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Abstract: There has been a sharp increase in liver disease globally, and many people are dying with-
out even knowing that they have it. As a result of its limited symptoms, it is extremely difficult to 
detect liver disease until the very last stage. In the event of early detection, patients can begin treat-
ment earlier, thereby saving their lives. It has become increasingly popular to use ensemble learning 
algorithms since they perform better than traditional machine learning algorithms. In this context, 
this paper proposes a novel architecture based on ensemble learning and enhanced preprocessing 
to predict liver disease using the Indian Liver Patient Dataset (ILPD). Six ensemble learning algo-
rithms are applied to the ILPD, and their results are compared to those obtained with existing stud-
ies. The proposed model uses several data preprocessing methods, such as data balancing, feature 
scaling, and feature selection, to improve the accuracy with appropriate imputations. Multivariate 
imputation is applied to fill in missing values. On skewed columns, log1p transformation was ap-
plied, along with standardization, min–max scaling, maximum absolute scaling, and robust scaling 
techniques. The selection of features is carried out based on several methods including univariate 
selection, feature importance, and correlation matrix. These enhanced preprocessed data are trained 
on Gradient boosting, XGBoost, Bagging, Random Forest, Extra Tree, and Stacking ensemble learn-
ing algorithms. The results of the six models were compared with each other, as well as with the 
models used in other research works. The proposed model using extra tree classifier and random 
forest, outperformed the other methods with the highest testing accuracy of 91.82% and 86.06%, 
respectively, portraying our method as a real-world solution for detecting liver disease.  

Keywords: liver disease; machine learning; multivariate imputation; feature scaling; ensemble 
learning; gradient boosting; XGBoost; bagging; random forest; extra tree classifier; stacking 
 

1. Introduction 
A total of 264,193 deaths as a result of liver disease were reported in India in 2018, 

according to the latest World Health Organization data [1]. There are about 23.00 deaths 
per 100,000 people based on age-adjusted death rates for the population. With a weight 
of approximately 1.36 kg, the liver is the largest organ in the body. It has four lobes of 
differing sizes and shapes, and is dark reddish-brown in color. The liver is located right 
behind the diaphragm beneath the abdominal cavity. The hepatic artery and the portal 
vein are two major arteries that transport blood to the liver [2]. Its primary function is to 
eliminate poisonous and damaging compounds from the bloodstream before they are dis-
tributed to other regions of the body. WHO officials have identified liver disease as one 
of the most serious and deadly diseases [3]. Hepatitis infection, fatty liver, cirrhosis, liver 
fibrosis, high alcohol intake, drug exposure, and genetic anomalies can all cause liver dis-
ease [4]. A liver transplant is the only treatment option left if the liver has completely 
failed, and there is no way to recover it. Timely identification of liver illnesses can aid in 
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therapy and speedy recovery. The phases of liver disease are: healthy, fibrosis, cirrhosis, 
and the last stage is cancer. Detecting liver disease in its early stages can be difficult, even 
after there is significant damage to liver tissue. This would lead to failure to provide 
proper treatment and drugs. An early diagnosis of the disease is crucial to preventing this 
and saving the patient’s life. Internal bleeding, dry mouth, constipation, and stomach pain 
are a few signs of liver disease that can affect the digestive system [3]. Some other signs 
include brain and nervous system anomalies such as loss of memory, numbness, and 
fainting, as well as skin concerns such as yellow skin, spider veins, and feet redness. Vis-
iting a doctor regularly, getting vaccinated, drinking less soda and alcohol, exercising reg-
ularly, and keeping your weight in check can prevent liver diseases. The advancement of 
artificial intelligence has led to the development of numerous machine learning algo-
rithms which enhance the accuracy and effectiveness of diagnosing and prognosticating 
liver disease [4]. 

In many automatic medical diagnostic tools, classification approaches are particu-
larly common. Due to the fact that liver diseases do not manifest until the organ is partially 
damaged, it is difficult to detect early [5]. The presence of enzymes in the blood can be 
used to identify liver disease [5]. Furthermore, mobile devices are increasingly being uti-
lized to track the health of humans. In this case, it is also necessary to use automatic clas-
sification algorithms. Mobile and online technologies capable of automatically identifying 
liver illnesses can be used to reduce patient wait times with liver specialists such as endo-
crinologists. 

The remainder of the paper is organized as follows: In Section 2, the literature survey 
of liver disease classification and detection is presented. The problem statement is thor-
oughly explained in Section 3. A detailed explanation of the proposed architecture, algo-
rithms, and preprocessing is provided in Section 4. The experimental setup and evaluation 
results has been given in Section 5. Section 6 discusses the conclusion and future work.  

2. Literature Survey 
In this section, various machine learning methods applied to classify liver diseases 

are discussed. Machine learning models such as the support vector machine (SVM), lo-
gistic regression, naive Bayes, decision tree (DT), random forest, k-nearest neighbor 
(KNN), artificial neural network (ANN), etc., are used for liver disease classification. 
Bendi et al. applied various machine learning models to two datasets. They were the An-
dhra Pradesh (AP) liver dataset (Indian liver dataset) and the UCLA liver dataset [6]. The 
machine learning models used were naive Bayes, decision tree (C4.5), backward propaga-
tion, k-nearest neighbor, and support vector machine. It was found that k-nearest neigh-
bor, backward propagation, and support vector machine provided better results com-
pared with other models. It was also concluded that the AP liver dataset is better than 
UCLA for all models. In another study, Bendi et al. introduced a modified rotation forest 
algorithm to accurately classify liver diseases. Analyzing the combination of classification 
algorithms and feature selection techniques [7]. With the modified rotation forest algo-
rithm applied to the UCI liver dataset, the multilayer perceptron (MLP) classification al-
gorithm was used, and with the ILPD dataset that had the nearest neighbors with gener-
alized distance functions and correlation-based feature selection, the random subset fea-
ture selection technique was used. It was observed that the multi-layer perceptron algo-
rithm on the UCI liver dataset provided better results than neural net on the Indian liver 
dataset. 

Yugal et al. proposed a rule-based model to classify data into various types of liver 
disorders using machine learning approaches [8]. The model used machine learning algo-
rithms such as SVM, rule induction (RI), decision tree, naive Bayes, and ANN using the 
k-fold cross-validation methodology. Among all the models, the decision tree with a rule-
based classification algorithm had better accuracy. They also created their dataset with 12 
attributes and 583 records. Heba et al. used a decision tree model to predict an individual’s 
liver fibrosis degree [9]. It showed that using decision trees results in good classification 
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accuracy. Liver disease disorders were analyzed using classification techniques such as 
C4.5, naive Bayes, SVM, neural network, and logistic regression [10]. The C4.5 model on 
the AP dataset proved to be better compared with the other models and the UCLA dataset. 
In a study conducted by Somaya et al., clinical biomarkers and mathematical models were 
used to predict advanced fibrosis in chronic hepatitis C patients [11]. For training the 
model, the data were divided into two sets according to the METAVIR score. They are (1) 
mild to moderate fibrosis (F0–F2), and (2) advanced fibrosis (F3–F4). The development of 
decision trees, genetic algorithms, particle swarm optimization, and multilinear regres-
sion models for advanced fibrosis prediction was performed. It was discovered that ad-
vanced fibrosis was statistically associated with age, platelet count, AST, and albumin. 

Sumedh et al. classified liver diseases using SVM and backpropagation models [12]. 
The models were trained on the UCI repository dataset. Between both models, backprop-
agation performed better. Han Ma et al. evaluated an optimal predictive model to detect 
non-alcoholic fatty liver disease (NAFLD) [13]. The model was developed using data from 
individuals gathered during a health assessment at Zhejiang University’s First Affiliated 
Hospital. Among the 11 different models, the Bayesian network model performed the 
best. An interactive graphical user interface was created to help the medical community 
diagnose liver disease in patients [14]. Based on 583 patients from the Indian Liver Patient 
Dataset, the model was trained on 10 different attributes. In this study, various classifica-
tion algorithms such as Logistic regression, KNN, SVM, and ANN are compared to see 
which delivers the best results. In comparison to other models, ANN was shown to have 
higher accuracy. Sivakumar et al. used another algorithm called C4.5 decision tree on the 
UCI repository using its 15 life quality attributes [15]. This work compared the perfor-
mance of C4.5 with the k-means clustering algorithm. C4.5 recorded better precision val-
ues. 

Vasan et al. also implemented using the UCI repository dataset [16]. The first step of 
this research work involved the application of a min–max algorithm to the original liver 
patient dataset. PSO feature selection is used in the second phase to demarcate relevant 
qualities. The entire normalized datasets of liver patients can then be used to extract the 
subset of critical liver-related data. After this stage, categorization algorithms are used in 
the third phase for comparisons and categorizations. It was found that the J48 algorithm 
performs best when it comes to feature selection. Vyshali et al. applied classification meth-
ods such as decision tree, linear discriminant analysis, SVM fine gaussian, and logistic 
regression [17]. The dataset consisted of laboratory data from 584 patients. The dataset 
contains 10 features that help in detecting liver diseases. The classification result on lo-
gistic regression was better than other models. Sateesh et al. worked on the ILPD for liver 
disease classification [18]. The random forest model was used for classification with vari-
ous preprocessing techniques. The preprocessing technique was used for balancing the 
unbalanced data. Model refinement was carried out by hyperparameter tuning using grid 
search and feature selection. The work mostly focused on classification using random for-
est; thus, it cannot determine whether the selected model is best. Geetha et al. aimed to 
augment the perceived nature of liver disease using machine learning techniques [19]. The 
work mainly focused on algorithms that can classify healthy people from the liver dataset. 
The dataset used was the Indian Liver dataset. SVM and logistic regression were used for 
prediction. SVM gave better accuracy compared with logistic regression.  

Rong-Ho Lin employed machine learning models such as classification and regres-
sion tree (CART) and case-based reasoning (CBR) for liver disease classification [20]. To 
treat a new liver disease, doctors can use rules taken from CART for identifying liver dis-
orders, whereas CBR can obtain the most comparable case from the case base for solving 
the problem. A study of risk factors concerning liver disease and predicting liver diseases 
was conducted using screening data accumulated from 1994 to 2001 [21]. It was shown 
that the risk factors useful for detecting liver disease are also useful for detecting liver 
cancer. It made use of logistic regression, decision tree, and ANN for predicting liver dis-
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orders. In comparison to a model employing current screening test data estimators, a neu-
ral network with a growth curve estimator outperformed the latter. It was also concluded 
that the sensitivity value improved by using the growth curve estimator. The findings of 
the [22] study showed that classification models predicted fatty liver disease in patients 
using minimum clinical parameters. Among other models tested, random forest models 
gave better accuracy. The strategy used led to more insights into real-world clinical prac-
tice and helped physicians to identify FLD (fatty liver disease) successfully. The drawback 
of this work includes using only one dataset. 

3. Problem Statement 
The liver is a very vital organ of the human body. Its failure can be fatal, and the only 

solution is a transplant within a given time. Various features such as total bilirubin, gen-
der, age, SGPT, ALP, Albumin, etc., can be used for the early detection of liver illnesses in 
a person. Several research works discussed above make use of these features to detect 
liver disease. Though many machine learning classification-based algorithms are used in 
the literature, they have some drawbacks. In most existing works, only simple machine 
learning models are used, and ensemble models are not used. There are various data pre-
processing methods that can be useful for improving results. These methods have not 
been explored as well. Additionally, many research works failed to employ efficient fea-
ture selection and transformation methods. To tackle this issue, the research makes use of 
various ensemble machine learning algorithms such as boosting, stacking, bagging, etc., 
to obtain better results. Furthermore, enhanced data pre-processing methods are applied 
with appropriate feature scaling and selection procedures to increase the model’s perfor-
mance. 

4. Proposed Architecture Using Ensemble Learning with Enhanced Preprocessing 
An overview of the datasets, the proposed work, architecture, and algorithms used 

for liver disease classification are presented in this section. 

4.1. Dataset to Perform Liver Disease Classification 
The UCI machine learning repository’s Indian Liver Patient Dataset (ILPD) is used 

to perform liver disease classification. [23]. It contains 11 columns that have 10 features 
and a target variable. The features are age, gender, total bilirubin (TB), direct bilirubin 
(DB), total proteins (TP), albumin (ALB), albumin and globulin ratio (A/G), alamine ami-
notransferase (SGPT), aspartate aminotransferase (SGOT), and alkaline phosphotase 
(Alkphos). The characteristics of all the features for the patients are tabulated in Table 1. 
The output variable has two classes denoting patients with liver disease and those with-
out. The dataset contains 583 records of patients collected from Andhra Pradesh’s North 
East region in India. The distribution of patients with and without liver disease is shown 
in Figure 1.  
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Figure 1. Dataset distribution graph. 

Table 1. Characteristics of patients. 

Characteristics 
Patients 

All with Liver Disease without Liver Disease 
Number % Number % Number % 

Patients Enrolled 583 100 416 71.36 167 28.65 

Age (in years) 
Median 45 46 40 
Range 4 to 90 7 to 90 4 to 85 

Gender 
Male 441 75.64 324 77.88 117 70.06 

Female 142 24.36 92 22.12 50 29.94 

Total Bilirubin (TB) 
Median 1 1.4 0.8 
Range 0.4 to 75 0.4 to 75 0.5 to 7.3 

Direct Bilirubin(DB) 
Median 0.3 0.5 0.2 
Range 0.1 to 19.7 0.1 to 19.7 0.1 to 3.6 

Alkaline Phosphotase(AP) 
Median 208 229 186 
Range 63 to 2110 63 to 2110 90 to 1590 

Alamine Aminotransferase 
(SGPT) 

Median 35 41 27 
Range 10 to 2000 12 to 2000 10 to 181 

Aspartate Aminotransferase 
(SGOT) 

Median 42 52.5 29 
Range 4 to 4929 11 to 4929 10 to 285 

Total Proteins (TP) 
Median 6.6 6.55 6.6 
Range 2.7 to 9.6 2.7 to 9.6 3.7 to 9.2 

Albumin 
Median 3.10 3.00 3.4 
Range 0.9 to 5.5 0.9 to 5.5 1.4 to 5.0 

Albumin and Globulin Ratio 
Median 0.93 0.90 1 
Range 0.3 to 2.8 0.3 to 2.8 0.37 to 1.9 

4.2. Methodology and Architecture to Classify Liver and Non-Liver Diseases 
In this subsection, the methodology used to classify liver and non-liver diseases is 

discussed. The dataset is first preprocessed using various techniques. The dataset is then 
split into training and test sets in order to train and assess the machine learning models. 
Machine learning models are trained on the created training set in order to classify the 
liver disease. The trained model is then tested on the test set and its performance is as-
sessed using various metrics. The architecture of the above method is illustrated in Figure 
2. 

 

 
Figure 2. The proposed architecture. 

4.2.1. Data Preprocessing 
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The data were preprocessed using methods such as data encoding, data imputation, 
transforming skewed data, data balancing, feature scaling, and feature selection tech-
niques, respectively. The above techniques are discussed in detail below. The overall ar-
chitecture of the preprocessing steps is shown in Figure 3. 

 
Figure 3. The proposed preprocessing block to classify liver disease. 

Data Encoding 
It is necessary to convert categorical data into numerical values before training vari-

ous models. This conversion is carried out using data encoding. In the Indian Liver da-
taset, there is only one categorical feature, which is gender. Gender columns contain fe-
male and male classes which are encoded to 0 and 1, respectively. 

Data Imputation 
Sometimes, the dataset contains missing values or null values. This is handled by 

either dropping the records with missing values or by using various imputation tech-
niques. Imputations are of two types: univariate and multivariate. In univariate feature 
imputation approaches, the missing values of a particular feature are imputed using only 
the non-missing values of that feature [24]. Whereas in multivariate imputation, the miss-
ing values are estimated using all the features in the dataset. In the proposed work, the 
multivariate feature imputation is used using the IterativeImputer class of the sklearn li-
brary. It uses a regressor to predict the missing values. It is one of the best imputation 
techniques.  

Transforming Skewed Data 
Distribution curves can be plotted to check whether the data is skewed or not. When 

the distribution curve of the data is distorted towards either the left or right side, then it 
is said to be skewed. Skewed data can affect performance by violating model assumptions 
or by affecting the interpretation of feature importances [25]. In the ILPD dataset, the fea-
tures that are skewed are: ‘A/G’, ‘TB’, ‘AP’, ‘SGPT’, ‘DB’, and ‘SGOT’. There are various 
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transformations available for handling the skewed data, but in this work, the ‘log1p’ trans-
formation is used. It effectively helps to balance the distribution of the curve. The formula 
used for the ‘log1p’ transformation is given below Equation (1). The skewness of columns 
can be observed in Figure 4. 

𝑋௡௘௪ =  𝑙𝑜𝑔(1 +  𝑋) (1)
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Figure 4. Observing the skewness of columns. 

Data Balancing 
This technique is used for when each output class’s number of data records available 

is comparably different. There are 167 records without liver disease and 416 records with 
the condition in the ILPD dataset. Data balance is essential since there is a large discrep-
ancy in the number of records accessible for each class. To balance the dataset, the minor-
ity class, i.e., the class without liver disease was up-sampled to 416 records. After 
resampling, the total number of records in the dataset was 832. To balance the data, a 
resample function from the sklearn library is used.  

Feature Scaling 
Feature scaling is a method for standardizing the independent features present in the 

data in a specific range [26,27]. It is one of the important steps for handling highly varying 
values. If the dataset is not scaled, regardless of the units, the larger values tend to be 
weighted higher and the smaller values lower by the machine learning models. Due to 
this reason, within the proposed work, different feature scaling methods are tried. They 
are as follows: 
 Min–max normalization: This feature scaling method involves shifting and rescaling 

values to make them fall between 0 and 1. This technique is prone to outliers. The 
formula used is given in Equation (2). 
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𝑋௡௘௪ =  
𝑋 − 𝑋௠௜௡

𝑋௠௔௫ −  𝑋௠௜௡

 (2)

 Maximum absolute scaling: After applying this technique to features, its value ranges 
between −1 and +1. In this method, the values in a feature are divided by the absolute 
max value, as shown in Equation (3). 

𝑋௡௘௪ =  
𝑋

𝑋௠௔௫௔௕௦

 (3)

 Standardization: In standardization, the z value is calculated so the values are re-
scaled to have a distribution with 0 mean value and variance equal to 1 [26]. The 
formula used for the standardization is given in Equation (4). 

𝑋௡௘௪ =  
𝑋 − 𝑋௠௘௔௡

𝜎
 (4)

 Robust scaling: It is a feature scaling technique that is robust to outliers. In this 
method, the feature values are subtracted from their median and divided by the In-
ter-Quartile Range (IQR) value of that feature. IQR is the difference between Q1 (first 
quartile) and Q3 (third quartile). The robust scaling formula is given in Equation (5). 

𝑋௡௘௪ =  
𝑋 − 𝑋௠௘ௗ௜௔௡

𝐼𝑄𝑅
 (5)

Feature Selection 
The feature selection method involves choosing a subset of all the available features 

that are more pertinent and contribute significantly to the target variable. The input fea-
tures are reduced to improve the performance of the model, and sometimes to reduce 
computational costs. The strength of the association between the feature and the target 
variable is assessed using a variety of statistical approaches for feature selection. Some of 
the methods which are often used and was also used in this work are discussed below. 
 Univariate feature selection: Univariate statistical tests are used in this strategy to 

determine the important features. In this, the relationship of a single feature is ana-
lyzed with the target variable ignoring other features. Hence, it is called univariate 
feature selection. From all the scores, features with top scores are selected. There are 
three tests used for feature selection in this work using the sklearn library. They are 
the chi-squared test, F-test, and mutual_info_classif test. The chi-squared test is used 
only for non-negative features and classes. It gauges the interdependence of stochas-
tic variables [28]. The F-test, which is also known as the one-way ANOVA test, is 
based on the ANOVA F-value. The mutual information is computed for the discrete 
target variable in the mutual_info_classif test. Mutual information (MI), which eval-
uates the interdependence between two random variables, is a non-negative value 
[29]. 

 Feature importance: The feature importances of each feature of the dataset can be 
obtained for the target variable using the models. Each data feature is given a score; 
the higher the score, the more meaningful the feature. To obtain the feature impor-
tances of the models, it is trained on the dataset first. Based on the training, the scores 
are decided. Usually, tree-based classification models are used. In this work, models 
such as extra tree classifier, random forest, and LGBM classifier were used. All of 
these models are ensemble models.  
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 Correlation coefficient matrix: Correlation is used to determine the relationship be-
tween the features or the output variable. It measures the linear relationship between 
variables. The correlation coefficient can be positive (the output variable value in-
creases as one feature value increases), negative (the output variable value decreases 
as one feature value increases), or zero (no relation between variables) [30]. The cor-
relation matrix is a matrix containing the correlation value of each feature with every 
other feature in the dataset including the target. Ideally, features selected should be 
highly correlated to the target variable and not related to each other, otherwise the 
feature will not add any additional information. Hence, if two features are correlated, 
we can remove one of them. Typically, the correlation between characteristics is de-
termined using Pearson’s correlation coefficient. 

4.2.2. Machine Learning Algorithms to Predict Liver Disease Using Enhanced Prepro-
cessing 

This research work evaluates the performance of ensemble-based machine learning 
algorithms on the ILPD (Indian Liver Patient Dataset) and compares their results. The 
Ensemble technique is a unique approach in which we combine multiple machine learn-
ing models of the same or different types such as decision tree, logistic regression, support 
vector machines, etc., to carry out prediction [31]. The models used in ensemble models 
are called base estimators or base learners. There are many reasons to use ensemble mod-
els over traditional models. A few reasons are mentioned below. 
 Performance: A single model may not be able to give reliable results. Combining 

multiple models helps to increase prediction accuracy [32]. 
 Robustness: An ensemble helps in reducing the spread in the average performance 

of the machine learning model [32]. 
 Low variance: Ensembles help in reducing the variance (error) of the prediction by 

combining multiple models [32]. 
One model might not be able to forecast a dataset’s outcomes to the best of its ability. 

Therefore, simple machine learning models have limitations, and it is difficult to create a 
model with great accuracy [31]. If multiple models are combined, then the accuracy is 
boosted. Ensembles work on the mechanism of aggregation of output from individual 
models in such a way that model error is reduced, and generalization is maintained [31]. 
The algorithms employed in this research work have been thoroughly discussed in detail 
in the following sections.  

Gradient Boosting Classification Algorithm to Predict Liver Disease 
In order to create a powerful regression or classification model, the gradient boosting 

classifier combines a number of weak learning models [33]. Decision trees are frequently 
used in gradient boosting. Due to their proficiency in classifying challenging datasets, 
gradient boosting models are becoming more and more popular, and have recently pre-
vailed in a number of Kaggle data science competitions [33]. 

Gradient boosting classification has three main components as shown in Algorithm 
1.  
 Loss function: It determines how well a model is doing a prediction. More loss means 

the model could do better and vice versa [34]. Gradient descent is used to minimize 
this loss function value. 

 Weak learner: A weak learner classifies data very poorly and can be comparable to 
random guessing. It has a high rate of errors. Usually, decision trees are used in this 
[34]. 

 Additive model: In this approach, trees are added iteratively and sequentially one at 
a time. After each iteration, the model is usually closer to the actual target [34]. 

Algorithm 1 Gradient Boosting to Predict Liver Disease 
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Input:   Training set record 
Output: Class of record (liver disease or no liver disease) 
Generating Algorithm Begin 

Step 1: Calculate the initial log(odds) for the entire dataset 
𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠)  =  

ା௩௘ ஼௟௔௦௦

ି ௩௘ ஼௟௔௦௦
  

Step 2: Calculate the initially predicted probability for each record 

𝑃 =  
௘೗೚೒(೚೏೏ೞ )

1ା ௘೗೚೒(೚೏೏ೞ)   
If the value is greater than 0.5 then positive class else negative class. 

Step 3: Calculate the Residual for each record 
𝑅 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

Step 4: Build a decision tree with leaves as residuals 
Step 5: Calculate the output value of the leaf for each record  

O/P value = ∑ோ

∑ ௉ ௑ (1ି௉)
  

Step 6: Calculate the updated log(odds) 
log(odds) = log(odds) + ( γ X o/p value)  

Step 7: Calculate the updated predicted probability for each record 
Repeat steps 3 to 8 till residuals are small or till the number of trees specified 

Step 8: Calculate the testing probability of each record 
Step 8.1: Calculate log(odds) 

log(odds) = log(odds) + ∑ γ × o/p value of leaf 
Step 8.2: Calculate the predicted probability 

End 

XGBoosting Classification Algorithm to Predict Liver Disease 
Similar to the gradient boosting algorithm, XGBoost uses gradient descent to enhance 

weak learners. However, XGBoost improves due to system optimization and algorithmic 
upgrades [35]. The system optimization applied in XGBoost are Parallelization, Tree Prun-
ing and Hardware. The algorithmic enhancements applied in XGBoost are weighted 
quantile sketch, Regularization, Cross-validation, and Sparsity awareness. 

Bagging Classification Algorithm to Predict Liver Disease 
Bagging (bootstrap aggregation) is a classification technique that reduces the vari-

ance of prediction by taking the average of multiple predictions together [36]. Subsets 
called bootstrap samples (samples with replacement) are created from the main dataset, 
and the different base estimators are trained on these subsets [36]. This is called row sam-
pling with replacement. The voting method (majority) is used in the case of classification 
for aggregating the prediction of different classifiers [36]. The variance decreases and the 
model’s performance rises by averaging the results [36]. Base classifiers such as decision 
tree SVM, etc. can be used. Algorithm 2 depicts the bagging approach to predict liver dis-
ease. 

Algorithm 2 Bagging to Predict Liver Disease 
Input:   Training set record 
Output: Class of record (liver disease or no liver disease) 
Generating Algorithm Begin 

Step 1: Split data into bootstrap subsets equal to the number of classifiers say n 
taking all features 
Step 2: Train n subsets on n base estimators, respectively 
Step 3: Testing 

Step 3.1: Calculate the output of the test record on each base learner 
Step 3.2: Calculate the final predicted value by using the voting method 



Biomedicines 2023, 11, 581 12 of 23 
 

End 

Random Forest Classification Algorithm to Predict Liver Disease  
Random forest classification algorithm is a type of Bagging method in which all the 

base learners are decision trees, and data samples are split by replacement. Random fea-
ture sampling is also applied. The best split approach is used while splitting the data. 
Decision tree is a weak learner and using multiple decision trees together has helped gain 
better results. Algorithm 3 depicts the random forest classification approach to predict 
liver disease. 

Algorithm 3 Random Forest Classification to Predict Liver Disease 
Input:   Training set record 
Output: Class of record (liver disease or no liver disease) 
Generating Algorithm Begin 

Step 1: Split data into subsets equal to the number of classifiers say n with 
random feature selection and best split 
Step 2: Train n subsets on n decision trees, respectively 
Step 3: Testing 

Step 3.1: Calculate the output of the test record on each base learner 
Step 3.2: Calculate the final predicted value by using the voting method 

End 

Extra Tree Classification Algorithm to Predict Liver Disease  
Extra tree classification algorithm is an extended version of random forest with some 

variations. Similar to random forest, all the base learners are decision trees, but data sam-
ples are split randomly without replacement. Hence, instead of using the best split ran-
dom split approach is used. Features are split randomly similar to random forest. This 
algorithm has given better results on noisy datasets compared with the random forest 
approach. Algorithm 4 depicts the extra tree classification algorithm to predict liver dis-
ease. 

Algorithm 4 Extra Tree Classification to Predict Liver Disease 

Input:   Training set record 
Output: Class of record (liver disease or no liver disease) 
Generating Algorithm Begin 

Step 1: Randomly split data into subsets equal to the number of classifiers say n 
with random feature selection and random-split 
Step 2: Train n subsets on n decision trees, respectively 
Step 3: Testing 

Step 3.1: Calculate the output of the test record on each base learner 
Step 3.2: Calculate the final predicted value by using the voting method 

End 

Ensemble Stacking Classification Algorithm to Predict Liver Disease  
Stacking algorithms base estimators use the entire training dataset during training 

[36]. Once these base learners are trained, a meta-learner is assembled from the different 
models, and the base learner’s output is used for the training of the meta-learners [36]. A 
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heterogeneous ensemble is created by this approach as the base learners are usually dif-
ferent algorithms [36]. This work uses ensembles models as the base model for stacking 
as shown in Algorithm 5. 

Algorithm 5 Ensemble Stacking Classification to Predict Liver Disease 

Input:   Training set record 
Output: Class of record (liver disease or no liver disease) 
Generating Algorithm Begin 

Step 1: Train the entire dataset on n-base learners 
Step 2: Feed output of base learners to meta learner 

Base learners used: extra tree classifier, random forest, and xgboost 
Step 3: Train meta learner on-base learner output 

Meta learner used: logistic regression 
Step 4: Testing 

Step 4.1: Pass each record through base learners 
Step 4.2: Feed output of base learners to meta learner 
Step 4.3: Meta-learner output gives final prediction 

End 

In the above subsections, various feature scaling, feature selection methods, and ma-
chine learning algorithms are discussed. First, the data are split into training and testing 
so that every model receives the same train test split. Then, for each of the six algorithms, 
a default model is trained, and the best pair of feature scaling and feature selection com-
bination is found. This is carried out by training and checking the model’s training accu-
racy on all combinations of feature scaling and selection pairs. In order to obtain the best 
feature scaling and selection pair, the optimal hyper-parameters are obtained using grid 
search with 10-fold cross validation. GridSearchCV from the sklearn library was used for 
this purpose. It uses all the specified hyper-parameters in various combinations and then 
calculates the performance for each. The best value for the hyper-parameters is then cho-
sen. We performed training on hyper-parameters obtained from grid search, as well as 
default hyper-parameters. The best out of the two was chosen for comparison. The hy-
perparameter optimization carried out for all the models is given in Table 2. Finally, the 
models are trained by passing this list of optimal parameters to each model. Parameters 
such as the number of estimators, learning rate, etc., are passed to the models. The best 
result for each model evaluated on the test set (external validation) is then stored. This 
proposed method is named as enhanced preprocessing. 

Table 2. Hyperparameter optimization for all the ensemble learning models. 

Ensemble models Ranges of Hyperparameters Optimal Value 

Random Forest 

n_estimators: [100, 150, 200, 500] 100 
criterion: [gini, entropy] gini 

min_samples_split: [1.0, 2, 4, 5] 2 
min_samples_leaf: [1, 2, 4, 5] 1 

max_leaf_nodes: [4, 10, 20, 50, None] None 

Extra Tree Classifier 

n_estimators: [100, 150, 200, 500] 100 
criterion: [gini, entropy] entropy 

min_samples_split: [1.0, 2, 4,5] 2 
min_samples_leaf: [1, 2, 4, 5] 1 

max_leaf_nodes: [4, 10, 20, 50, None] None 
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XGBoost 

n_estimators: [100, 200, 500] 500 
learning_rate: [0.01, 0.05, 0.1] 0.05 

booster: [gbtree, gblinear] gbtree 
gamma: [0, 0.5, 1] 0 

reg_alpha: [0, 0.5, 1] 0 
‘reg_lambda’: [0.5, 1, 5] 0.5 
‘base_score’: [0.2, 0.5, 1] 0.2 

Gradient Boosting 

‘n_estimators’: [100, 200, 500], 200 
‘learning_rate’: [0.1, 0.2, 0.5], 0.5 

‘criterion’: [‘friedman_mse’, ’mse’, ‘mae’], friedman_mse 
‘min_samples_split’: [2, 4, 5], 2 
‘min_samples_leaf’: [1, 2, 4, 5] 1 

Bagging ‘n_estimators’: [100, 200, 300] 200 

5. Evaluation and Analysis 
In this section, details about the experiments performed on the Indian Liver Patient 

Dataset to classify liver disease are discussed. The metrics used for evaluation and the 
results obtained are explained. In the last sub-section, the results are compared with the 
existing works. 

5.1. Experimental Setup 
The experiments performed in the proposed work were carried out on the local sys-

tem with Windows 10 operating system. The local system had the following specifica-
tions: 8Gb RAM, intel i5–9th generation processor, and NVidia GTX1650 graphics card. 
No external GPUs were used. All the code was written in python language in jupyter 
notebook. Visual Studio code was used for running the notebooks. Various popular ma-
chine learning libraries such as pandas, numpy, sklearn, seaborn, etc., are used for the 
execution of the work. 

5.2. Evaluation Metrics 
Evaluation metrics help in determining how well-trained models perform on unseen 

test data. All ensemble models were tested using precision, accuracy, recall, specificity, 
and F1-scores on the test dataset. The following metrics have been described in the previ-
ous papers [37,38] as shown in Equations (6)–(10). Apart from these, the AUC (area under 
the curve) and ROC (Receiver operating characteristics) are also calculated with the help 
of graphs. The ROC is a probability curve, whereas the AUC is a measure of separability. 
As AUC increases, the model becomes more accurate at differentiating classes. The fol-
lowing terms help in calculating these metrics which are given in Equations (6)–(10). 
 True Positive (TP)—when positive values are predicted as positive. 
 True Negative (TN)—when negative values are predicted as negative. 
 False Positive (FP)—when negative values are predicted as positive. 
 False Negative (FN)—when positive values are predicted as negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ (𝑃 ∗ 𝑅)

(𝑃 + 𝑅)
 (9)
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10)

5.3. Experimental Results 
The results obtained for the liver disease classification on the ILPD dataset using var-

ious machine learning models have been illustrated above in Tables 3 and 4. The uncer-
tainty in the model has been represented in terms of confidence interval (CI) using boot-
strapping in Table 3. The comparison graphs of these models for different metrics can be 
seen in Figure 5. The results shown above in Tables 3 and 4 are obtained after applying 
enhanced preprocessing techniques on all the models. The receiver operating characteris-
tic (ROC) curves have been plotted in Figure 6. According to that combination of feature 
selection, feature scaling preprocessing techniques with imputation and data balancing 
were used. The preprocessed data were finally trained and tested on all the six models. 
The results obtained uses the evaluation metrics such as accuracy, precision, recall, speci-
ficity, F1-score, ROC–AUC, and 10-fold cross validation. The graphs for ROC–AUC and 
10-fold cross validation are given in Figures 7 and 8, respectively. Among them, extra tree 
classifier had the highest testing accuracy of 91.82% followed by random forest with an 
accuracy of 86.06%. Gradient boosting had the lowest accuracy. When the models were 
tested with 10-fold, the cross validation stacking model had the highest accuracy of 93.15% 
and lowest accuracy of 80.41% for the gradient boosting model. When all the metrics are 
taken into consideration, the extra tree classifier shows the best performance, whereas the 
gradient boosting shows the worst.  

Table 3. Proposed models evaluation metrics with respect to accuracy, precision, recall and speci-
ficity. 

Algorithm Accuracy (95% CI) Precision (95% CI) Recall (95% CI) Specificity (95% CI) 
Extra Tree Classifier 91.82 (87.88–95.19) 92.72 (87.50–97.17) 91.89 (86.54–96.43) 91.75 (85.44–95.48) 

Random Forest 86.06 (81.25–90.38) 91.00 (85.00–96.04) 81.98 (74.54–88.50) 90.72 (84.27–95.79) 
Stacking 85.10 (80.29–89.44) 80.76 (73.55–87.50) 94.59 (90.10–98.15) 74.22 (64.83–82.05) 
Bagging 84.13 (78.85–88.47) 89.79 (83.33–95.56) 79.27 (71.31–86.33) 89.69 (82.95–95.40) 
XGBoost 82.21 (76.92–87.50) 83.63 (76.72–90.27) 82.88 (75.73–90.09) 81.44 (73.33–88.79) 

Gradient Boosting 78.85 (73.08–84.13) 83.83 (76.29–90.91) 74.77 (66.09–82.24) 83.50 (76.19–90.39) 

Table 4. Proposed models evaluation metrics with respect to f1-score, roc_auc, 10-fold cross valida-
tion accuracy. 

Algorithm F1-Score ROC_AUC 
10-Fold Cross Validation 

Accuracy 
Extra Tree Classifier 92.30 91.82 89.91 

Random Forest 86.25 86.35 85.93 
Stacking 87.13 84.41 93.15 
Bagging 84.21 84.48 85.21 
XGBoost 83.25 82.16 85.81 

Gradient Boosting 79.04 79.13 80.41 
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Figure 5. Metrics comparison between different models. 

 
Figure 6. ROC curve of models. 
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Figure 7. Metrics comparison graph of ROC_AUC. 

 
Figure 8. Comparison of 10-fold cross validation accuracy of different Models. 

5.3.1. Statistical Test Results 
Statistical tests such as Pearson’s Correlation test, chi-squared contingency test and 

analysis of variance (ANOVA) F-test have been performed on the data. The correlation 
matrix has been shown in Figure 9. It can be inferred from the test that features DB and 
TB, SGOT and SGPT, ALB and TP, ALB and A/G are highly correlated. The chi-squared 
test was performed between the gender and the target variable as both are categorical 
types of data. As the p-value of the test obtained is 6.55%, the null hypothesis is not re-
jected at 95% level of confidence. As per the null hypothesis, liver disease and gender are 
independent. The ANOVA F-test scores are shown in Table 5. As per the ANOVA F-test, 
the score obtained between Target variable and features such as DB, TB, SGOT, SGPT is 
very high, whereas the score obtained between the target variable and feature such as 
gender, the TP, is low. The higher the score, the more the features are dependent on the 
target variable.  
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Figure 9. Correlation matrix. 

Table 5. Anova F-test scores for all features with target feature. 

S. No. Features Scores 
1 DB 129.48 
2 TB 121.47 
3 SGOT 98.36 
4 SGPT 92.54 
5 AP 83.92 
6 A/G 54.79 
7 ALB 31.55 
8 Age 13.34 
9 Gender 03.69 

10 TP 00.29 

F-test for multiple classifier comparison was performed between the models. The p-
value obtained for the test is 0.01856 which is lesser than significance level (α = 0.05). This 
denotes that we can reject the null hypothesis and conclude that there is a difference be-
tween the classification accuracies [39]. Since the null hypothesis was rejected, McNemar’s 
statistical test has been performed to find out which model pairs have different population 
proportions. McNemar’s test has a low false positive rate and is relatively fast to compute 
compared to other statistical tests [40]. If the p-value obtained for this test is less than 
significance level α = 0.05, we reject the null hypothesis that the two model perform 
equally. The results of the test have been tabulated in Table 6 and visualized in Figure 10. 
From the table, it can be concluded that the extra tree classifier has significant differences 
in performance when compared with most of the models. 

Table 6. McNemar’s test between the models. 

Algorithm 1 Algorithm 2 Chi-Square p-Value 
Extra Tree Classifier Random Forest 6.05 0.0139 
Extra Tree Classifier Stacking 7.6818 0.0055 
Extra Tree Classifier Bagging 11.1304 0.0008 
Extra Tree Classifier XGBoost 11.2813 0.0008 
Extra Tree Classifier Gradient Boosting 21.8064 3.0158 
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Random Forest Stacking 0.0294 0.8638 
Random Forest Bagging 0.64 0.4237 
Random Forest XGBoost 1.75 0.1859 
Random Forest Gradient Boosting 6.3226 0.0119 

Stacking Bagging 0.1290 0.7194 
Stacking XGBoost 0.625 0.4292 
Stacking Gradient Boosting 3.5122 0.0609 
Bagging XGBoost 0.1026 0.7488 
Bagging Gradient Boosting 2.25 0.1336 
XGBoost Gradient Boosting 0.8780 0.3487 

 

 
(a) 

 
(b) 

Figure 10. McNemar’s test between the models. (a) Chi-squared test. (b) p value test. 
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5.3.2. Visualization of Features 
Uniform manifold approximation and projection (UMAP) and t-distributed stochas-

tic neighbor embedding (t-SNE) have been used to better understand the performance of 
the models on liver disease classification. t-SNE and UMAP are used to map high-dimen-
sional features to two dimensions, enabling clear visualization of the data. In Figure 11A, 
the features with the final classification representation are depicted. Figure 11A shows the 
features well classified into liver and non-liver disease by the extra tree classifier model. 
The UMAP analysis was conducted to provide a more detailed representation of the fea-
tures of the data. The distinction between the liver and non-liver class of proteins can be 
clearly observed in the UMAP plot in Figure 11B. Both the t-SNE and UMAP plots have 
effectively demonstrated the strong performance of the proposed model in accurately 
identifying liver disease. 

  
(A) (B) 

Figure 11. Feature visualization of extra tree classifier model. (A) t-SNE plot (B) UMAP plot. 

5.4. Performance Comparison 
The performance of the ensemble algorithms used for liver disease classification is 

compared with existing works that have used the same dataset and evaluation methods. 
The results of the proposed work outperform many of the existing works. This is com-
pared in Table 7 and Figure 12. The extra tree classifier shows the best results followed by 
the Random Forest model. The method proposed in this work uses enhanced prepro-
cessing and ensemble machine learning and surpasses various other research works. Most 
of the other research works are based on simple machine learning models. Among them, 
Bendi et al. obtained an accuracy of 73.07% using the k star model, which is still low. The 
random forest accuracy for the proposed work is 86.06% and is much better than the re-
sults obtained by Sivakumar et al. for the same model. Overall, the extra tree classifier, 
which has not been used for liver disease classification before, surpasses all the other 
works with an accuracy of 91.82%. 
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Figure 12. Comparison graph of proposed work with other existing works. 

Table 7. Comparison of proposed work with other existing works. 

S. No. Source Algorithm Accuracy (in %) 
1 Bendi et al. [7] Bayesian Network 71.30  
2 Bendi et al. [7] MLP 71.53 
3 Bendi et al. [7] KStar 73.07 
4 Sumedh et al. [12] Back Propagation 73.2 
5 Srivenkatesh et al. [40] Random Forest 74.57 
6 Geetha et al. [19] SVM 75.04 
7 Srivenkatesh et al. [40] Logistic Regression 76.27 
8 Ensemble Learning (EL) With Enhanced Preprocessing (EP) Random Forest 86.06 
9 Ensemble Learning (EL) With Enhanced Preprocessing (EP) Extra Tree Classifier 91.82 

6. Conclusions 
Liver disease has been increasing annually in people across the globe. This is mainly 

due to lifestyle changes, and bad eating and drinking habits. Early diagnosis can help save 
people’s lives. To address this issue, several ensemble models have been used for liver 
disease diagnosis and their performance have been compared with other models. It was 
observed that the proposed model which uses enhanced preprocessing approach with ex-
tra tree classifier obtained the best testing accuracy of 91.82% followed by 86.06% for the 
random forest model. These proposed models outperformed many machine learning al-
gorithms for liver disease classification present in the literature. This research was carried 
out on the ILPD dataset. For future work, different datasets can be integrated to carry out 
liver disease classification. This will help in increasing the training data and may improve 
the model accuracy further. Apart from that, better preprocessing methods and newer 
machine learning models such as C5.0, CBR (Case-based reasoning), and AODE (Aggre-
gating One-Dependence Estimators) can also be trained on these datasets in the future. 
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