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Abstract: Background: The characteristics and roles of microbes in the occurrence and development
of pulmonary nodules are still unclear. Methods: We retrospectively analyzed the microbial mNGS
results of BALF from 229 patients with pulmonary nodules before surgery, and performed a com-
parative analysis of lung flora between lung cancer and benign nodules according to postoperative
pathology. The analysis also focused on investigating the characteristics of lung microbiota in lung
adenocarcinomas with varying histopathology. Results: There were differences in lung microbiota
between lung cancer and benign lung nodules. Bacterial diversity was lower in lung cancer than
in benign lung nodules. Four species (Porphyromonas somerae, Corynebacterium accolens, Burkholderia
cenocepacia and Streptococcus mitis) were enriched in lung cancer compared with the benign lung
nodules. The areas under the ROC curves of these four species were all greater than 0.6, and the
AUC of Streptococcus mitis was 0.702, which had the highest diagnostic value for differentiating lung
cancer from benign lung diseases. The significantly enriched microbiota varied with the different
pathological subtypes of lung adenocarcinoma. Streptococcus mitis, Burkholderia oklahomensis and
Burkholderia latens displayed a trend of increasing from the benign lung disease group to the AIS
group, MIA group and IAC group, whereas Lactobacillus plantarum showed a downward trend.
Conclusion: Changes in the abundance of lung microbiota are closely related to the development of
infiltrating adenocarcinoma. Our findings provide new insights into the relationship between the
changes in lung microbiota and the development of lung cancer.

Keywords: mNGS; pulmonary nodules; microbiota; BALF

1. Introduction

Lung cancer is one of the cancers with the highest morbidity and mortality worldwide.
The latest data show that lung cancer has the highest incidence and mortality in China,
which poses a great threat to human health [1,2]. Although low-dose spiral CT has been
widely used, most lung cancer patients are still diagnosed with advanced lung cancer at
the first visit, missing the opportunity for early radical surgery [3]. Adenocarcinoma in
situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC)
are different pathological subtypes of lung adenocarcinoma [4]. Although lung adenocar-
cinoma mainly appears as pulmonary nodules on imaging, the prognosis varies greatly.
The 5-year survival rate of AIS and MIA is 100%, while that of invasive adenocarcinoma
is 67% [5]. Besides the pathological findings, there is no valid biomarker to distinguish
between lung adenocarcinomas with different pathological subtypes.

Numerous studies have shown a direct causal relationship between cancer and mi-
crobes [6]. For example, H. pylori and Fusobacterium promote the development of gastric
cancer and colon cancer, respectively [7,8]. It has been reported that lung cancer is also cor-
related with lung microbes, but the distribution characteristics and roles of lung microbes in
the occurrence and development of pulmonary nodules are still unclear. Current research
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on the relationship between microbes and lung cancer mainly focuses on microbes in
sputum, saliva, feces and lung tissue [9]. Sputum, saliva, feces and other samples are easily
contaminated by the external environment of the host, while lung tissue microorganisms
are not easy to obtain and are difficult to be used as a means of preclinical diagnosis and
treatment [10]. BALF can accurately reflect the microenvironment of lung cancer, and its
contamination risk of the upper respiratory tract, sampling accuracy and invasiveness are
acceptable [11]. At present, there are few studies on the relationship between microbes in
BALF and lung cancer. The potential role of the microbiota in lung cancer susceptibility
remains to be determined. Several studies have confirmed the existence of some unique
flora in BALF [12,13]. Most previous studies have compared the microbial composition
of BALF between typical lung cancer patients and healthy individuals or benign diseases.
However, the differences in pathological types, stages, tumor sites and the solid component
of the ground glass nodule may affect microbial characteristics [14]. The sample size of
current studies is small, and there is no study on the microbial characteristics of lung
adenocarcinoma at different growth stages (the process from AIS to IAC). Existing studies
are mostly based on 16S rRNA sequencing, which can only distinguish different types of
bacteria at the genus level, and the results are difficult to generalize clinically. mNGS can
identify microorganisms at the species level and accurately analyze the metabolic pathways
of marker species at the gene level [15].

This study retrospectively analyzed the characteristics of and differences in pulmonary
microbiota in patients with pulmonary nodules at the species level based on metagenomic
sequencing. Additionally, we sought to correlate the changes in the lung microbiota with
the development of invasive cancer. Our results explore the specific microbial markers for
the prediction of lung cancer and provide new ideas for the diagnosis and treatment of
lung cancer.

2. Material and Methods
2.1. Study Population

Patients who presented with suspicious nodules on CT images and underwent metage-
nomic next-generation sequencing of microorganisms in bronchoalveolar lavage fluid
before surgery at the Fifth Affiliated Hospital of Sun Yat-sen University (Zhuhai, China)
between July 2020 and June 2022 were enrolled in this retrospective study. Pathology
obtained by video-assisted thoracoscopic surgery (VATS) was the most important criterion
for patient inclusion in the study because it confirmed the diagnosis and validated the
histopathological classification. Demographic and clinical data were obtained from each
participant, including age, sex, smoking status, pulmonary function tests, family history
and pathological types.

Inclusion criteria: (1) age > 18 years old; (2) the pathological diagnosis was lung cancer
or benign lung disease confirmed by surgery; (3) microbiological analysis of BALF was
performed via mNGS before surgery and we could obtain complete data on the relative
abundance of microbes for each patient.

Exclusion criteria: (1) participants with lung cancer who had undergone a second
operation or manifested other basic pulmonary diseases; (2) suffering from immune-
compromising diseases, such as human immunodeficiency virus (HIV) or other cancers
in addition to lung cancer; (3) participants received glucocorticoid or antibiotic treatment
3 months or less before sample collection; (4) patients had received chemotherapy, radiation
therapy or other treatments for lung cancer before surgery.

2.2. Sample Collection and DNA Extraction

Bronchoscopy was performed by an experienced clinician on all eligible participants
before treatment. The bronchoscopy was performed according to the standardized protocol
to minimize oral contamination [16]. The bronchoscope was quickly wedged into the
segmental bronchus where the pulmonary nodule was located. Then, 2 mL BALF was
collected from each patient and placed on ice before storing it at −80 ◦C within 30 min.
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Then, 2 mL microcentrifuge tubes with 0.6 mL of sample and 0.5 mL glass beads were
attached to a horizontal platform on a vortex mixer and agitated vigorously at about
3200 rpm for 20 min. After agitation, 0.3 mL of the sample was separated into a new 2 mL
microcentrifuge tube, and DNA was extracted using a TIANamp Micro DNA Kit (DP316,
Tiangen Biotech, Beijing, China) according to the manufacturer’s instructions.

2.3. Library Preparation and Sequencing

DNA libraries were established by breaking, end repair, adapter ligation and PCR
amplification of the extracted DNA. The quality of the DNA libraries was assessed using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) combined with
quantitative PCR to measure the adapters before sequencing. Qualified DNA libraries were
sequenced on the BGISEQ-50 platform (BGI, Shenzhen, China). After sequencing data
were offloaded, low-quality data and reads with a length less than 35 bp were removed to
obtain high-quality data, followed by computational subtraction of human host sequences
mapped to the human reference genome (hg19) using Burrows–Wheeler alignment. The
data remaining after the removal of low-complexity reads were classified by simultaneous
alignment into four microbial genome databases consisting of viruses, bacteria, fungi
and parasites. The classification reference databases were downloaded from NCBI (ftp:
//ftp.ncbi.nlm.nih.gov/genomes/ 10 August 2022), containing 10,989 bacteria, 1800 viruses,
1179 fungi and 282 parasites related to human diseases [17].

2.4. Statistical Analysis

We converted read abundance to percentages based on the total number of high-quality
mapped sequences for each sample at the species and genus levels. These normalized data
were used for all subsequent statistical analyses. All statistical analyses were performed
using R (version 4.2.1, R Foundation for Statistical Computing, Vienna, Austria) software
and SPSS (version 25.0, IBM Corporation, Armonk). Qualitative data were compared
between groups using the Wilcoxon rank-sum test or an independent t-test, and quantitative
data were determined via crosstabs with the chi-square test. The Wilcoxon rank-sum test
was used to compare alpha diversity measures. NMDS (non-metric multidimensional
scaling) was used to compare beta diversity measures. ANOSIM was performed to test for
the statistical significance of beta diversity. LEfSe analysis was used to estimate microbiota
with differential abundance among the groups. For the differential genera obtained through
LEfSe analysis, we used the receiver operating characteristic curve (ROC) to estimate
the diagnostic value. A two-sided p value of less than 0.05 was considered statistically
significant.

3. Results
3.1. Baseline Characteristics of Study Subjects

Our retrospective study included 229 patients, including 192 patients with lung cancer
and 37 patients with benign pulmonary nodules. The median age was 55.24 ± 12.94 in the
lung cancer group and 49.32 ± 12.30 in the control group. The baseline data of the two
groups were similar except for age. However, the difference in age is consistent with the
epidemiology of lung cancer, and the confounding factors can be basically excluded. The
patients in the lung cancer group had mainly non-small cell lung cancer, including 185
cases of adenocarcinoma and 6 cases of squamous cell carcinoma. The subjects included in
our study had mainly early-stage lung cancer. Adenocarcinoma accounted for 95% of the
enrolled patients, which included 31 patients with adenocarcinoma in situ, 51 patients with
minimally invasive adenocarcinoma and 101 patients with invasive adenocarcinoma. The
clinical characteristics of all subjects are shown in Table 1.

ftp://ftp.ncbi.nlm.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/
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Table 1. Baseline clinical characteristics of the study subjects.

Variables Lung Cancer (n = 192) Benign Lesions (n = 37) p

Age 55.24 (12.94) 49.32 (12.30) 0.014
Sex 0.131
Male 78 (40.6) 20 (54.1)
Female 114 (59.4) 17 (45.9)
BMI 23.55 (3.63) 24.95 (12.09) 0.489
Pulmonary function test (n = 80) (n = 14)
FVC (%) 98.70 (18.67) 105.02 (12.22) 0.226
FEV1 (%) 97.17 (8.6) 98.75 (11.52) 0.55
DLCO (%) 86.8 (14.14) 79.1 (22.65) 0.095
Smoking status
Never 153 (79.7) 30 (81.1) 0.846
Ever 39 (20.3) 7 (18.9)
Histology
ADC 183 (95.3) - -
SCC 6 (3) - -
Others 3 (1.6) - -
Tumor stage
0 31 (16.15) - -
I 135 (70.31) - -
II 6 (3.13) - -
III 11 (5.7) - -
IV 7 (3.6) - -

Continuous variables are presented as mean (standard deviation). Categorical variables are expressed as number
(%). BMI, body mass index; FVC, forced vital capacity; FEV1, forced expiratory volume; DLCO, diffusing
capacity of the lung for carbon monoxide; % pred, percentage of the predicted value; ADC, adenocarcinoma; SCC,
squamous cell carcinoma.

3.2. Biodiversity between Lung Cancer and Benign Lesions

α-Diversity reflects the richness and evenness of microbial communities by calculating
the Shannon and Simpson indexes. The Shannon index is positively correlated with the
richness and evenness, while the Simpson index is negatively correlated with them. The
Wilcoxon rank-sum test was performed to determine the significance of the differences in
the index values between the two groups. The Simpson index of the lung cancer group
was significantly higher than that of the control group (p = 0.0097), while the Shannon
index showed no significant difference between the two groups (p = 0.14). Our results
demonstrated that the richness and evenness of lung microbiota in lung cancer patients
were lower than in benign lesions (Figure 1A,B).

β-Diversity is a measure of the difference in the overall microbiota composition
between groups. A non-metric multidimensional scaling (NMDS) plot was used to visualize
the overall microbiome dissimilarity measured by the Bray–Curtis distance. The more
similar samples are in species abundance and composition, the closer they are in the NMDS
plot. The NMDS plot demonstrated that no obvious separation between lung cancer and
benign disease was observed, suggesting that the composition and structure of microbiota
were similar (Figure 1C). ANOSIM analysis also revealed that there were no significant
differences in β-diversity between the two groups (p > 0.05) (Figure 1D). However, when
the lung cancer group was further divided into the squamous cell carcinoma group and
the adenocarcinoma group, the results of the NMDS and ANOSIM analysis revealed that
no significant differences in β-diversity among the three groups were observed, which
proved that different pathological types could affect the composition of lung microbiota
(Figure 1E,F).

The top 10 species with the largest relative abundance in each sample were selected as
the dominant flora based on the species-level relative abundance table. Figure 2A shows that
the composition of the top 10 species in relative abundance was similar between lung cancer
and benign lesions. Among these 10 species, the relative abundance of Streptococcus mitis
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(Wilcoxon test, p = 0.0001) (Figure 2B) and Porphyromonas somerae (Wilcoxon test, p = 0.029)
(Figure 2C) in lung cancer was significantly higher than that in benign lung diseases.
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Figure 1. Diversity analysis for microbiota in BALF. Alpha diversity analysis between lung cancer
and benign pulmonary nodules based on the (A) Simpson index (Wilcoxon rank−sum test, p < 0.05)
and (B) Shannon index (Wilcoxon rank−sum test, p > 0.05); beta diversity analysis via NMDS based
on the Bray−Curtis distance (C). ANOSIM analysis was used as a statistical test for beta diversity
(D). The R value obtained in ANOSIM analysis was between −1 and 1. A value closer to 1 indicates
that the difference between groups is greater than that within groups. When the p value is less than
0.05, the reliability of the test is high. Longitudinal seating represents the Bray−Curtis distance.
Comparison of beta diversity analysis among adenocarcinoma, squamous carcinoma and benign
lesions visualized in the NMDS plot (E). ANOSIM analysis was used as a statistical test for beta
diversity. ANOSIM analysis box plot (F).

3.3. Analysis of Differences in the Microbiota Community between Lung Cancer and
Benign Lesions

The results of the diversity analysis showed that there were some differences in lung
microbiota between lung cancer and benign pulmonary nodules. LEfSe analysis was used
to further compare the microbiota, with significantly different abundances among different
groups to identify potential microbial biomarkers. The results showed that 23 bacteria
with significant abundance differences were identified at the species level (Figure 3A).
Streptococcus mitis, Porphyromonas somerae, Corynebacterium accolens and Burkholderia ceno-
cepacia were enriched in lung cancer. Mycobacterium kansasii, Klebsiella pneumonia and
Roseomonas mucosa were enriched in benign lesions. Streptococcus mitis and Porphyromonas
somerae were consistent with the differential bacteria identified in our analysis of the
top 10 dominant bacteria in abundance, which also proved the stability of our statistical
results. We also compared the microbiota compositions among different pathological
types of lung cancer, including between the squamous cell carcinoma group and benign
pulmonary nodule group (Figure 3B), the adenocarcinoma group and squamous cell
carcinoma group (Figure 3C), and the adenocarcinoma group and benign pulmonary
nodule group (Figure 3D). We found that different pathological types of lung cancer were
significantly enriched with different microbiota. Streptococcus mitis, Porphyromonas somerae,
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Corynebacterium accolens and Fusobacterium nucleatum were enriched in adenocarcinoma.
Geobacillus thermodenitrificans was enriched in squamous cell carcinoma.
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species level (Wilcoxon rank-sum test, p < 0.05). The horizontal axis indicates the sample grouping,
whereas the vertical axis indicates the relative abundance of the corresponding species.
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Figure 3. (A) Differentially abundant flora between lung cancer and benign pulmonary nodules
identified by LEfSe; (B–D) differentially abundant flora among adenocarcinoma, squamous carcinoma
and benign pulmonary nodules identified by LEfSe; (E) differentially abundant flora between smokers
and non-smokers identified by LEfSe. Species with LDA values greater than the set point are shown.
(F) Receiver operating characteristic (ROC) curves based on four significant differential species to
distinguish lung cancer and benign pulmonary nodules.

There is no significant demographic difference between lung cancer and benign lung
lesions, but smoking has been confirmed as an important risk factor for lung cancer. We
further analyzed the differential microbiota between smoking and non-smoking patients
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with lung cancer. Taxa with significant abundance differences between smokers and non-
smokers were identified. Mycobacterium kansasii, Streptococcus parasanguinis and Atopobium
parvulum were enriched in smoking patients. Cutibacterium acnes, Cutibacterium acnes and
Cutibacterium acnes were enriched in non-smoking patients (Figure 3E).

3.4. Potential Microbe Biomarkers for Lung Cancer

Based on the bacterial biomarkers screened in the LEfSe analysis, we determined
which potential biomarkers had the best diagnostic value by drawing the ROC curve and
calculating the AUC value. We found that the AUC values of Streptococcus mitis, Porphy-
romonas somerae, Corynebacterium accolens and Burkholderia cenocepacia were all greater than
0.6, and the AUC value of Streptococcus mitis was 0.702, which had the highest diagnostic
value and certain accuracy in differentiating patients with lung cancer from those with
benign lung diseases (Figure 3F). Our finding is consistent with previous studies. However,
previous studies only reported that Streptococcus may be a potential biomarker for lung
cancer. They did not specify the Streptococcus at the species level. In our study, a specific
species of Streptococcus was found through metagenome sequencing.

3.5. Differences in Microbiota According to Different Histopathological Lung Adenocarcinomas

According to the WHO histological classification of lung tumors in 2021, adenocarci-
noma patients were further divided into three groups: 31 patients in the adenocarcinoma
in situ group (AIS group), 51 patients in the minimally invasive adenocarcinoma group
(MIA group) and 101 patients in the invasive adenocarcinoma group (IA group). This
article attempts to describe the characteristics of and changes in lung microbiota from the
perspective of the development of adenocarcinoma.

3.5.1. Biodiversity Analysis

We first calculated the Shannon index and Simpson index to estimate the α-diversity of
the microbial communities among the four groups. The results showed that no significant
difference in the Shannon index among the four groups was identified, and no significant
difference in the Simpson index among the different lung cancer groups was identified.
However, the Simpson index of the benign lung disease group was significantly lower
than that of the IAC group. Our results demonstrated that no significant difference in
α-diversity among the three different pathological subgroups of lung adenocarcinoma was
observed. The alpha diversity of the IAC patients was lower than that of patients with
benign pulmonary nodules (Figure 4A,B). β-Diversity was based on NMDS analysis and
ANOSIM analysis, and the results indicated that no significant difference in the overall
composition of the microbiota among the four groups was observed (p > 0.05) (Figure 4C,D).

3.5.2. Significant Differential Microbiota Compositions

LEfSe analysis revealed that the dominant lung microbiota was specific to the histopatho-
logical subtypes of lung adenocarcinoma. There were six, five, four and three microorganisms
at the species level that were significantly different in the HP, AIS, MIA and IAC groups,
respectively (Figure 5A). Serratia grimesii, Pseudochrobactrum saccharolyticum, Acinetobacter
schindleri, Proteus hauseri, Methylobacillus flagellatus and Alcaligenes aquatilis were enriched
in the AIS group. Serratia grimesii, Pseudochrobactrum saccharolyticum, Acinetobacter schindleri,
Proteus hauseri, Methylobacillus flagellatus and Alcaligenes aquatilis were enriched in the MIA
group. Streptococcus mitis, Burkholderia oklahomensis, Burkholderia latens and Enterococcus faecalis
were enriched in the IAC group. We further analyzed the abundance of eighteen different
species across the four groups using the Wilcoxon rank-sum test. The relative abundance bar
chart is used to show the differences more visually.
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Figure 4. Diversity analysis for microbiota among four groups based on varying histopathology. Alpha
diversity analysis among four groups based on the (A) Simpson index and (B) Shannon index; (C) beta
diversity analysis via NMDS based on the Bray−Curtis distance. (D) ANOSIM analysis box plot.

Among the eighteen discriminative species, Streptococcus mitis (Figure 5B), Burkholderia
oklahomensis (Figure 5C) and Burkholderia latens (Figure 5D) showed a trend of increasing
from the benign lung disease group to the AIS group, MIA group and IAC group, whereas
Lactobacillus plantarum decreased (Figure 5E). Our results suggest that changes in four
differential taxa may have some connection with the development of lung adenocarcinoma,
which requires further experimental studies.
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Figure 5. (A) Differentially abundant microbiota among four groups based on varying histopathology
identified by LEFSE; (B–E) bar chart showing significant differences in abundance at the species level.
The Wilcoxon rank-sum test was used as a statistical test, and “*” indicates a significant difference
between two groups (p < 0.05).

4. Discussion

For a patient with pulmonary nodules, it is very important to be able to determine
accurately whether the nodule is benign or malignant before treatment. If it is a malignant
nodule, it is also extremely important to judge accurately the degree of invasion before
surgery for the selection of surgical methods. These are the strategies clinicians need to
consider in the treatment of pulmonary nodules. Therefore, we tried to solve this problem
from the perspective of microbial markers.

The characteristics and roles of microbes in the occurrence and development of pul-
monary nodules have not been elucidated, and different research results may be obtained
due to the different environments, microbial sampling sites, sampling tissues, etc. The sam-
ple size of the existing studies is small, and the research samples are all typical lung cancer
cases, so the results are limited and difficult to use in clinical practice. Most studies use 16S
rRNA gene sequencing, which can only analyze the microbial composition at the genus
level [18]. Our study aimed to investigate the microbial characteristics of and differences in
microbiota in BALF from patients with pulmonary nodules based on mNGS at the species
level. To the best of our knowledge, there is no study on the relationship between the lung
microbiota and the growth of lung adenocarcinomas with varying histopathology. We have
the largest sample size of lung adenocarcinoma based on mNGS to date, which covers all
pathological processes of lung adenocarcinoma. Our study is the first to compare the com-
position of and differences in the pulmonary microbiota among different histopathological
types of lung adenocarcinoma.

We first analyzed the overall microbiota diversity between lung cancer and benign
pulmonary nodules. We found that the α-diversity of patients with lung cancer was lower
than that of patients with benign nodules, but there was no significant difference in β-
diversity between the two groups. The results of previous studies were heterogeneous due
to the different types of samples collected, so we compared the studies that directly analyzed
the microbiota of lung cancer only using BALF. Zeng et al. [19] showed significantly higher
α-diversity in lung cancer than in benign nodules, but no significant difference in β-
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diversity was observed. However, their study did not exclude patients with underlying
lung diseases such as pneumonia, COPD and pulmonary fibrosis, which may have had
a certain impact on the results [20]. Zhuo et al. [13] and Lee et al. [12] found that there
was no difference in α- and β-diversity between lung cancer patients and the control
group, but Zhuo et al. compared cancerous lungs with contralateral non-cancerous lungs.
Wang et al. [21] concluded that the microbiota diversity decreased in lung cancer patients,
which is similar to our results, but the samples in the control group were from healthy
individuals. The differences in results may be due to differences related to the living
environment, the number of samples collected, the control group and the analysis of
sequencing data. Our study subjects were patients with pulmonary nodules that were
difficult to distinguish as benign or malignant on imaging, which may be one of the reasons
why our results showed no significant difference in the overall microbiota composition
(β-diversity) between patients with lung cancer and those with benign pulmonary nodules.

We performed a differential analysis of the top 10 species in relative abundance.
We found that the relative abundance of Streptococcus mitis and Porphyromonas somerae
in lung cancer was significantly higher than that in benign lung diseases. The same
results were obtained in the LfFSe analysis, which proved the stability and reliability
of our statistical analysis. ROC analysis showed that Streptococcus mitis, Porphyromonas
somerae, Corynebacterium accolens and Burkholderia cenocepacia may be potential biomarkers
for lung cancer, and Streptococcus mitis has the greatest value in differentiating between
benign and malignant pulmonary nodules. Streptococcus has been identified as a major
marker associated with lung cancer in several previous studies, which has been reported
in saliva [22], sputum [23,24], BALF [19] and lung tissue [25]. Although there are some
differences in these studies, they suggest that Streptococcus plays a non-negligible role in the
microbial environment of lung cancer. All the above studies used bacterial 16S rRNA PCR
amplification. Our study is based on mNGS, which can identify unknown microorganisms
and classify the microbiome at the species level. We found that Streptococcus mitis may be an
actual species or strain involved in carcinogenesis. According to basic experimental reports,
changes in the IL-23/IL-17 axis [26] are well known in the pathogenesis of autoimmune
diseases and tumors. Streptococcus mitis can induce the transcription of IL-1β, IL-6, IL-
10 and IL-23, activation of Th17 and expression of immune checkpoint PD-L1, thereby
promoting the development and invasion of tumors. Whether the enrichment of a large
number of Streptococcus in lung cancer is the cause or the result of tumors is an unresolved
question. Our results indicated that Streptococcus mitis might provide a new and more
accurate research target, and we need to further explore its effect on the development and
immunotherapy of lung cancer. The microbial profiles of squamous cell carcinoma and
adenocarcinoma were analyzed, and the results indicated no significant differences in β-
diversity between patients with different pathological types of lung cancer and benign lung
diseases, which is consistent with the results of previous studies [27]. However, we found
different bacterial flora in different pathological types of lung cancer at the species level. We
found that Streptococcus mitis and Geobacillus thermodenitrificans may be microbial markers
for adenocarcinoma and squamous cell carcinoma, respectively. This has not been reported
in previous studies. Due to the small number of patients with squamous cell carcinoma
in our study, further studies with more squamous cell carcinoma patients are needed. In
addition, our study showed that smoking patients had significantly different microbiota
compared with non-smoking patients. This may imply that environmental factors such as
smoking can increase the risk of lung cancer by altering the microbial composition.

Adenocarcinoma is the most common pathological type of NSCLC. There are three
main pathological types, including adenocarcinoma in situ, minimally invasive adeno-
carcinoma and invasive adenocarcinoma. Although the above lesions are mainly ground
glass nodules on CT images, the surgical methods and prognosis are quite different [28].
Therefore, it is very important to determine the degree of malignancy of pulmonary nodules
before an operation. At present, no specific biological markers for invasive adenocarcinoma
have been found. Our samples covered the entire development process of lung nodules
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from carcinoma in situ to invasive adenocarcinoma. To identify the biomarkers in the
development of lung adenocarcinoma, we attempted to explore the relationship between
lung microbiota and the development of invasive cancer using mNGS. There were no
significant differences in α-diversity and β-diversity among different histopathological
types of adenocarcinomas, except that the α-diversity of the IAC group was lower than that
of benign pulmonary disease. However, different pathological subtypes of lung adenocarci-
noma have their own enriched microbiota. Our results showed that Streptococcus mitis was
mainly enriched in invasive adenocarcinoma, which again proved the stability of our statis-
tical analysis results. Streptococcus mitis, Burkholderia oklahomensis and Burkholderia latens
displayed a trend of increasing from the benign lung disease group to the AIS group, MIA
group and IAC group, whereas Lactobacillus plantarum decreased. The results suggested
that Streptococcus mitis, Burkholderia oklahomensis and Burkholderia latens might be risk factors
for the development of invasive adenocarcinoma, while Lactobacillus plantarum might be a
protective factor. Interestingly, a gradual shift in the microbiota distribution from gastritis
to preneoplastic lesions to cancer was also reported in a previous study by Aviles-Jimenez
et al. [29]. A study by Flemer B et al. [30] compared the microbiota between colorectal
cancer patients, polyp patients and healthy people. The microbiota showed significant
differences between colorectal cancer patients and healthy people, and between mucosal
biopsies from patients with polyps and healthy people, suggesting that specific microbiota
of colorectal cancer are already present and may be involved in the early stages of cancer
development. Liu’s [31] study first reported a gradual “shift” in Streptococcus from “healthy”
to non-cancerous to cancerous samples. It is worth mentioning that we found, for the first
time, a gradual “shift” in the lung microbiota profile from the benign lung disease group
to the AIS group, MIA group and IAC group. The DNA double-strand break mechanism
caused by certain bacteria isolated from cancerous sites can lead to carcinogenesis. Strepto-
coccus may be invasive, inducing cytokine and inflammatory responses that promote cancer
development [32]. We guess that microbial changes may take precedence over local tumor
changes; in particular, the dynamic changes in Streptococcus mitis may be closely related to
the occurrence and development of lung cancer, thus helping to determine the stage of the
disease. At the same time, more large-scale dynamic observations are needed in the future.
Currently, studies on metabolomics and biomarkers for the early diagnosis of lung cancer
mainly focus on expiratory metabolomics, blood metabolomics, urine metabolomics, fecal
metabolomics and tissue metabolomics. However, the above metabolomics are still in basic
research, and it is still necessary to explore biomarkers for the early diagnosis of lung cancer
with high sensitivity and specificity [33]. There are few studies on the metabolomics of
alveolar lavage fluid at home and abroad. Therefore, we will further study the relationship
between bacterial metabolites in alveolar lavage fluid and the occurrence and development
of lung cancer based on our findings thus far, in order to find screening markers for lung
cancer that can be extended to clinical application.

Our study has some limitations: (1) samples of healthy people were not collected as
a control group, and the results may lack representation. (2) Since the patients with pul-
monary nodules included in the retrospective analysis were patients with a high possibility
of malignancy, fewer patients with benign pulmonary diseases were collected. (3) This
study is a cross-sectional study. At present, we have only found potential microbial markers,
and there is still a lack of mechanism studies in cell and animal experiments to further
confirm whether the discovered microbial differentials can be used as biomarkers. Further
population-based cohort studies are also required for clinical application.

5. Conclusions

Based on postoperative pathology, we conducted a detailed study on the diversity
of and differences in lung microbiota in patients with pulmonary nodules. There were
differences in pulmonary microbiota between patients with lung cancer and those with
benign pulmonary nodules. The diversity of microbiota in patients with lung cancer
was lower than that in patients with benign pulmonary nodules. There were significant
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differences in microbiota among lung cancer patients with different pathological types
and smoking statuses. The changes in the abundance of lung microbiota are related to
the development of lung adenocarcinoma with different histopathological features. Our
study offers a complete picture and analysis of the lung flora in patients with pulmonary
nodules, and our findings provide new targets for the diagnosis and treatment of lung
cancer, pending our further basic research.
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