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Abstract: Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental
disorders generally characterized by repetitive behaviors and difficulties in communication and
social behavior. Despite its heterogeneous nature, several metabolic dysregulations are prevalent
in individuals with ASD. This work aims to understand ASD brain metabolism by constructing an
ASD-specific prefrontal cortex genome-scale metabolic model (GEM) using transcriptomics data to
decipher novel neuroinflammatory biomarkers. The healthy and ASD-specific models are compared
via uniform sampling to identify ASD-exclusive metabolic features. Noticeably, the results of our
simulations and those found in the literature are comparable, supporting the accuracy of our recon-
structed ASD model. We identified that several oxidative stress, mitochondrial dysfunction, and
inflammatory markers are elevated in ASD. While oxidative phosphorylation fluxes were similar
for healthy and ASD-specific models, and the fluxes through the pathway were nearly undisturbed,
the tricarboxylic acid (TCA) fluxes indicated disruptions in the pathway. Similarly, the secretions of
mitochondrial dysfunction markers such as pyruvate are found to be higher, as well as the activities
of oxidative stress marker enzymes like alanine and aspartate aminotransferases (ALT and AST) and
glutathione-disulfide reductase (GSR). We also detected abnormalities in the sphingolipid metabolism,
which has been implicated in many inflammatory and immune processes, but its relationship with
ASD has not been thoroughly explored in the existing literature. We suggest that important sphin-
golipid metabolites, such as sphingosine-1-phosphate (S1P), ceramide, and glucosylceramide, may
be promising biomarkers for the diagnosis of ASD and provide an opportunity for the adoption of
early intervention for young children.

Keywords: autism spectrum disorder; genome-scale metabolic modeling; neuroinflammation;
oxidative stress; mitochondrial dysfunction; sphingolipid

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that shows up
in early childhood and is a lifelong condition. Although the heterogeneous nature of
this disorder creates difficulties when diagnosing people, most ASD patients lack verbal
and nonverbal communication skills, insist on the same routine, and show restricted and
repetitive behaviors [1]. The prevalence of ASD among children varies worldwide, ranging
from 0.01% to 4.36%, with higher prevalence values in high-income countries. Method-
ological, cultural, and environmental variables, as well as access to mental healthcare and
research funding, may all play a role in variations in prevalence values. Nevertheless, two
conclusions were prominently similar in all reports: the prevalence of ASD increases year
by year, and males are, on average, four times more susceptible than females [2].

A number of studies emphasized that various brain parts, such as the frontal lobes,
amygdala, and cerebellum, may show structural and functional differences in ASD and
can take part in the pathology of the disorder [3]. For instance, the cortical thickness of
the frontal cortex was found to be increased in the frontal cortex but decreased in the
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temporal cortex of the ASD group [4]. Also, people with ASD showed functional brain
abnormalities, such as decreased activity in the left dorsolateral prefrontal cortex [5]. The
prefrontal cortex, which covers the front part of the frontal lobe, is responsible for cognitive,
language, social, and emotional functions, and ASD patients are known to have verbal and
social difficulties [6]. Compared with neurotypical controls, the number of neurons and size
of the prefrontal cortex are greater in ASD children [7]. In addition, microglial activation
and microglial somal volume are increased in the dorsolateral prefrontal cortex of ASD
children [8]. Transcriptomics, proteomics, and metabolomics studies have also shown
significant differences between the frontal cortexes of ASD and neurotypical controls [9,10].

Several central nervous system-based cellular and metabolic dysregulations, such as
inflammation, oxidative stress, and mitochondrial dysfunction have been implicated in
various neurodegenerative, neuropsychiatric, and neurodevelopmental diseases such as
Alzheimer’s disease, schizophrenia, bipolar disease, depression, and ASD [11]. Specifically,
pro-inflammatory cytokines, such as IL-1β, IL-6, IL-17, and TNF-α, and pro-inflammatory
metabolites, such as neopterin and prostaglandins, were higher in the bodily fluids and
brains of ASD individuals, while the levels of anti-inflammatory markers (i.e., choline,
myo-inositol) were shown to be lower [12–14]. Similarly, oxidative stress signals, including
drops in the reduced glutathione (GSH) and GSH/GSSG redox ratio [15] and mitochon-
drial dysfunction markers, such as elevated levels of pyruvate, lactate, ammonia, alanine
aminotransferase (ALT), and aspartate aminotransferase (AST), have been identified in
ASD patients [16].

Although genome-scale metabolic models (GEM) are comparatively new, they are very
useful systems biology tools that can provide a holistic model for the whole metabolism
and can also be used to decipher the relationship between genotype and phenotype and
predict the effects of environmental changes on the metabolism. GEMs have been used
for many applications, such as cell factory design for the production of chemicals and
prediction of microbial community interactions [17]. Additionally, GEMs have also been
utilized for the detection of metabolic biomarkers in human diseases, such as cancer and
neuropsychiatric disorders [18,19].

Despite the fact that ASD is a prevalent disorder, the underlying mechanisms behind
its pathogenesis are still unknown. The current work aims to investigate to which ex-
tent several cellular processes, including neuroinflammation and oxidation stress, in the
prefrontal cortex of ASD children are perturbed at the genome-scale. Thus, ASD-specific
and neurotypical prefrontal cortex genome-scale metabolic models have been constructed
using transcriptomics data to better understand the ASD brain metabolism and conse-
quently to decipher novel biomarkers for ASD. To uncover the ASD-specific metabolic
traits, the healthy and ASD-specific models were compared, and the increased neuroinflam-
matory and oxidative stress-related markers in the ASD model identified. Understanding
the metabolic reprogramming in autistic brains not only sheds light on the molecular
mechanisms that lead to ASD, but it may also help to direct early intervention strategies.

2. Materials and Methods
2.1. ASD-Specific Prefrontal Cortex GEM Construction

The postmortem prefrontal cortex transcriptome data for autistic people and neurotyp-
ical controls aged between 2 and 56 were acquired from the Gene Expression Omnibus
database with the ID GSE28475 [20,21]. The samples were collected from the superior
frontal gyrus of the dorsolateral prefrontal cortex or the middle frontal gyrus, if the former
was unavailable. For the current work, only the samples acquired by DASL-based assays
were included in the analysis to keep the data consistent. Since the gene-expression levels
are dependent on age, as shown by another study by the same group [22], we chose to use
the median expressions for the samples aged between 2 and 14.

A flowchart of the methodology used in this work can be seen in Figure 1. tINIT [23]
was chosen as the contextualizing algorithm, and Human1 [24] was selected as the reference
model, since it unifies all the information from the other three generic human metabolic
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models, namely HMR 2.0 [25], iHsa [26] and Recon3D [27], and has more metabolites
and reactions present than the other three models. The decision for threshold selection
in the tINIT algorithm was made according to the distribution of expression values. The
distribution of the quantile normalized gene expression values is bimodal, with a local
minimum between 9 and 9.25. We selected 9.25 as the threshold since lower values tend
to increase the number of reactions and metabolites in the model while decreasing the
specificity of the model (Figure S1).
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The RAVEN toolbox [28] was used during GEM contextualization, and the simulations
were performed using the COBRA toolbox [29]. All related operations were conducted in
MATLAB R2017b, and Gurobi optimization software (version 8.1.1) [30] was used as the
linear programming solver. In both the ASD-specific and neurotypical models, we checked
if the pruned models contained all the reactions regarding the glutamine–glutamate–GABA
cycle, and if absent, we added them manually. Additionally, if the exchange and transport
reactions for these and other essential metabolites are missing from the pruned models but
not from the reference Human1, they were included in the models.

2.2. GEM Constraints

For the ASD and control models, separate reaction bounds were set if the information
was available. The glucose uptake rate was set to the cerebral metabolic rate (CMR) of
glucose in the frontal cortexes of the ASD and neurotypical children [31]. The maximum
oxygen uptake rates were set according to the metabolic ratios of CMRO2/CMRglu for
the young ASD patients and controls [32], and the minimum oxygen uptake rates were
set to the minimum of CMRglu in the mild asphyxia infants [33]. The energy expenditure
is estimated to be nearly 10 µmol ATP/(g min) for non-signaling cellular activities and
30 µmol ATP/(g min) for signaling-related processes, and these were set as lower (non-
signaling) and upper (signaling + non-signaling) boundaries for the non-growth-associated
ATP maintenance reaction [34]. The maximum reaction rates for the glutaminase [35],
glutamine synthetase [36], and glutamate carboxylase [37] reactions were set as the greater
Vmax value between astrocytes and neurons. For the exchange reactions of other essential
nutrients, such as amino acids, the cerebrospinal fluid (CSF) concentrations were converted
to flux units using CSF flow rates, and these were assumed to be equal to the maximum
uptake rates for the corresponding reactions [38].

2.3. Model Simulations

Most steady-state analysis methods, such as flux balance analysis (FBA), require a
predefined objective function for the optimization of the problem. For organisms like
bacteria, the selection of the objective function is mostly straightforward; they aim to
maximize their growth and proliferate. However, for human cells, especially for brain
cortex cells, maximization of the growth function is not applicable. Thus, we maximized
the reaction rates for the glutaminase, glutamine synthetase, and glutamate carboxylase
reactions to provide the replenishment of the glutamine in the neurotransmitter pool
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through the glutamine–glutamate–GABA cycle. Uniform sampling was used in order to
obtain the distribution of attainable flux values rather than one of the optima obtained
by the FBA. The lower and upper bounds of the reactions were set to the minimum and
maximum flux values obtained through flux variability analysis (FVA) with a loopless
solution option by maximizing the glutamine–glutamate–GABA cycle, if possible. A total of
10,000 samples were collected using the artificial centering hit-and-run (ACHR) algorithm
within the COBRA Toolbox.

2.4. Statistical Analysis

All statistical analyses and data visualizations were performed in R software version 3.6.3.
Due to the large dataset, effect size estimations were reported instead of the significance
of the difference between group means/medians. The effect sizes between samples were
determined using Cliff’s d using the effsize R package [39]. The Cliff’s d values were
computed using an unbiased estimate formula, non-normal distribution assumption, and
95% confidence interval levels.

3. Results and Discussion
3.1. Model, Constraint, and Simulation Features

The selection of the flux constraints for model reactions is a significant step in genome-
scale modeling. The phenotype of an organism or cell is determined by its environment
and thermodynamic limitations, as well as by its genotype. Thus, appropriate constraints
should be set for the simulations to obtain a realistic set of solutions. Since the metabolisms
of children and adults are dissimilar, the search for the constraints was concentrated on
experimental data for children aged 2–14, but if the information was not available, the
values obtained from the adult ASD and control cases were used.

The extracellular fluid of the brain and spinal cord consists of blood plasma, cere-
brospinal fluid (CSF), and interstitial fluid (ISF). The brain tissue is surrounded by ISF,
while the CSF fills the brain ventricles and subarachnoid space. The compositions of ISF
and CSF are very similar, although they are significantly different from the composition of
blood since the blood–brain barrier is a highly selective barrier that allows the passage of
small non-polar molecules and lipophilic molecules and blocks the passage of molecules
such as neurotransmitters out of the brain [40]. The compositions of these extracellular
fluids are substantial for the brain’s functioning. One study showed that the concentrations
of several amino acids in CSF, such as glycine, aspartate, and arginine, are significantly
different in ASD children compared to other patients with neurological problems [38].
The number of significantly different amino acid concentrations might be even higher if
ASD and neurotypical children are compared; however, since it is not ethical to perform
a lumbar puncture on healthy children to obtain CSF, no studies have investigated this
difference. Yet, the presented information may give insight into the metabolism differences
between ASD patients and others. Thus, the maximum amino acid uptake rates are set to
their concentrations in CSF after the necessary conversions are done.

The glucose utilization rates were also determined to be not significantly different
between ASD and control children aged between 2 and 18 [31]. The metabolic ratio of the
cerebral metabolic rate of oxygen to that of glucose has not been reported for ASD; thus, in
this study, the value for young adults was used to determine the maximum uptake rate of
the oxygen.

The human prefrontal cortex mostly consists of astrocytes, glutamatergic excitatory
pyramidal neurons, and GABAergic inhibitory interneurons. A simplified illustration of
the exchanges between the astrocytes and neurons can be seen in Figure 2. Glutamate
and gamma-aminobutyric acid (GABA) are two essential neurotransmitters: the former
acts as excitatory, and the latter acts as an inhibitor. Neurons lack the ability to produce
glutamate de novo from glucose since pyruvate carboxylase is not present in neurons [41].
Glutamate is converted into glutamine in astrocytes and released into extracellular space
to later be used as precursors for glutamate and GABA in glutamatergic and GABAergic
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neurons, respectively. Since the neurotransmitter exchange between these cells is crucial
for the functioning of the prefrontal cortex, the objective functions for both models are
here selected as the maximization of the glutaminase, glutamine synthetase, and glutamate
carboxylase reactions for the flux variability analysis, which is later used as the flux bounds
of the model reactions for the uniform sampling analysis. Although the ACHR sampling
algorithm used here randomly picks an objective function among the model’s reactions for
each sampling, constraining all reactions to the FVA results provided non-zero flux through
the glutamine–glutamate–GABA cycle for each sample.
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3.2. Cellular Respiration and Energy Metabolism Is Disturbed in ASD

Mitochondria is the main ATP generation unit of the cells through oxidative phos-
phorylation and is also responsible for the regulation of reactive oxygen species (ROS).
Although only 5% of ASD children are diagnosed with mitochondrial disease, up to 80% of
ASD children show signs of mitochondrial dysfunction [16]. Mitochondrial dysfunction
biomarkers were found to be elevated in the blood, plasma, and urine samples of indi-
viduals with ASD [42]. On the other hand, a large amount of cellular ROS is produced in
mitochondria as a byproduct of electron transport chain (ETC) activity.

The brain only constitutes 2% of a human’s body weight, yet it accounts for nearly 20%
of the body’s required daily energy. Glucose is the primary energy source for brain cells,
and glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation are the
mechanisms for producing ATP by breaking glucose. Theoretically, a maximum of 36 ATPs
can be produced per consumed glucose molecule, two produced by glycolysis, two by the
TCA cycle, and 32 by oxidative phosphorylation. Several studies detected that the genes
that play a role in oxidative phosphorylation are downregulated in the brains of autistic
patients [43,44].

In our genome-scale metabolic brain model, the attainable flux distributions for the
aerobic respiration-related pathways showed that the glycolysis pathway is more active
in the ASD model (Table 1 and Figure 3). In parallel with these results, one study con-
ducted on lymphoblastoid cell lines (LCLs) from ASD patients, their siblings, and controls
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demonstrated that the glycolytic capacities of ASD LCLs were 19% and 12% greater than
their siblings and unrelated controls, respectively [45]. While the ratios of the average of
these calculated fluxes are similar through glycolysis, the ratios are variable through the
TCA cycle. The fluxes converting citrate, cis-aconitate, and succinate are faster, and fluxes
converting isocitrate, α-ketoglutarate, malate, and oxaloacetate are predicted to be at least
40% slower in the ASD model. The inconsistent flux levels observed in the TCA cycle
of the ASD model compared to the control model suggest that metabolites downstream
of isocitrate are differentially produced in ASD and that there is a disruption in the TCA
cycle. One may speculate that two of these consequent downstream enzymes, isocitrate
dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH), are activated and
regulated by calcium ions (Ca2+) in the mitochondrial matrix [46], and the deficiency of
Ca2+ may create disruptions in the mitochondrial metabolism. Indeed, genetic variants of
voltage-gated calcium channels (VGCCs), transmembrane proteins mediating the Ca2+ flux
to neurons, were detected in ASD and speculated to be a part of the pathophysiology of
ASD [47]. Alterations in TCA metabolite levels were also detected in other studies [48–50].
The changes in the TCA metabolites may indicate that the TCA cycle is a common pathway
impacted in ASD. Consequently, as our computational findings point out, the increase in
glycolysis rates in ASD may be related to the disruption in the TCA cycle. As less ATP is
produced through the TCA cycle, an increase in the glycolytic pathway may be needed to
meet the ATP demand of the cell. The anomaly in the function of the TCA cycle can also be
deducted from the ratio of CO2 secreted for every glucose molecule uptook. Theoretically,
6 CO2 molecules are formed per glucose molecule by complete aerobic respiration, while
none are formed after glycolysis. As seen in Figure 4, the CO2 secretion per glucose uptake
for the ASD-specific model is found to be lower compared to the control model with a large
effect size, which is an indicator of incomplete aerobic respiration.
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Table 1. ASD-specific metabolic traits predicted by the genome scale metabolic brain model.

ASD-Specific Markers Found in Pathways/Metabolites Main Findings
(ASD/Control)

Energy Metabolism

Glycolysis ↑
TCA cycle ↓
ETC I, II, V ↑
ETC III, IV ↓

Oxidative Stress
Ammonia, lactate, pyruvate ↑

CO2/Glucose ↓

Mitochondrial Dysfunction ALT, AST, GSR ↑
CS, PDH ↓

Neuroinflammation
Pro-inflammatory Leukotriene, PGE2 ↑

PLA2 ↓

Anti-inflammatory Carnitine, choline ↑
DHA, EPA, inositol, PGE1 ↓

Sphingolipid Metabolism Glucosylceramide, S1P ↑
Ceramide ↓
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Catalase, CS: Citrate synthase, GPx: Glutathione peroxidase, GSR: Glutathione-disulfide reductase,
PDH: Pyruvate dehydrogenase, SOD: Superoxide dismutase.
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The disturbance of the TCA cycle reduces the aerobic respiration rate, and this phe-
nomenon generally results in elevated levels of pyruvate, as well as its derivatives, lactate
and alanine [16]. In our metabolic brain model, the secretion of pyruvate is found to be sig-
nificantly greater in the ASD model and lactate is found to be generally transferred into the
cell, yet the ASD model needed less lactate than the control model. Pyruvate is converted to
alanine by alanine aminotransferase (ALT), whereas the pyruvate-derivative oxaloacetate
is converted to aspartate by the aspartate aminotransferase (AST) enzyme. Our simulations
show that pyruvate secretion and the activity of reactions catalyzed by ALT and AST are
higher in the ASD model, thus supporting the reduced aerobic respiration hypothesis
(Figure 4). Several studies also revealed elevated ALT and AST levels in the bodily fluids of
ASD patients [51], confirming our results. The disturbances in the TCA cycle may also be
explained by the elevated levels of ammonia in the cell, which is a byproduct of protein
metabolism and is accepted as another biomarker of the mitochondrial disorder [52–54].
Our results showed that the ASD model secretes higher ammonia on average (Figure 4).
Elevated ammonia levels may constrain the TCA cycle in neurons and glia by inhibiting
cycle enzymes such as pyruvate dehydrogenase (PDH), isocitrate dehydrogenase, (IDH),
and α-ketoglutarate dehydrogenase (α-KGDH).
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3.3. ASD-Related Changes in Mitochondrial Dysfunction and Oxidative Stress Related Markers

The mitochondrial electron transport chain (ETC) is located in the inner membrane
of the mitochondria and produces ATP by generating a proton gradient between the
mitochondrial matrix to the inner membrane space. ETC consists of 5 complexes: complex I
(NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (cytochrome
bc1 complex), complex IV (cytochrome c oxidase), and complex V (ATP synthase) (Figure 5).
We computationally observed some unusual results (Figure 5). Among five complexes,
ETC complexes I and V show higher flux values in the ASD model, while the remaining
complexes have lower fluxes, with all complexes showing large Cliff’s d values. The ETC
complex protein levels were measured in the cerebellum, frontal, parietal, occipital, and
temporal cortices of ASD patients and controls of different ages, and these ETC complex
levels were found to be lower in the cerebellum, frontal cortex, and temporal cortex of the
ASD cases aged between 4 and 10 compared to the age-matched controls, but not in other
cortices and ASD cases aged between 14 and39 [55]. Specifically, the levels of complex I
are significantly decreased in the frontal cortex of autistic children, with non-significant
decreases in levels of other complexes. Another study by the same group compared the ETC
activities in the frontal cortex of ASD patients and detected that 9 out of 14 ASD patients had
at least one ETC complex with lower activity than controls. The most affected complexes
were found as complexes I and V [56]. The decrease in the complex I activity in blood
cells was also been found in recent studies [51]. The activities for all the ETC complexes in
the ASD granulocytes were also significantly lower [57]. Another late study also detected
abnormal complex activities in the ASD fibroblasts [58]. Although our simulation results
on the ETC complex (Figure 5) were unanticipated, none of the aforementioned activity
studies were conducted on brain tissues, and ETC complex functions can vary in different
tissues and even in the same tissue.

Oxidative stress is believed to be a chronic condition in ASD as no studies have found
a correlation between age and the levels of oxidative stress markers in ASD patients [59].
Glutathione peroxidase (GPx) is a significant antioxidant enzyme that takes part in the
peroxyl scavenging mechanism by converting GSH and hydrogen peroxide (H2O2) to
GSSG and water. Our results reveal that the total rate of GPx-catalyzed reactions in the
cytosol and mitochondria have similar flux ranges in both models, indicating that both the
ASD and control models scavenge similar amounts of H2O2 (Figure 4). In the literature, the
GPx activities in the erythrocytes and plasma of ASD patients were found to be low [60,61],
as well as in the cerebellum [62], with two conflicting results [63,64] suggesting there is
not a pattern regarding GPx in ASD. The reaction converting GSSG to GSH is catalyzed
by glutathione-disulfide reductase (GSR), which is considered to play a significant part
in antioxidant production in cells. Our simulation results show that the fluxes for the
reaction catalyzed by GSR are significantly increased in ASD cases, suggesting inflated
oxidative stress in the prefrontal cortex of ASD individuals. However, the role of GSR in
ASD is still poorly understood, with previous studies finding conflicting results. One study
detected no significant difference between the ASD and control groups, yet 60% of the
ASD cases showed lower and higher GSR activities than 95% CI (confidence interval) of
the control group [62]. The other study detected higher GSR activity in the plasma of ASD
patients [64].

Superoxide dismutase (SOD) and catalase (CAT) are two other significant antioxidant
enzymes. SOD catalyzes the dismutation of superoxide anion (O−2 ) to H2O2, whereas CAT
catalyzes the conversion of H2O2 to H2O. Our simulation result for the SOD enzyme is
displayed in Figure 4. The mean of the reaction flux is lower in the ASD model, but the
range for the flux is wider than that in the control model, which suggests that the ASD
model has a higher variability for SOD activity compared to the control model in accordance
with several literature findings. In fact, literature studies have presented conflicting results.
Lower [61], higher [65–67], or similar [63,68] SOD activities in ASD plasma and erythrocytes
have been reported in comparison to controls. The same trend was also detected for CAT:
lower [66,67], higher [65,69], and non-significant difference [68]. The mean values of CAT
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activities are closer in our ASD and control models, with a slight elevation in ASD, yet
the maximum CAT activities are greater in the ASD model. The overactivity of oxidative
stress-protective enzymes such as CAT, GSR, and SOD in our ASD model may indicate that
these enzymes should overwork to compensate for the oxidative stress in the ASD brain.

3.4. Neuroinflammatory Markers in ASD

Neuroinflammation is the inflammation of the central nervous system and is indicated
to take part in the pathogenesis of several neurological diseases. The activation of glial
cells, such as astrocytes, which are one of the most abundant cells in the prefrontal cortex,
is associated with the neuroinflammation status of the brain and releases pro-inflammatory
mediators. The inflammatory status of ASD children has been indicated by the increase in
the pro-inflammatory cytokines [12]. In this section, we present our computational findings
on exchange fluxes of neuroinflammation-related compounds and also elaborate on the
metabolite biomarkers for inflammation.

Inositol (also known as myo-inositol) and choline-containing compounds are two
indicators of neuroinflammation in the brain and are generally detected via proton magnetic
resonance spectroscopy analyses. Activation of glial cells is thought to be correlated with
higher inositol and choline-containing compound levels [70]. The activation in these cells
is also associated with the neuroinflammation status of the brain and the release of pro-
inflammatory mediators [71], suggesting that inositol and choline levels may be relevant to
the neuroinflammation status. Our simulation results are shown in Figure 6. Acetylcholine
and choline secretions are found to be higher in the ASD model with large effect sizes.
Although the difference is not significant for inositol, the control model secretes more
inositol on average. We may speculate that although the literature suggests no significant
difference for these metabolites in prefrontal cortex [72], the neuroinflammation in the
prefrontal cortex stimulates the astrocyte activation and its relevant reactions, which in
turn produces more choline-related metabolites.

Phospholipases, enzymes hydrolyzing phospholipids to fatty acids, are at the center of
the fatty acid mechanism. Specifically, phospholipase A2 (PLA2) breaks the phospholipids
into arachidonic acid and polyunsaturated free fatty acids (PUFA), which are further
hydrolyzed to eicosanoids such as prostaglandins and leukotrienes. We found that the
reaction catalyzed by the PLA2 enzyme has significantly higher fluxes in the control model
(Figure 6). A small number of studies investigated the activity of PLA2 in ASD and found
conflicting results; in particular, one study detected lower PLA2 activity in the serum of
ASD children [73], and two others concluded higher activities in the RBC [74] and blood [75]
of ASD children. Docosahexaenoic acid (DHA) is the most abundant n-3 PUFA in the brain
and regulates the function of glial cells and neurons. It also protects the neurons from
damage in several brain diseases and diminishes neuroinflammation [76,77]. The precursor
of DHA, eicosapentaenoic acid (EPA), is also effective against inflammation, although
it is less abundant than DHA in the brain [78]. Our simulations show that both DHA
and EPA secretions are higher in the control model, although the difference is not very
explicit, indicating that ASD people may be more prone to inflammation and cell damage
(Figure 6). Studies have shown that the DHA levels are lower in the blood of ASD children,
whereas only one study reported significantly lower levels of EPA in the ASD brain [78].
The differences in these fatty acids’ secretion capacities indeed indicate perturbations in
fatty acid metabolism.
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Prostaglandins and leukotrienes are two important classes of eicosanoids present in in-
flammatory conditions. Prostaglandin E2 (PGE2) is one of the most abundant prostaglandins
in the human body and is a mediator for many biological functions, including inflamma-
tion [79]. PGE2 may induce both pro-inflammatory and anti-inflammatory processes
depending on the context, but mostly in the pro-inflammatory direction [80]. On the other
hand, prostaglandin E1 (PGE1) is thought to function as an anti-inflammatory mediator
for several animals, including humans [81,82]. According to our simulations, the secretion
of PGE2 from the cell, often a pro-inflammatory metabolite, is higher in the ASD model,
whereas the PGE1 secretion is lower. Leukotrienes, especially leukotriene B4, are indi-
cated as pro-inflammatory mediators and suggested as potential therapeutic targets for the
modulation of inflammation [83]. The leukotriene levels were found to be higher in the
ASD model compared to those in neurotypical controls (Figure 6). These results, combined
with the literature findings [84–87] on the bodily fluids of ASD patients, imply that there is
inflammatory stress in the prefrontal cortex of ASD individuals.

3.5. Sphingolipid Metabolism Changes in ASD

Compared to other tissues, the nervous system, especially the brain, has the highest
lipid content and complexity. Sphingolipids, being one of the major classes of lipids that are
essential for eukaryotic cells, are highly enriched in the brain. They have several structural
roles in the plasma membranes and are also signaling molecules regulating cellular events
such as cell growth, differentiation, senescence, and apoptosis [88,89]. Sphingolipids are
implicated as a critical component for brain development and function. Altered sphin-
golipid metabolism has been implied in several neurological and psychiatric disorders.
Thus far, no detailed studies have focused on the altered metabolism of sphingolipids in the
brains of ASD patients and its effects on the pathophysiology of the disease. Currently, only
two sphingolipid metabolites have been reported in the literature for ASD. Sphingosine-1-
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phosphate (S1P) was found to be significantly increased in ASD serum [90], and several
ceramide types have been elevated in the ASD brain [91] and prefrontal cortex [92].

Ceramides participate in important signaling processes, such as inflammation, and
can be generated by pro-inflammatory cytokines [93]. Ceramide can be phosphorylated
to ceramide-1-phosphate, which may activate PLA2, and may thus induce inflammation.
Ceramides can also be degraded to sphingosines, which can be converted to S1P. S1P has
many roles in the cell, including cell migration, proliferation, cellular architecture, and
inflammation [94], and is known to have anti-inflammatory effects [95]. Our simulations
have detected several differences in the sphingolipid metabolisms of ASD and neurotypical
people (Figure 7). On average, the sphingolipid metabolism has higher fluxes in the
ASD model, but the ratios through the pathway are consistent with each other, except for
ceramide conversion to sphingosine. The fluxes through the pathway are nearly 1.2 to
1.4 times faster in ASD, except for the conversion of ceramide to sphingosine. The S1P
secretion fluxes are increased in our simulations (Figure 7), in parallel with the literature
results [90], while the pro-inflammatory ceramide secretion is restrained in ASD individuals
on average, contrary to our expectations. Although more ceramide is produced in the ASD
model, most of the produced ceramide is converted to other derivatives like sphingomyelin
or sphingosine, which may explain the decrease in ceramide secretion. The increase in
ceramide production can be induced by oxidative stress [96], which is shown to be elevated
in ASD children by this study. Another derivative of ceramides, glucosylceramides, are
indicated as both pro- and anti-inflammatory mediators and are also found to be higher in
ASD patients.
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On a special note, our simulations indicated altered sphingolipid metabolism between
the ASD and neurotypical control models and this metabolism needs further research to
shed light on the effect of sphingolipids on the pathogenesis of ASD. The research on the
relationship between sphingolipid metabolism and ASD has been limited. In fact, the
majority of studies on ASD omics have focused on transcriptomics or metabolomics, and it
is only recently that lipidomics analyses have been conducted, although lipids constitute
36–66% of the dry weight of the human brain depending on grey or white matter, and
nearly one-third of the total lipids are sphingolipids [97]. The increase in the number of
lipidomics studies may enhance our understanding of the brain structure and function in
ASD children.

4. Conclusions

Our simulations on reconstructed ASD-specific and neurotypical control GEMs demon-
strated that several pathways, which have already been shown to be disturbed in ASD,
generally yield complementary results with literature findings. The energy metabolism is
altered in ASD, as indicated by the distinct patterns in glycolysis and the TCA cycle. One of
the most prevalent comorbidities of ASD, mitochondrial dysfunction, is also supported by the
disparities in the activities of ETC complexes and the increase in the mitochondrial dysfunc-
tion biomarkers. In addition, the reactions catalyzed by the oxidative stress marker enzymes,
as well as the ones catalyzed by oxidative-stress protective enzymes, showed higher fluxes in
ASD, indicating the presence of oxidative stress in ASD. Pro-inflammatory markers are found
to have higher fluxes in ASD, whereas contradictory results are found for anti-inflammatory
metabolites. Sphingolipid metabolites, especially S1P and ceramide, are promising biomarkers
for ASD and should be thoroughly investigated by in vitro experiments.

Omics data, such as transcriptomics, proteomics, and metabolomics, enhance the
predictive power of systems biology tools such as genome-scale modeling. However, the
lack of adequate knowledge about ASD was the most significant challenge encountered
throughout this modeling study. Despite the limited number of omics studies conducted on
the brains of ASD patients, all of them are post-mortem studies due to inaccessibility to the
area, which may have distinctive features compared to ante-mortem analyses. Additionally,
the number of studies reporting the enzyme activities in the brain, specifically the prefrontal
cortex, is quite low, and in most cases, they conflict with each other. Thus, the neuro-
modeling studies, including ours, have inadequate resources to validate the computational
results. Furthermore, the heterogeneity of the disease and the complexity of the nervous
system hinders the efforts to understand the underlying conditions behind ASD and the
impact of altered pathways on the symptoms of ASD. However, customized forecasts
of patients’ phenotypic characterization can be improved by employing genome-scale
metabolic models. The metabolic models tailored to individual conditions, tissues, and
patients shed light on cell-specific changes in the metabolic network, allowing for the
prediction of disease metabolism biomarkers. All in all, we may conclude that genome-
scale modeling may be beneficial in investigating the disturbed mechanisms in ASD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11020583/s1, Figure S1: The distribution of the median
quantile normalized gene expression values for samples aged between 2 and 14.

Author Contributions: Conceptualization, E.E. and K.O.U.; Formal analysis, E.E.; Funding acquisi-
tion, K.O.U.; Methodology, E.E.; Writing—original draft, E.E. and K.O.U.; Writing—review & editing,
K.O.U. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Bogazici University Research Funds Project No: 19761.

Data Availability Statement: Publicly available datasets were analyzed in this study. The constructed
models for this study are available at https://doi.org/10.5281/zenodo.7602974.

https://www.mdpi.com/article/10.3390/biomedicines11020583/s1
https://www.mdpi.com/article/10.3390/biomedicines11020583/s1
https://doi.org/10.5281/zenodo.7602974


Biomedicines 2023, 11, 583 14 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism Spectrum Disorder. Lancet 2018, 392, 508–520. [CrossRef] [PubMed]
2. Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global Prevalence of

Autism: A Systematic Review Update. Autism Res. 2022, 15, 778–790. [CrossRef] [PubMed]
3. Amaral, D.G.; Schumann, C.M.; Nordahl, C.W. Neuroanatomy of Autism. Trends Neurosci. 2008, 31, 137–145. [CrossRef] [PubMed]
4. Van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Busatto, G.F.; Calderoni, S.; Daly, E.; Deruelle, C.; Di

Martino, A.; et al. Cortical and Subcortical Brain Morphometry Differences between Patients with Autism Spectrum Disorder and
Healthy Individuals across the Lifespan: Results from the ENIGMA ASD Working Group. Am. J. Psychiatry 2018, 175, 359–369.
[CrossRef] [PubMed]

5. Carlisi, C.O.; Norman, L.J.; Lukito, S.S.; Radua, J.; Mataix-Cols, D.; Rubia, K. Comparative Multimodal Meta-Analysis of Structural
and Functional Brain Abnormalities in Autism Spectrum Disorder and Obsessive-Compulsive Disorder. Biol. Psychiatry 2017, 82,
83–102. [CrossRef]

6. Courchesne, E.; Pierce, K. Why the Frontal Cortex in Autism Might Be Talking Only to Itself: Local over-Connectivity but
Long-Distance Disconnection. Curr. Opin. Neurobiol. 2005, 15, 225–230. [CrossRef]

7. Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron
Number and Size in Prefrontal Cortex of Children With Autism. JAMA 2011, 306, 2001. [CrossRef]

8. Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial Activation and
Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism. Biol. Psychiatry 2010, 68, 368–376. [CrossRef]

9. Abraham, J.R.; Szoko, N.; Barnard, J.; Rubin, R.A.; Schlatzer, D.; Lundberg, K.; Li, X.; Natowicz, M.R. Proteomic Investigations of
Autism Brain Identify Known and Novel Pathogenetic Processes. Sci. Rep. 2019, 9, 13118. [CrossRef]

10. Park, D.I. Genomics, Transcriptomics, Proteomics and Big Data Analysis in the Discovery of New Diagnostic Markers and Targets for
Therapy Development, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 173, ISBN 9780128212424.

11. Rossignol, D.A.; Frye, R.E. A Review of Research Trends in Physiological Abnormalities in Autism Spectrum Disorders: Im-
mune Dysregulation, Inflammation, Oxidative Stress, Mitochondrial Dysfunction and Environmental Toxicant Exposures. Mol.
Psychiatry 2012, 17, 389–401. [CrossRef]

12. Siniscalco, D.; Schultz, S.; Brigida, A.; Antonucci, N. Inflammation and Neuro-Immune Dysregulations in Autism Spectrum
Disorders. Pharmaceuticals 2018, 11, 56. [CrossRef] [PubMed]

13. Ford, T.C.; Crewther, D.P. A Comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder. Front.
Mol. Neurosci. 2016, 9, 14. [CrossRef] [PubMed]

14. Likhitweerawong, N.; Thonusin, C.; Boonchooduang, N.; Louthrenoo, O.; Nookaew, I.; Chattipakorn, N.; Chattipakorn, S.C.
Profiles of Urine and Blood Metabolomics in Autism Spectrum Disorders. Metab. Brain Dis. 2021, 36, 1641–1671. [CrossRef]

15. Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek,
R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [CrossRef] [PubMed]

16. Rossignol, D.A.; Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis.
Mol. Psychiatry 2012, 17, 290–314. [CrossRef] [PubMed]

17. Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome
Biol. 2019, 20, 121. [CrossRef] [PubMed]

18. Lewis, J.E.; Kemp, M.L. Integration of Machine Learning and Genome-Scale Metabolic Modeling Identifies Multi-Omics Biomark-
ers for Radiation Resistance. Nat. Commun. 2021, 12, 2700. [CrossRef]

19. Moolamalla, S.T.R.; Vinod, P.K. Genome-Scale Metabolic Modelling Predicts Biomarkers and Therapeutic Targets for Neuropsy-
chiatric Disorders. Comput. Biol. Med. 2020, 125, 103994. [CrossRef]

20. Chow, M.L.; Li, H.-R.; Winn, M.E.; April, C.; Barnes, C.C.; Wynshaw-Boris, A.; Fan, J.-B.; Fu, X.-D.; Courchesne, E.; Schork, N.J.
Genome-Wide Expression Assay Comparison across Frozen and Fixed Postmortem Brain Tissue Samples. BMC Genom. 2011,
12, 449. [CrossRef]

21. Chow, M.L.; Winn, M.E.; Li, H.-R.; April, C.; Wynshaw-Boris, A.; Fan, J.-B.; Fu, X.-D.; Courchesne, E.; Schork, N.J. Preprocessing
and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples.
Front. Genet. 2012, 3, 11. [CrossRef]

22. Chow, M.L.; Pramparo, T.; Winn, M.E.; Barnes, C.C.; Li, H.-R.; Weiss, L.; Fan, J.-B.; Murray, S.; April, C.; Belinson, H.; et al.
Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at
Young Versus Mature Ages. PLoS Genet. 2012, 8, e1002592. [CrossRef]

23. Agren, R.; Mardinoglu, A.; Asplund, A.; Kampf, C.; Uhlen, M.; Nielsen, J. Identification of Anticancer Drugs for Hepatocellular
Carcinoma through Personalized Genome-scale Metabolic Modeling. Mol. Syst. Biol. 2014, 10, 721. [CrossRef] [PubMed]
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63. Söğüt, S.; Zoroğlu, S.S.; Özyurt, H.; Ramazan Yılmaz, H.; Özuğurlu, F.; Sivaslı, E.; Yetkin, Ö.; Yanık, M.; Tutkun, H.; Savaş,
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