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Abstract: Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where
they support vasculature functioning, participate in tissue regeneration, and regulate blood flow.
However, recent evidence suggests that in addition to traditionally credited structural function,
pericytes also manifest immune properties. In this review, we summarise recent data regarding
pericytes’ response to different pro-inflammatory stimuli and their involvement in innate immune
responses through expression of pattern-recognition receptors. Moreover, pericytes express various
adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally,
the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have
suggested that the interaction with cancer cells evokes immunosuppression function in pericytes,
thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However,
such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number
of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and
treatment of autoimmune and auto-inflammatory disorders.
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1. Introduction

Pericytes (PCs) are perivascular multipotent cells wrapping microvascular capillaries,
where they contribute to vascular development, maturation, remodelling, architecture and
permeability, collaborate the functional integrity of the blood–brain barrier (BBB), partic-
ipate in tissue formation and regeneration, and regulate blood flow [1,2]. PCs originate
from human pluripotent stem cells (HPSCs), they are heterogeneous in their morphology,
distribution, embryonic origin, and identification markers. Many markers have been used
to identify PCs, including nerveglial antigen-2/chondroitin sulfate proteoglycan 4 (NG2),
α-smooth muscle actin (αSMA), platelet-derived growth factor receptor β (PDGFR-β),
endoglin (CD105), aminopeptidase N (CD13), the regulator of G-protein signaling-5 (RGS5),
desmin, the adhesion molecule CD146, and others [3]. However, not all PCs express ev-
ery single marker, many of these markers are not exclusive to PCs and their expression
is dynamic and varies between different organs, developmental stages, or pathological
states [4]. Because of the common origin, PCs share some properties and markers with
MSCs multipotent mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs), PCs
can trans-differentiate into other cells of the mesenchymal lineage (such as myocytes, osteo-
cytes, chondrocytes, and adipocytes) and neural cells, which make proper PC identification
and tracking a very challenging task [5]. The commonly used markers for PC identification
include NG2, αSMA, PDGFR-β, RGS5, and desmin; however, the set of used markers would
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vary depending on the research task, used species, organ/tissues of origin, developmental
stages and pathological conditions (Table 1) [6].

Table 1. The common markers for pericytes identification.

Marker Location Function Other Cell
Types/Tissues/Organs References

NG2 Arteriolar and capillary
pericytes

Pericyte/endothelial cell
interaction in tumour

angiogenesis

Cancer cells, Oesophagus,
Placenta, Uterus and others [7]

αSMA Capillary pericytes Regulates
contraction/relaxation Smooth muscle cells [8]

PDGFR-β Brain pericytes
Pericytes recruitment
during embryogenic

angiogenesis

Fibroblasts and smooth
muscle cells [9]

RGS5
Brain pericytes in

mouse embryogenic
development

Tumour and embryogenic
angiogenesis

Abundantly expressed in
blood vessels, heart, lung,
skeletal muscle, and small

intestine

[10]

FOXD1+ -
progeny

Lung and kidney
pericytes

Contributes to the
myofibroblast pool in

kidney and pulmonary
fibrosis

Lung and kidney
perivascular cells and

myofibroblasts
[11,12]

The role of pericytes in angiogenesis, vascular homeostasis, and the blood–brain
barrier relies on intensive communication with surrounding cells, most importantly with
endothelial cells (ECs) through several well-characterised signalling pathways, such as
Jagged Canonical Notch Ligand 1/Notch Receptor 3 (Jag1/Notch3), Platelet Derived
Growth Factor Subunit B (PDGF-B/PDGFR-β) and Angiopoietin 1/TEK Receptor Tyrosine
Kinase (Ang-1/Tie-2) [13,14]. Moreover, pericyte-like cells establish a continuous three-
dimensional network in subendothelial intima [15,16]. Cells in such a network actively
communicate with each other through the gap junctions and create multicellular strictures
in a form of clusters [17].

Pericytes also play a role in cancer biology, where they contribute to the processes of
tumour angiogenesis and metastasis, which are crucial for cancer progression and metas-
tasis [18]. A recent finding suggested that the immune system can promote resistance
to anti-angiogenic drugs. Considering known association between tumour angiogenesis
and immune cells, the number of therapies applying combined application of immuno-
suppressive and anti-angiogenic drugs were investigated (such as pazopanib–nivolumab,
sunitinib–nivolumab, atezolizumab–bevacizumab) [19,20] and reviewed in [21,22].

Although PCs have been mainly studied by neuroscientists because of their crucial
role in the BBB maintenance and spinal cord injury repair [23,24], the frontiers of pericyte
research are constantly expanding, opening their new physiological and pathological
function and attracting more attention from research groups worldwide. Beyond the
field of angiogenesis research, the pericytes are involved in diabetes mellitus associated
complications [25], atherosclerosis [26] and other cardiovascular diseases [27]. In this
review, we focus on the recent progress in our understanding of the far less explored role of
pericytes in immune system regulation. Moreover, we discuss how pericytes contribute to
the tumour cells’ immune evasion mechanisms and thereby facilitate tumour development
and progression.

2. Pericytes as Macrophage-like Cells

Early research suggested that PCs represent a macrophage-like non-professional APC
antigen-presenting cell (APC), which actively participates in immune responses. The abili-
ties for phagocytosis and pinocytosis were documented for PCs, along with the presence of
markers: T Cell Surface Glycoprotein CD4 (CD4), alpha chain of the integrin Mac-1/CR3
(CD11b), leukocyte-common antigen (CD45), scavenger receptors Macrophage Antigen
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CD68 (CD68), Macrophage-Associated Antigen (CD163), Fc receptors, and major histocom-
patibility complex (MHC) class II molecules. However, results of this pioneering research
later were questioned because of the absence of clear PC identification, so the results might
be referred to perivascular macrophages (reviewed in [28]). In the case of standard histolog-
ical sections used for light microscopy, it was not possible to discern the vascular wall from
the perivascular space, thus the cells of the adjacent compartments (such as perivascular
macrophages or juxtavascular microglia) were often misconceived as “pericytes”. Later
introduced practice required morphological and localisation features and the presence of at
least two markers (such as NG2 and PDGFR-β) to distinguish PCs from other surrounding
cells [29]. Indeed, Interferon Gamma (IFN-γ) and Tumour Necrosis Factor-Alpha (TNF-α)
treatments induced MHC class II molecules and up-regulated CD68 expression, and in-
creased phagocytosis in PCs [30]. However, in other research IFN-γ treatment induced the
expression of MHC class II in cultured PCs, but not the co-stimulatory molecules CD80 or
CD86 [31], which have a crucial role in modulating T cell immune function [32].

Recent research demonstrated that a subpopulation of brain pericytes originated from
phagocytic macrophages during vascular development. Functionally matured macrophages,
expressing CD31+ F4/80+ CD206 and CD11b markers were shown to trans-differentiate
into NG2/PDGFRβ/desmin-expressing cerebrovascular pericytes, which cover the sub-
ventricular vascular plexus in the very early phase of central nervous system vascular
development [33]. Furthermore, use of the in vivo fate-tracing technologies showed that
myeloid lineage progenitor cells contribute to pericyte development in embryonic skin
vasculature. TGF-β signalling initiates the differentiation process in culture, and Tgfbr2
mutants exhibit deficient pericyte development in skin vasculature [34].

Similarly, macrophage-like properties were recently described also in peripheral tis-
sues. NG2+ cells were increased in ischaemia-reperfusion (I/R)-injured kidneys and
expressed macrophage markers CD11b and F4/80 had phagocytic activity and expressed
anti-inflammatory cytokines (mannose receptor and IL-10). Furthermore, intravenous trans-
fusion of renal NG2+ cells isolated from donor mice reduces renal damage and facilitated
renal recovery from I/R injury [35].

In summary, recent reports have confirmed the presence of macrophage-specific mark-
ers and some macrophage-like properties on PCs. However, these reports are dedicated
to the PCs associated with specific developmental stage, tissue, and/or pathological con-
ditions. Therefore, future research is required to define the exact molecular mechanism
connecting PC and macrophage. This knowledge may provide new approaches for the
treatment of several neurodevelopmental disorders and injuries of brain and peripheral
organs in the future.

3. Pericytes in the Regulation of the Innate Immune System
3.1. PC in Inflammatory Responses

Inflammation is one of the first responses of the innate immune system to infection,
cellular damage, or toxic compounds. These factors cause the release of pro-inflammatory
stimuli (such as cytokines, chemokines, interferons, growth, and cytotoxic factors) which
recruit immune cells to the site of inflammation and promote removal of pathogen, tissue
healing, and damage regeneration [36].

PC actively responds to pro-inflammatory stimuli (mainly IFN-γ, IL-1β, and TNF-α)
by secreting diverse cytokines and chemokines, such as IL-6, CXC (CXCL1, CXCL8, and
CXCL10), and CC (CCL2, CCL3, and CCL5) [37,38]. Moreover, IL-17-activated PCs pro-
duce granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-
stimulating factor (GM-CSF), thus prolonging neutrophil survival. Interestingly, IL-17-
stimulated PC also enhanced neutrophils’ phagocytic capacity and induced neutrophil
synthesis of IL-1α, IL-1β, TNF-α, MIF (macrophage migration–inhibitory factor), and
CXCL8. Therefore, PC secretome can lure diverse professional immune cells (monocytes,
macrophages, Th1, CD8, and NK cells) to the site of inflammation [38,39].



Biomedicines 2023, 11, 600 4 of 18

Interestingly, human brain PCs respond on the Transforming Growth Factor Beta 1
(TGFβ1) treatment by up-regulation of some inflammatory-related genes (IL-6, Cyclooxygenase-
2 (COX2), Matrix Metallopeptidase 2 (MMP2) and NADPH Oxidase 4 (NOX4)) and down-
regulation of others (IL-8, Monocyte Chemoattractant Protein-1 (MCP-1), Vascular Cell
Adhesion Protein-1 (VCAM1), and CXCL1). TGFβ1 acts through Mad-Related Protein
(SMAD2/3) transcription factors, which regulate many cellular processes, such as cell
proliferation, apoptosis, and differentiation. Therefore, TGFβ1 treatment reduces PC
proliferation and phagocytic ability, and expression of the scavenger receptors (CD36,
CD47, and CD68) [40]. PC treatment with lipopolysaccharide (LPS) stimulates release of
mostly pro-inflammatory cytokines and chemokines (IL-1a, IL-2, IL-6, IL-7, IL-8, GM-CSF,
macrophage colony-stimulating factor (MCFF), CCL-5 (RANTES), CCL-17 (TARC), growth-
regulated protein alpha/beta/gamma (GROa/b/g) and stromal cell-derived factor 1 alpha
(SDF-1a). On the contrary, PC treatment with platelet-derived growth factor-BB (PDGF-
BB) leads to release of growth factors (brain-derived neurotrophic factor (BDNF), basic
fibroblast growth factor (b) (FGFb), nerve growth factor beta (βNGF), vascular endothelial
growth factor (VEGF) and placental growth factor (PLGF)), and IL-12 (p40/70), IL-1,3 and
IL-15, and decreases secretion of tumour necrosis factor alpha (TNFα). These data confirm
that PC secretome greatly depends on the exogenous stimulus and plays an important role
in the regulation of the inflammation process [41].

Recent research demonstrated functional connection between TGFβ1 and PDGF-BB
signalling pathways. As it was shown, a mice model of focal cerebral ischemia with
postnatally induced systemic PDGFR-knockout had BBB dysfunction (represented with
deformed TJ (tight junction) and decreased expression of TJ proteins, ample endothelial
transcytosis, severe brain edema and neurologic functional deficits) and reduced TGFβ1
expression. PDGF-BB treatment increases the SMAD2/3 expression, while TGFβ1 antibody
partially inhibits Smad2/3 phosphorylation. Furthermore, TGFβ1 treatment mitigates TJs
reduction, neurologic dysfunction, and edema formation in mutant mice’s model of focal
cerebral ischemia [42]. These data support the importance of PDGF-BB/TGFβ signalling
axis for pericyte network functionality and BBB integrity in cerebral ischemia and suggest
a potential therapeutic target for ischemic stroke (reviewed in [43]).

The presence of a specific marker might help to define specific function and/or pheno-
type of PC. As it was shown on CD73+ CD45− human brain PC, two populations can be
distinguished by high/low CD90 expression. CD90+ PC demonstrated higher proliferation
rates and sensitivity to the TGFβ1 action in comparison to CD90− PC. On the other hand,
CD90− PC showed a contractile and high extracellular matrix (ECM)-producing phenotype,
accompanied with greater pro-inflammatory response to LPS and IFN-γ stimulation than
CD90+ cells [44].

Despite active involvement in the inflammatory responses, PCs also have an anti-
inflammatory C/EBPδ-based mechanism. CCAAT enhancer binding protein (C/EBP)
transcription factors participate in many physiological processes and known as context-
dependant regulators of inflammation [45,46]. Treatment of brain NG2+, SMA+, PDGFRβ+,
and C/EBPδ knockdown PC with IL-1β enhanced production of Intercellular Adhesion
Molecule 1 (ICAM), IL-8, MCP-1, and IL-1β, and reduced expression of Superoxide Dismu-
tase 2 (SOD2) and COX2. These results suggest that PCs have a C/EPB-based mechanism to
limit peripheral immune cells infiltration and prevent further inflammatory responses [47].

PCs are involved in immunological responses under inflammatory conditions through
secretion of inflammation-related proteins, which include context-dependent release of both
pro-inflammatory and anti-inflammatory factors. However, further research is required
to better understand the molecular mechanism connecting exogenous stimuli and PC
secretome in the regulation of inflammatory responses.

3.2. PC in Innate Immunity

The innate immune system is the first non-specific line of defence against pathogens.
Several classes of receptors known as pattern-recognition receptors (PRRs) are responsi-
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ble for sensing pathogens, damaged host cells, and associated products. There are two
PRR classes: pathogen associated molecular patterns (PAMPs) which are associated with
pathogen recognition, and damage-associated molecular patterns (DAMPs), which are
associated with components of damaged, apoptotic, and senescent host cells [48]. PRRs are
mainly expressed by the EC (endothelial cells), dendritic cells, monocytes, macrophages,
neutrophils, and other specialised cells. Among known PRR families toll-like receptors
(TLRs) and NOD-like receptors (NLRs) are the most studied [49]. Further in this section we
review a recent publication describing PRRs expression by PCs and suggesting their active
role in innate immune responses.

The expression of TLR4 in human brain PCs was detected at a low level in unstim-
ulated human brain PCs, and LPS treatment increased its expression. On the contrary,
the treatment with High mobility group box 1 (HMGB1), a pro-inflammatory mediator
and a comparatively weak TLR4 activator, had no such effect. However, both LPS and
HMGB1 effectively stimulated production of diverse chemokines, cytokines, and adhesion
molecules: IL-6, IL-8, CXCL1, CXCL2, CXCL3, CCL2, SELE, ICAM1, and VCAM1 by LPS
in an NF-κB-dependent way, and IL-8, CXCL1, CXCL2, CXCL3, and CCL2 by HMGB1.
Subsequently, increased expression of adhesion molecules by LPS treated PC resulted in an
increased adhesion of peripheral blood leukocytes, thus confirming the role of PC in the
inflammatory cascade [37]. Recently, activation of TLR4-NfκB-mediated pro-inflammatory
cascade in brain PCs by free long-chain fatty acids (LCFAs) was shown. Interestingly,
LCFAs-mediated activation was specific for PC where it resulted in a breakdown of neural
microvasculature and neuroinflammation [50].

Further research demonstrated that human brain PCs also express the peptidogly-
can (PGN)-sensing Nucleotide Binding Oligomerization Domain Containing 1 (NOD1)
receptor. Interestingly, while both receptors have been shown to effectively elicit a pro-
inflammatory response upon stimulation, NOD1 and TLR4 receptors acted through the
separated signalling pathways. The NOD1 signalling cascade involved Receptor Interact-
ing Serine/Threonine Kinase 2 (RIPK2), which was not identified in the TLR4 pathway [51].
Finally, in vitro experiments with human brain PCs demonstrated expression of multiple
PRRs (such as NOD1 and 2, NLRC5, NLRP1-3, NLRP5, NLRP9-10, and NLRX, TLR2, TLR4-
6, and TLR10) in control conditions. PC stimulation with IL-1β and TNF-α up-regulated
the expression of IL-1β, TLR2 and TLR9-10, NLRC4 and 5, NLRP5 and 10, and NOD2
genes. On the other hand, oxidative stress up-regulated only TLR10 and NLRP9 genes [52].
Similarly, the important role in innate immune responses was described also for lung PCs
in vitro and in vivo. As it was shown, lung PCs expressed several functional TLRs (TLR1-2,
TLR4, and TLR6-7), which facilitate IL-6, CXCL1, CCL2, and ICAM-1 induction upon LPS
stimulation [53].

PCs also contribute to the activation of the complement system, a crucial component
of the innate immune response. As it was shown on the mice model of kidney fibrosis, PCs
subjected to obstructive or folic acid injury secrete Complement C1q Chain A (C1q), pro-
inflammatory cytokines (IL-6, Fibroblast Secretory Protein (FSP), MCP-1, and Macrophage
Inflammatory Protein-1-Alpha (MIP-1α)), extracellular matrix components, collagens (α1,
α2, (I and XII), fibrillin-1, proteoglycans such as fibronectin, cathepsins B and D, fibulin-
2, osteopontin, thrombospondins 1 and 2), and increased Wnt3a-mediated activation of
Wnt/β-catenin signalling, which are hallmarks of myofibroblast activation [54]. Recently,
the role of PCs in producing Complement Component 5a Receptor 1 (C5aR1) in renal
fibrosis was shown. PC-specific deletion of C5aR1 in Foxd1Cre+/− mice reduced folic
acid-mediated kidney fibrosis. Moreover, the secretion of several cytokines (such as IL-6
and MIP-2) was reduced in comparison with control PCs [55]. In total, these data suggest
that the secretion of complement components (C1q and C5a/C5aR1) by PCs contributes to
the development of renal fibrosis, thus the inhibition of complement activation represents a
potential therapeutic target in treatment of kidney fibrosis and chronic kidney disease.

For a long time, PCs have been considered as passive players, responsible for the
sensing of the pro-inflammatory factors released by specialised immune cells and ampli-
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fication of inflammatory responses. However, the expression of functional PRRs and the
ability to secrete cytokines, chemokines, and adhesion molecules suggest that PCs are
important contributors to the innate immune responses. Therefore, modulation of the PC
pro-inflammatory activities may provide a novel strategy to reduce vascular injury in a
variety of pathological conditions.

3.3. PC in the Regulation of Immune Cell Trafficking

Leukocyte trafficking to the inflammation sites is orchestrated by adhesion molecules
and chemokines, which guide immune cells through ECs, the basement membrane, and PC
sheath to enter the perivascular space [56]. Further, we discuss recent works which have
demonstrated how PCs regulate the recruitment of leukocyte to inflammation sites.

In the cellular model of pyogenic meningitis, perivascular macrophages sense pathogens
and generate an inflammatory cascade, which was amplified by human brain vascular PCs
and translocated across the endothelial barrier to act on circulating neutrophils (Figure 1).
Bacteria were unable to stimulate PCs and ECs directly, while macrophages-originated
cytokines up-regulated transcription of multiple neutrophil chemokines in PC and signif-
icantly enhanced neutrophil transmigration across the endothelial barrier. At the same
time, the permeability of the endothelial barrier to small molecules was not changed, which
suggests that the mechanism of PC-mediated chemokine translocation is highly specific
and can be the most effective therapeutic target to reduce neutrophil-mediated pathology
in pyogenic meningitis [57].
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Figure 1. The role of pericytes in leukocyte transmigration across the endothelial barrier. Stimulated
pericytes induce the expression and release of various factors, attracting and facilitating trafficking of
leukocytes across vessel walls (black arrows). In particular, neutrophils navigate through the venular
walls with CXCL1 and CXCL2 chemokines, produced by ECs/PC and neutrophils, respectively,
and EC junctions-enriched expression of CXCL2 receptor ACKR1 (atypical chemokine receptor 1)
(magenta arrows).

Similarly, the crucial role of PCs in the control of leukocyte trafficking into the CNS
central nervous system (CNS) during autoimmune neuroinflammation was demonstrated
in the adult pericyte-deficient mice (Pdgfbret/ret) model of EAE (experimental auto-immune
encephalomyelitis). PC-deficient mice die from the massive influx of immune cells into the
brain upon EAE induction. However, the severity of atypical EAE symptoms of Pdgfbret/ret

mice was reduced by treatment with anti-VCAM-1 and anti–ICAM-1 antibodies, suggesting
that absence of PC promoted neuroinflammation. Additionally, the massive influx of
leukocytes into the brain was accompanied by the increased level of myelin peptide-
specific peripheral T cells in the circulation, which leads to the development of spontaneous
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neurological symptoms [58]. These results are in accordance with another study, which
demonstrated decreased survival and increased ratios of early apoptosis in PC incubated
with serum of mice with EAE [59]. These data suggest that PC dysfunction within brain
vasculature can drive the development of a neuroinflammatory disorders.

PC-neutrophil interactions play a crucial role in mediating pathologic neutrophil
recruitment and microvascular remodelling in neutrophilic dermatosis, an inflammatory
disease characterised in vivo by increased levels of TNFα, IL-17A, and collagen IV, and
decreased the level of laminin. As it was recently shown, mast cells are the major source of
IL-17A, thus providing a novel mast cells-IL-17A-PC axis [60]. In the presence of TNFα
and IL-17A, in vitro culture of human placental PCs demonstrated enhanced collagen IV
and fibronectin production, thus actively remodelling the basement membrane to facilitate
neutrophil recruitment. Furthermore, interactions between PCs and leukocytes in vitro
up-regulate the expression of MMPs, in particular MMP-3, leading to the degradation of
vascular fibronectin and laminin, thus confirming results observed in vivo and the causative
role of PCs in this process [61]. On the molecular level, the neutrophils navigate through
the venular walls with CXCL1 and CXCL2 chemokines. Upon TNFα stimulation, CXCL1
was mainly produced by ECs and PC, thus promoting luminal and sub-ECs neutrophil
crawling. CXCL2 was mainly produced by neutrophils and was crucial for correct breaching
of EC junctions through the binding of atypical chemokine receptor 1 (ACKR1), in which
expression was enriched within EC junctions. Thus, CXCL1 and CXCL2 facilitate efficient
migration of neutrophils through venular walls into inflammatory sites [62].

Similarly, recent research demonstrated the role of Vascular Adhesion Protein-1 (VAP-
1), an inflammation-inducible adhesion molecule, in interactions between endometrial PC
and uterine natural killer (uNK) cells in vitro. Endometrium PCs were located around
the spiral arterioles and constitutively expressed VAP-1, which was required to maintain
their clonogenic, adhesive, migratory, and contractile properties. On the contrary, VAP-1
knockdown reduces the number of uNK cells stably adherent to the PC. These data provide
a timely characterisation of endometrial PCs and suggest a vital role of VAP-1 in regulating
the trafficking of innate immune cells in the human endometrium [63].

Interestingly, one of the most widely used PC markers was recently shown to mod-
ulate expression of ICAM-1, and subsequently regulate leukocyte adhesion and trans-
migration. NG2 silencing in the human placental PC increased ICAM-1 expression in
ERK1/2-mediated way. Furthermore, the inverse expression pattern of NG2 and ICAM-1
was confirmed also in an in vivo mice model and two glioblastoma cell lines, suggesting
that these results are not specific to a particular cell line or model system and can be
considered as therapeutic targets to modulate ICAM-1-mediated immune responses [64].

Recently, the key role of the PC-monocyte cross talk in cocaine-mediated neuroinflam-
mation was shown [65]. Treatment of human brain vascular PCs with cocaine resulted in
up-regulation of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and secretion
of CXCL10 chemokine, which increased monocyte transmigration in both in vitro and
in vivo experiments. These results provide a novel role for PCs as a cocaine-responsible
cells promoting monocyte recruitment in CXCL10-dependent way [65,66].

In total, these findings demonstrated that cross-talks of PCs with different types of
leukocytes (macrophage, neutrophil, natural killer, and monocyte) modulate their traf-
ficking through vessel walls with chemokines and adhesion molecules (CXCL1, CXCL2,
CXCL10, VCAM-1, ICAM-1, MIF, and VAP-1) (Figure 1). Further investigations of factors
regulating such cross-talks and development of interventions aimed at blocking or restrict
the migration of specific leukocyte type through PC could be a promising therapeutic
strategy to abrogate inflammation.

4. Pericytes in the Regulation of the Adaptive Immune System

The adaptive immune response is antigen-specific and generates pathogen-specific
responses mediated through B and T types of lymphocytes. Thus, B cells are involved in
the humoral immune response, while T cells in the cell-mediated immune response, where
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T-killer sub-type cells recognise antigens coupled to Class I MHC molecules and T cells
of the helper and regulatory sub-types, recognise only antigens coupled to Class II MHC
molecules (reviewed in [67]).

Based on the high expression levels of immune inhibitory receptor ligand PD-L1
Programmed Cell Death 1 Ligand 1 (PD-L1) and PD-L2, PCs have been proposed to act
as immunosuppressors. Furthermore, the treatment of MHC class II+ human placental
PC with IFN-γ cannot stimulate cell proliferation or cytokine production through the
resting allogeneic CD4 T cells, instead it renders CD4 T cells clonally anergic [68]. These
results were also confirmed on retinal PC, which inhibited activated T cell proliferation and
inflammatory cytokine production [69].

The role of PC in immunosuppression is of critical significance in the transplantation
area because the rejection of allogeneic organs by the host immune system is mediated
by infiltration of circulating host T cells into the graft [70]. Indoleamine 2,3-dioxygenase
1 (IDO1) and forkhead box P3 (FOXP3) have been identified as major players in PC-
mediated immunosuppression. IDO1 catalyses the first and rate-limiting step in tryptophan
catabolism to N-formyl-kynurenine and plays a vital role in different pathophysiological
processes such as immunoregulation, anti-tumour, and anti-microbial defence (reviewed
in [71–73]). FOXP3 acts as a major regulator of the development and function of Tregs
(regulatory T cells), which usually turns the immune response down [74]. Thus, an excess
of Tregs activity helps cancer cells to avoid the immune system, while a deficiency of
Tregs activity is important in autoimmune and autoinflammatory disorders, and other
pathological processes and diseases [75].

As it was recently shown, unstimulated PCs can directly present alloantigen to TEM
(effector memory T cells), while IFN-γ–activated PCs instead suppress TEM proliferation,
but not cytokine production or signalling. Further investigation revealed that IFN-γ
treatment induced in PC significantly higher up-regulation of IDO1 in comparison with
IFN-γ treated ECs. The levels of IDO1 correlated with tryptophan depletion in vitro and
IDO1 knockdown reduces immunosuppressive properties of IFN-γ treated PCs, thus
suggesting that immunosuppressive properties of human PCs result from IFN-γ-induced
IDO1-mediated tryptophan depletion [76].

Similarly, PCs of different origin (human brain, placenta, or derived from human
pluripotent stem cells) incubated with nonactivated peripheral blood T cells mediated
a significant increase in the frequency of allogeneic CD25highFoxP3+ regulatory T cells.
Moreover, PC induced de novo formation of functional CD4+CD25highFoxP3+CD127−,
suppressive regulatory T cells. Furthermore, PC-mediated induction of CD25highFoxP3+
Tregs over T cell activation is regulated by the secretion of TGF-β and constitutive expres-
sion of PD-L1. Implanted PC mixed with CD4+CD25− T cells into NOD/SCID immunode-
ficient mice maintained a non-immunogenic phenotype and mediated the development
of functional regulatory T cells. Thus, these data allow to distinguish PC-mediated im-
munomodulation from immunosuppression and suggest application of PC in allogeneic
cell therapy without provoking immediate immune responses and actively modulating
suppressive immunity [31].

PC in Allergic Asthma and Pulmonary Fibrosis

Allergic asthma is a chronic and potentially life-threatening pulmonary disease char-
acterized by the constriction of airways, airway wall thickening, and overall reduction in
airflow and increased airway hyperresponsiveness, driven by a Type 2 immune response to
inhaled allergens. Despite steadily growing asthma prevalence over the past few decades,
the advances in the pharmacology and disease management allow to improve the patients’
outcome and reduce the hospitalisation rate [77]. The large airway remodelling (excess
mucus and ECM production, hyperplasia, hypertrophy, and hyper-sensitisation of airway
smooth muscle) causes physiological symptoms (such as wheeze and cough) [78]. Re-
search has established the central role of PCs in allergic asthma and pulmonary fibrosis
tissue remodelling.
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In pathophysiological conditions associated with allergic asthma, PCs have been
shown to uncouple from the airway microvasculature and accumulate in the subepithelial
region of chronically inflamed airways. These PCs demonstrated elevated expression of the
myofibroblast marker α-smooth muscle actin (α-SMA) and contributed to airway hyperac-
tivity in an allergen-driven model of chronic allergic asthma mice model [79]. Furthermore,
lung PCs trans-differentiate into myofibroblasts in the presence of TGFβ signalling and
causes fibroblastic foci. Interestingly, the such PC-originated myofibroblasts can evade
apoptosis, which suggests that therapeutic action on pericyte–myofibroblast transition may
be a more effective strategy than to kill activated myofibroblasts for the treatment of pul-
monary fibrosis [80]. Another mechanism promoting PCs into myofibroblast transition was
defined in the bleomycin lung injury mice model. After intratracheal bleomycin treatment,
the expression of integrin, contractile, and secretory markers, alongside many diseases and
tissue-remodelling gene sets in PC was increased. Additionally, the extracellular matrix
ligand (Arginine, Glycine, and Aspartate (RGD)) in fibronectin was identified as the key
potentiator of PC into myofibroblast transition [81]. Further research into the molecu-
lar mechanisms regulating PC behaviour during pulmonary fibrosis may provide new
promising diagnostic and therapeutic tools for lung fibrosis and other tissue remodelling
diseases.

Periostin, a matricellular protein isolated from osteoblasts and strongly expressed in
the periosteum [82], was recently recognised as an inflammatory mediator associated with
TGFβ and implicated in PC migration and development of a variety of different allergic
diseases [83], including asthma [84]. Recent research demonstrated that PCs express
periostin with increased production after TGFβ or IL-13 treatment or exposure of mice to
house dust mite. Moreover, PC treated with periostin were more migratory, which is the
key event in airway wall remodelling in allergic airway disease (Figure 2) [85].
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Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) is a
G-protein-coupled receptor expressed on human T helper type 2 (Th2) cells, eosinophils,
mast cells, and basophils, its major ligand is the mast cell product prostaglandin D2
(PGD2). PGD2 binding to CRTH2 initiates allergic inflammation and eosinophil activation.
Moreover, single nucleotide polymorphism of the CRTH2 genes is associated with asthma
development, susceptibility, and increased Th2 cell differentiation [86]. Because of the
crucial role of the CRTH2 in activation of allergic inflammation, CRTH2 agonists are widely
recognised as a promising therapeutic target, especially in case of Th2 inflammation-driven
asthma [87]. However, CRTH2 agonists have demonstrated a rather limited efficiency if
clinical trials [88,89]. Interestingly, recent preclinical research has found that CRTH2 is
expressed in PC, which are protected in CNS by a blood–brain barrier and not exposed to
drugs from circulation. Therefore, application of specific therapeutic anti-CRTH2 antibody
led to depletion of CRTH2-expressing circulating basophils and eosinophils, while CRTH2
expression on PC was not affected and did not cause vascular damage. These data suggest a
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new role of PCs in allergic inflammatory diseases and a wider set of methods for therapeutic
interventions [90].

In total, PCs are important players in regulation of the adaptive immunity. IDO1 and
FOXP3 are the major regulators of PC-mediated immunosuppression and immunomodula-
tion. Further investigation of PC-based methods to modulate suppressive immunity would
help to prevent immediate immune responses in stem cell-based therapy, allogeneic organs
transplantation, and treatment of autoimmune and auto-inflammatory disorders.

5. Cancer Evokes Immunosuppressive Function in PC

The role of PCs in the tumour angiogenesis, metastasis, evasion of the host immune
system, and resistance to anti-cancer therapy has attracted great interest [91,92]. Among
many types of cancer, the effect of glioblastoma on PC is particularly important because
glioblastoma-activated PCs develop an immunosuppressive phenotype, thus reducing
T cell activation supporting glioblastoma growth in vitro and in vivo (reviewed in [93]).
However, the role of PCs in tumour development and progression is complex. Despite
contribution to immune evasion, they provide valuable targets for cancer immunother-
apy. Further, we discuss recent results and implications of the PC-related findings in
cancer biology.

Inoculation of breast tumour cells to the pdgfbret/ret PC-deficient mice model re-
sulted in the development of defective tumour vasculature, followed by a more hypoxic
microenvironment. Furthermore, hypoxia promoted IL-6 up-regulation in the tumour cells
and increased transmigration of myeloid-derived suppressor cells (MDSCs), which are
immature myeloid cells inhibiting T cell-mediated antitumour reactivity. Thus, MDSC
accumulation in tumours promoted tumour growth, while PDGFB overexpression restored
PC coverage and abolished the increased MDSC trafficking to PC-deficient tumours [94].
Another study demonstrated that PCs promoted metastasis through recruitment of tumour-
associated macrophages (TAM) in an IL-33-dependent way. Therefore, IL-33 deletion
blocked PDGF-B-induced TAM recruitment and metastasis [95].

Glioblastoma multiforme (GBM) is a highly invasive cancer with several known
immunosuppressive mechanisms, such as TAMs recruitment and modulation of CKs ex-
pression and anti-tumour T cell responses [96]. Interaction of brain PCs with GBM cells
up-regulated the expression of anti-inflammatory cytokines TGFβ and IL-10, while the
expression of co-stimulatory molecules (CD80 and CD86) and MHC-II molecules was sig-
nificantly reduced, thus reducing T cell responses (Figure 3). Finally, in vivo experiments
on mice with orthotopic xenotransplant of human GBM cells co-cultured with PC demon-
strated increased perivascular infiltration of GBM cells and higher GBM tumour mass,
confirming that GBC-PC immunosuppressive properties assisted GBM cell proliferation
and tumour growth [97].
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Recently, autophagy was proposed as another mechanism utilised by GBM cells
through cell-co-cell interaction with PCs to modulate their immune function. Autophagy is
the conserved process of degradation of the damaged and malfunctional cellular compo-
nents in a lysosome-dependent way [98]. In particular, the activity of chaperone-mediated
autophagy (CMA), which selectively degrades soluble cytosolic proteins containing the
KFERQ motif in their sequence [99], was up-regulated in many cancer types, including GBM.
Up-regulated CMA allows cancer cells to resist oxidative stress, degrade anti-oncogenes and
negative regulators of cell proliferation, and suppress anti-tumour immune response [100].
CMA inhibition in cancer cells has anti-tumour activity: decreases cell proliferation rate
and metastatic ability, and stimulates tumour antigen-specific T cell responses [98].

The incubation of PCs with GBM cells caused oxidative burst and CMA up-regulation
in PCs, and maintained pro-inflammatory and immunosuppressive function. However, the
co-incubation of GBM with PC with impaired CMA activity failed to suppress the ability
of PC to activate T cell responses, to reduce the expression of the co-stimulatory molecule
CD80 and to alter anti-inflammatory phenotype. Furthermore, in vivo transplantation of
CMA-defective PCs into a GBM mice model demonstrated increased GBM cell death rate,
reduced proliferation, and effective immune response compared with mice grafted with
control PCs [101]. Transcriptomic profiling in CMA-deficient PCs in response to GBM cells
co-incubation revealed the most affected pathways: up-regulated anti-tumour cell functions
(cell-adhesion (CAMs), immune and inflammatory responses, phagosome formation), and
down-regulated pro-tumoural functions (cell adhesion (adherent junctions), angiogene-
sis, regulation of actin cytoskeleton and others). Moreover, several bioactive molecules
related to tumour immune responses were identified in the PC secretome dependent on
GBM-induced CMA: periostin, lumican, vitamin D, gelsolin, and osteopontin. Finally,
exofucosylated CMA-deficient PCs in the form of intracranial or intravenous therapy
effectively reached the tumour site and activated the anti-tumour T cell responses [102].

In total, these findings identify that GBM interaction with PC is vital for tumour cells
survival and progression. CMA is one of the key mechanisms, up-regulated by GBM in
PC and necessary to elicit the immunosuppressive function of PC and further stabilise
GBM–PC interactions. Moreover, several bioactive molecules related to the tumour immune
responses were proposed as new markers, which can be used for GBM diagnostics and
therapy. Finally, CMA ablation in PC was proposed as a basement for the development of
future therapeutic approaches against GBM.

6. Conclusions

Recent studies have defined the critical roles of pericytes in regulating of innate
and adaptive immunity. PCs respond to different pro-inflammatory stimuli by complex
secretory responses, which promote the expression of a variety of pro-inflammatory and
anti-inflammatory molecules. At the same time, PCs overexpress adhesion molecules that
recruit and guide innate immune cells (such as macrophage, neutrophil, natural killer,
and monocyte) to the inflammation sites after migration through vessel walls. Moreover,
PCs implement different mechanisms to shape the adaptive immunity, among which
immunosuppressive and immunomodulative roles are of particular interest to treat cancer
and autoimmune disorders.

In recent years a very limited number of clinical trials have included pericyte-based
research, such as lung diseases (chronic obstructive pulmonary disease (COPD)) [103,104],
asthma [105], osteoarthritis [106], and cancer [107–110]. Unfortunately, none of them have
directly investigated or applied pericyte-based immunomodulatory approaches. However,
pericyte-based immunotherapy methods and techniques are superficially unexplored areas
of research and further investigation is necessary to develop and implement them in
the clinic.

In conclusion, PCs are important components of the immune response, which suggests
that specifically targeting this cell type might be a promising approach for various diseases.
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Abbreviations

ACKR1 Atypical chemokine receptor 1
Ang-1/Tie-2 Angiopoietin 1/TEK Receptor Tyrosine Kinase
APC Antigen-presenting cell
BBB Blood–brain barrier
BDNF Brain-derived neurotrophic factor
C/EBP CCAAT enhancer binding protein
C1q Complement C1q Chain A
C5aR1 Complement Component 5a Receptor 1
CD105 Endoglin
CD11b Alpha chain of the integrin Mac-1/CR3
CD13 Aminopeptidase N
CD163 Macrophage-Associated Antigen
CD4 T Cell Surface Glycoprotein CD4
CD45 Leukocyte-common antigen
CD68 Macrophage Antigen CD68
CMA Chaperone-mediated autophagy
COX2 Cyclooxygenase-2
DAMP Damage-associated molecular patterns
EAE Experimental auto-immune encephalomyelitis
ECs Endothelial cells
FGFb Basic fibroblast growth factor (b)
FOXP3 Forkhead box P3
FSP Fibroblast Secretory Protein
G-CSF Granulocyte colony-stimulating factor
GM-CSF Granulocyte-macrophage colony-stimulating Factor
GROa/b/g Growth-regulated protein alpha/beta/gamma
HMGB1 High mobility group box 1
HPSCs Human pluripotent stem cells
I/R Ischaemia-reperfusion
ICAM-1 Intercellular Adhesion Molecule 1
IDO1 Indoleamine 2,3-dioxygenase 1
IFN-γ Interferon Gamma
Jag1 Jagged Canonical Notch Ligand 1
LCFAs Free long-chain fatty acids
LPS Lipopolysaccharide
MHC Major histocompatibility complex
MCP-1 Monocyte Chemoattractant Protein-1
MCSF Macrophage colony-stimulating factor
MDSC Myeloid-derived suppressor cells
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MIF Macrophage migration–inhibitory factor
MIP-1α Macrophage Inflammatory Protein-1-Alpha
MMP2 Matrix Metallopeptidase 2
MSCs Multipotent mesenchymal stem cells
NG2 Nerveglial antigen-2/chondroitin sulfate proteoglycan 4
NLRs NOD-like receptors
NOD1 Nucleotide Binding Oligomerization Domain Containing 1
Notch3 Notch Receptor 3
NOX4 NADPH Oxidase 4
PC Pericytes
PDGF-BB Platelet-derived growth factor-BB
PDGFR-β Platelet-derived growth factor receptor β
PD-L1 Programmed Cell Death 1 Ligand 1
PGN Peptidoglycan
PLGF Placental growth factor
PRR Pattern-recognition receptors
RGS5 The regulator of G-protein signaling-5
RIPK2 Receptor Interacting Serine/Threonine Kinase 2
SDF-1a Stromal cell-derived factor 1 alpha
SMAD2/3 Mad-Related Protein
SMCs Smooth muscle cells
SOD2 Superoxide Dismutase 2
TAM Tumour-associated macrophages
TEM Effector memory T cells
TGFβ1 Transforming Growth Factor Beta 1
TJ Tight junction
TLRs Toll-like receptors
TNF-α Tumour Necrosis Factor-Alpha
Tregs Regulatory T cells
uNK Uterine natural killer
VAP-1 Vascular Adhesion Protein-1
VCAM1 Vascular Cell Adhesion Protein-1
VEGF Vascular endothelial growth factor
αSMA α-smooth muscle actin
βNGF Nerve growth factor beta
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