulting in reduced vsiRNA
and enhanced ZIKV replication in NSCs [130]. Furthermore, Enoxacin, an RNAi enhancer,
has been shown to inhibit ZIKV-induced phenotypes associated with microcephaly by
increasing RNAi in brain organoids [131], emphasizing the significant role of antiviral
RNAi against ZIKV infection.

In the ZIKV-infected mouse embryonic brain, capsid-mediated Dicer inhibition dis-
rupts the production of host microRNAs (miRNA) that are essential for neural develop-
ment (i.e., let-7a, miR-9, miR-17, and miR-19a), thus causing severe defects in neurogenesis
in vitro and corticogenesis in utero [129]. In contrast, using a capsid-H41R mutant, ZIKV re-
duces its pathogenicity to cause neurologic deficits, which is due to the loss of capsid–Dicer
interaction and failure to inhibit miRNA production. Accordingly, ZIKV dysregulates the
miRNA–mRNA interaction network that negatively impacts several biological processes
such as the cell cycle and neurogenesis in human NSCs [132], as well as in fetal astro-
cyte SVG-A cells [133]. Remarkably, the modulation of RNAi activity through hijacking
host Dicers, vsiRNA, and miRNA productions represents a refined mechanism for ZIKV
immune evasion and favors its replication.
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5. Other Evasion Strategies Exploited by ZIKV
5.1. ZIKV Evades Immune Attack through Gene Mutation

ZIKV evades host immune response by exploiting various strategies, including genetic
adaptation, perturbation of the IFN signaling and complement pathways, mimicking the
host RNA structure, and modulating humoral immunity [38,114].

A single mutation (serine-to-asparagine substitution) at residue 139 of ZIKV prM
causes the virus to become more infectious and lethal [134]. An in vitro study demonstrated
that the ZIKV VEN/2016 strain induced viral replication, severe neuropathology, and
higher mortality rates in human and mice NPCs [134]. Further, isoleucine-to-valine (I39V)
or isoleucine-to-threonine (I39T) mutations at the amino acid residue 39 of the NS2B
increase ZIKV replication and transmission in human NPCs [135]. A188V mutation of the
ZIKV NS1 gene promotes the high antigenic effect of the NS1 protein and enhances viral
infectivity [136].

Furthermore, the highly conserved N-linked glycosylation in the amino acid of the E
protein in the ZIKV Asian and American strains has been shown to mediate neurotropism
and cause neurological damage [137]. This single glycosylation site modulates the ZIKV
interaction with the neutralizing antibodies and receptors [138], and, hence, it provides
ZIKV with the ability to survive and multiply in a human host.

5.2. ZIKV Alters Cellular Processes

ZIKV infection causes swollen mitochondria in the human neurosphere [70]. Mito-
chondrial fragmentation and disrupted mitochondrial membrane potential following ZIKV
infection has been reported in human NSCs and in a glioblastoma cell line [139].In addition,
the ZIKV NS4B protein induces mitochondrial elongation during ZIKV infection. Mito-
chondria elongation also occurs following DENV infection, and it generates a favorable
condition for viral replication [140].

The ZIKV NS4A and NS4B proteins are related to microcephaly due to their perturba-
tion of neurogenesis through dysregulating the Akt-mTOR pathway and autophagy in fetal
NPCs [36]. Failure to inhibit autophagy facilitates ZIKV propagation and pathogenesis.
The NS1 protein interrupts the complement pathway by blocking the polymerization of
complement component C9 and the membrane attack complex formation [141].

Moreover, perturbation of natural killer cell-mediated lysis during ZIKV infection has
been demonstrated in an in vitro study, with clear evidence of the major histocompatibility
complex (MHC) class I being upregulated on the surface of infected cells to antagonize the
cell lysis by natural killer cells [142].

5.3. ZIKV Forms an RNA Cap through Methyltransferase Activity

Under common circumstances, viral mRNA that lacks 2′-O-methylation at 5′ cap is
detected by the IFN-inducible protein with tetratricopeptide (IFIT) to restrict viral propaga-
tion [143]. The NS5 protein executes methyltransferase activity to form a 2′-O-methylated
RNA cap, which mimics the host RNA cap structures; this reaction, which aids viral escape
from IFTI recognition, has also been reported in other flaviviruses, including WNV, DENV,
and JEV [143–145]. A comparative study of ZIKV NS5 methyltransferase revealed that
ZIKV possesses the same features for avoiding a host immune response [146]. Furthermore,
the incomplete degradation product of ZIKV RNA, also known as sub-genomic flaviviral
RNA (sfRNA), interacts with and depletes the inhibition of viral translation mediated by
the fragile X mental retardation protein (FMRP) [147].

5.4. ZIKV-Mediated Modulation of Humoral Immune Response

ZIKV has evolved unique approaches to modulate the host humoral immune response.
For instance, ZIKV RdRP has low fidelity, which allows the rapid development of antigenic
variation in the epitopes of the ZIKV E protein DIII. This drives antigenic escape and
prevents epitope recognition by host-specific antibodies and T cell receptors [148]. Genome-
wide transposon mutagenesis screening has disclosed the ZIKV ability to tolerate mutation,
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particularly in structural proteins such as E protein, which are more permissive to genetic
modifications [149]. This genetic flexibility acquired by ZIKV greatly impacts the ability of
human adaptive immunity to rapidly neutralize and eliminate the pathogen.

Notably, the molecular interactions between ZIKV and its host are intricate, as various
viral–host factors are involved in establishing infection and suppressing viral load. Never-
theless, ZIKV has exploited several advanced survival tactics in hosts to sustain infection.
A summary of ZIKV-mediated evasion mechanisms is given in Table 1 below.

Table 1. Summary of the immune evasion mechanisms of ZIKV.

Host Immune
Pathways

ZIKV
Protein Mechanism References

RIG-I and MDA5
signaling

NS4A

• Binds to MAVS and interrupts
RIG-I interaction

• Disrupts MAVS localization to
the mitochondria

[108]

NS3

• Binds to 14-3-3 molecule and inhibits its
interaction with RIG-I and MDA5

• Prevents RIG-1 and MDA5 localization
to the mitochondria

[109]

cGAS/STING
pathway

NS1
• Promotes caspase-1-mediated

cGAS degradation [107]

NS2B-NS3
• Cleaves and degrades the

cGAS/STING pathway [112]

TBK1
phosphorylation

NS1
• Inhibits the TBK1 phosphorylation of

IRF-3 and IRF-7 [86,112]

NS2A, NS2B,
and NS4B

• Inhibits TBK1 phosphorylation [112]

NS4A • Impairs IRF-3 phosphorylation [112]

NF-κB and IRF-3
NS2A and NS4A • Represses NF-κB promoter activity [113]

NS5 • Suppresses IRF-3 transcriptional activity [112]

JAK/STAT
pathway

NS2B-NS3
• Inhibits virus-induced apoptosis and

depletes JAK1 [114]

NS5 • Promotes proteasomal STAT2 degradation [119,120]

NS2A • Degrades STAT1 and STAT2 [116]

NS4B

• Suppresses STAT1 phosphorylation and
blocks the nuclear localization of STAT1
and STAT2

[117,118]

NS5-noncoding RNA
• Suppresses STAT1 phosphorylation and

blocks the nuclear localization of STAT1 [117,118]
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Table 1. Cont.

Host Immune
Pathways

ZIKV
Protein Mechanism References

Type I IFN signaling

NS1
• Inhibits the proteasomal degradation of

caspase 1 that cleaves cGAS [110]

NS5

• Binds to NLRP3 and induces
inflammasome-mediated
IL-1β production

[123,124]

Antiviral RNAi
NS2A • Inhibits vsiRNA production [128]

C
• Interacts with and antagonizes the

endoribonuclease activity of Dicers [129,130]

Gene mutation

pRM • Mutation at residue 139 [134]

NS2B • Mutation at residue 39 [135]

NS1 • Mutation at residue 188 [136]

E

• N-linked glycosylation in amino acid
mediates neurotropism and
neurological damage

• This glycosylation modulates ZIKV
interaction with neutralizing antibodies
and receptors

[137]

Cellular processes

NS4B • Mitochondrial elongation [140]

-

• Swollen mitochondria
• Mitochondrial fragmentation and

disrupted mitochondrial
membrane potential

[70]
[139]

NS4A and NS4B
• Modulates Akt-mTOR signaling and

autophagy, hence perturbs neurogenesis [36]

NS1 • Interrupts complement pathway [141]

-
• Antagonizes natural killer

cell-mediated lysis [142]

Methyltransferase activity NS5
• Forms 2′-O-methylated RNA cap to

mimic host RNA cap [146]

Humoral
immunity

RdRP
• Develops antigenic variation in the E

protein DIII epitopes [148]

E • Permissive to genetic modifications [149]

6. Conclusions

The reemergence of ZIKV in recent years has resulted in public health emergencies
worldwide. Host innate immunity is essential for controlling virus infection and eliminating
the virus. The recognition of ZIKV by innate immune receptors, such as RIG-I, initiates
signaling pathways and activates the host defense system, primarily through the secretion
of type I IFN to program an antiviral state in infected or neighboring cells. Through
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employing various immune evasion approaches, ZIKV promotes infection, replication, and
dissemination, and it is detrimental to the brain and nervous system in adults and fetuses.
Therefore, although most studies have focused on antagonizing the ZIKV NS proteins,
studies on host aspects are equally crucial for providing insights for the rational design of
therapeutic drugs and vaccines for ZIKV.
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