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Abstract: A recognized vasodilator, the infusion of 5-hydroxytryptamine (5-HT, serotonin) decreases
blood pressure through the reduction of total peripheral resistance in the rat. It is not clear which
vascular beds/tissues are responsible for this fall. We hypothesized that an increase in blood flow
within the skin, measured as an elevated temperature (T) in the thermoregulatory tail and paws,
enables at least part of 5-HT-induced reduction in blood pressure through active vasodilation. The
temperature of thermoregulatory regions of the skin of an anesthetized male, Sprague Dawley rats
were measured using a Optris PI640 thermal camera. The blood pressure of the animal and the
temperature of each paw and four locations along the tail (TL1-4) were recorded before, during, and
after the infusion of 5-HT at a rate of 25 mg/min into a femoral vein. Contrary to our hypothesis, the
temperature of the paws and tail was stable before and during 5-HT infusion and actually increased
during the 15-min recovery period. This finding suggests that hyperemia of the skin circulation is not
necessary for the fall in blood pressure observed with infused 5-HT, but that a reduction in cutaneous
vascular resistance plays a part in the fall in total peripheral resistance.
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1. Introduction

Our laboratories have sought to understand how 5-hydroxytryptamine (5-HT, sero-
tonin) reduces blood pressure. The potential clinical relevance of this finding, originally
observed in man [1,2], has long been ignored even in the presence of the considerable
literature supporting 5-HT-induced hypotension [3–12]. Understanding the mechanisms of
this hypotension would not only allow for a potential insight into the causes of pathological
hypotension, but it would also open doors for therapeutic intervention in hypertension, a
field in which 5-HT pharmacology has not been well mined.

We have shown that chronic infusion of a low dose of 5-HT (25 µg/kg/min) reduces
blood pressure in normal, freely moving rats [13] and nearly normalizes blood pressure
of experimental and genetic models of rodent hypertension [14–16]. We have further
shown that these effects are due to the activation of peripheral 5-HT7 receptors. Our
pharmacological evidence for the 5-HT7 receptor being critical was strongly supported by
findings that 5-HT infusion did not reduce blood pressure in 5-HT7 receptor KO rats [17].
Importantly, the vasculature is likely a site where 5-HT7 receptors cause hypotension
since 5-HT infusion significantly reduces total peripheral resistance (TPR) [18] and 5-HT7
receptors have been identified in the vasculature [19].

However, we have not yet identified the most critical vascular beds responsible for
the fall in TPR. Experiments using microspheres to quantify regional blood flow during
acute and chronic 5-HT infusion generally show no change in the skin vasculature [4,20,21].
Isolated large and small arteries from a variety of vascular beds do not relax to 5-HT
in vitro [18]. By contrast, veins do relax to 5-HT both in vitro [19] and in vivo [22]. However,
venous dilation cannot account for the fall in TPR observed. Where, then, does the fall in
TPR produced by 5-HT occur?
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We recently demonstrated that 5-HT infusion causes a dramatic vasodilation in the rat
hindquarters [23], and part of the hindquarters blood flow in the rats is directed to the skin
(especially the tail). Experiments using microspheres to quantify regional blood flow during
acute and chronic 5-HT infusion generally show no change in the skin vasculature [4,20,21].
In this study, we test the hypothesis that the non-hairy (glabrous) skin contributes to the
5-HT-induced fall in blood pressure through the dilation of cutaneous arteries. Experimen-
tally, this would be observed as an increase in flow without an accompanying change in
arterial pressure or a stable flow in the presence of a fall in arterial pressure during 5-HT
infusion. It is clear that in both rats and humans, the cutaneous circulation can have a
significant impact on total peripheral resistance. For example, the dramatic reduction in
systemic vascular resistance that accompanies heat stress is predominantly caused by falls
in cutaneous vascular resistance [24].

Heat loss estimated from skin temperature in thermoregulatory parts of the body
is a widely used technique in physiology. An increase in skin temperature is a result
of vasodilation, whereas a decrease in skin temperature signals vasoconstriction. Many
investigators have demonstrated an association between 5-HT7 receptor activation and
5-HT-induced hypothermia based on pharmacological methods, and by knockout of the
gene for this receptor (see [25] for review). However, it is not clear whether 5-HT-induced
hypothermia results from vascular actions of the hormone or from other effects, such as
activation of neuronal pathways involved in thermoregulation [25].

Previous Doppler flow experiments have been equivocal in their outcome and less
than ideal because of the inability to measure several regions of interest (paws, tail) at the
same time. We turned to thermography as an alternative approach. Since vasodilation
in the skin of the tail and paws is one of the primary means by which rats shed heat, as
noted above, skin temperature (T) is an excellent surrogate for blood flow [26,27]. This
technique also allows for the monitoring of multiple cutaneous regions at one time [28,29].
Finally, thermography allows for the monitoring of T longitudinally throughout an experi-
ment. Thermography was combined with the continuous measurement of blood pressure
such that the temporal relationship between cutaneous T and blood pressure could be
well-defined.

2. Results

Figure 1A illustrates the experimental setup with regions of interest—the paws and
tail segments divided into four segments: TL1, TL2, TL3, and TL4—defined for analyses.
Figure 1B depicts images of the rat tail (base primarily) before, during, and after infusion
of 5-HT.

Figure 2 combines thermography with continuous blood pressure data for the tail
(Figure 2A) and thermography only for the paws (Figure 2B). The black line in Figure 2A
illustrates the mean arterial pressure (MAP; mm Hg) of five (5) rats receiving 5-HT infusion.
In one rat (6th), a stable recording could not be obtained, and thus the blood pressure of this
rat is not reported. Mean arterial blood pressure was measured throughout the duration
of the experiment to allow the animal to serve as its own control. A reading was taken
every 10 s before, during, and after infusion of 5-HT. The baseline average for the five rats
that were measured was 88.4 ± 3.6 mmHg, which remained largely consistent until 5-HT
infusion was initiated. 5-HT infusion, begun at 30 min, caused a profound hypotension. The
nadir was 56.3 ± 1.5 mmHg (p < 0.001 compared to control), meaning that 5-HT infusion
caused over a 30 mmHg peak fall in blood pressure. This is consistent with published
work and confirms that 5-HT at this infusion rate/dosing causes hypotension. At the end
of the 20-min infusion period, mean arterial pressure was 63.6 ± 3.1 mmHg (p < 0.001
compared to control), which rose to 88.1 ± 3.7 mmHg (not significantly different from
control) following the 15-min recovery time.
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Figure 1. (A) Illustration of experimental setup with regions of interest (four paws and four tail
segments as TL1, TL2, TL3, and TL4) marked with a black square/rectangle. (B) Representative
images of the tail of the same rat before, during, and after 5-HT infusion (timing in protocol). Warm
colors indicate greater flow.
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Figure 2. (A) Blood pressure and thermographic data for segments of the rat tail during the course of
the experiment. (B) Thermographic data for the four paws of the rat during the course of the experiment.
Lines represent means with shaded area the standard deviation for the number of rats reported.
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Temperature data were measured continuously, with a measurement being recorded
every 50 s. For the paws of the animal, the mean baseline was recorded as 32.0 ◦C for the
left rear, 30.2 ◦C for the left front, 29.8 ◦C for the right rear, and 30.1 ◦C for the right front.
Baseline values for the tail (TL1-4) were 32.5, 28.1, 25.3, and 24.0 ◦C, respectively. During
the peak hypotensive effect of 5-HT, the temperature of the left rear, left front, right rear,
and right front paws changed only slightly: −1.7 ± 0.58, 0.05 ± 0.21, −0.13 ± 0.12, and
0.15 ± 0.21 ◦C, respectively. For the four locations along the tail, the values at peak hypoten-
sive effect consistently fell: −0.20 ± 0.23, −0.16 ± 0.20, −0.20 ± 0.19, and −0.17 ± 0.08 ◦C,
respectively. At the end of the 5-HT infusion period, T continued to decline slightly at all
sites (see Figure 2). However, none of these changes were statistically significant. During
the recovery period, the temperature of the four paws increased to above pre-infusion
values: 0.03 ± 0.55 for the left rear, 0.33 ± 0.36 for the left front, 0.00 ± 0.13 for the right
rear, and 0.85 ± 0.40 ◦C for the right front, respectively. Along the four tail locations,
the temperature differences between recovery and pre-infusion values were 1.48 ± 0.35,
2.97 ± 0.58 (p < 0.05), 2.50 ± 0.44 (p < 0.05), and 1.75 ± 1.00 ◦C, respectively.

During 5-HT infusion, temperature of the tail did not increase significantly in the paws
or any segment of the tail when compared to baseline. This suggests that an increase in
blood flow in the thermoregulatory cutaneous vasculature does not occur during 5-HT-
induced hypotension in the rat. However, the stable cutaneous blood flow during the rapid
and large decrease in blood pressure caused by 5-HT indicates that vascular resistance in
the cutaneous bed was dramatically decreased. Interestingly, cessation of 5-HT infusion
was associated with a statistically significant increase in temperature in all tail segments
(TL1, TL2, TL3 and TL4) and a modest increase in the paws as well.

3. Discussion

This study tested the hypothesis that 5-HT increases skin blood flow through active
vasodilation, and that this vasodilation contributes to the fall in blood pressure observed
during 5-HT infusion. Our findings are consistent with 5-HT causing cutaneous vasodila-
tion but do not prove that such vasodilation is necessary for 5-HT induced hypotension.

At least as measurable by thermography, 5-HT infusion was associated with a marked
fall in blood pressure without any change in blood flow in the tail or paws. This result
implies either active cutaneous vasodilation by 5-HT, or vascular autoregulation (a fall in
resistance in response to decrements in perfusing pressure) in response to the decline in
blood pressure. Alone, our results do not allow us to distinguish between these possibili-
ties. However, the cutaneous vascular bed is known to exhibit very poor autoregulatory
capacity [30]. Thus, we conclude that the decrease in cutaneous vascular resistance during
5-HT infusion is caused by 5-HT acting directly on 5-HT7 receptors on cutaneous arteries
and arterioles. This is predicated on the relationship that pressure (P) is equal to flow (F)
times resistance (R) (P = F × R). If F—using T as a surrogate—does not change during an
intervention, then pressure and resistance must change in the same direction and magni-
tude. Although we propose that the fall in cutaneous resistance during 5-HT infusion is
due to the direct effects of 5-HT on 5-HT7 receptors on cutaneous arteries, we cannot rule
out the possibility that 5-HT infusion induces the release of another endogenous cutaneous
vasodilator; this idea will require further investigation. Furthermore, since the activation
of 5-HT1A, 5-HT3, 5-HT7, and 5-HT2 receptors can all affect thermoregulation, additional
studies with specific antagonists are necessary to establish the relative role of each in our
5-HT infusion model.

The tail vasculature is under significant centrally derived sympathetic control and
has the potential to conduct up to 10% of cardiac output when dissipation of heat is neces-
sary [31]. But the hypotension associated with 5-HT infusion would be expected to produce
a baroreflex-induced increase in cutaneous vascular resistance, not the decrease we ob-
served. The rapid waning of this baroreflex-mediated sympatho-excitation and associated
cutaneous vasoconstriction likely explains the mild “overshoot” in tail temperature (and
thus blood flow) after terminating 5-HT infusion. This possibility could be investigated in
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future studies by repeating the current protocol in rats in which sympathetic innervation to
the tail was removed prior to 5-HT infusion.

We acknowledge a few limitations of the present study. First, our studies were
performed under isoflurane anesthesia. Therefore, the well-known suppression of central
thermoregulation during isoflurane anesthesia could have affected our findings. However,
instead of investigating thermoregulation per se, we were using ear and tail temperatures
merely as a surrogate for skin blood flow, specifically for skin blood flow changes due to
direct vascular actions of 5-HT. Thus, isoflurane anesthesia may actually be an advantage
for our purposes since it would likely minimize any potential central actions of infused
5-HT on skin blood flow. Second, we studied only males. Males and females show a similar
fall in BP to infused 5-HT as well as a dependence on the 5-HT7 receptor for this fall [17].
As such, we considered the animal use principle of not using more animals than needed
to come to a scientific conclusion and used only males. Nevertheless, investigating the
impact of 5-HT on cutaneous blood flow in females needs to be done. Another limitation
is that our conclusions only can be applied to acute 5-HT infusion. Our studies have
largely been dedicated to understanding the effects of 5-HT infusion on blood pressure over
longer periods, i.e., from a week to 30 days. Hypotension during these chronic infusions
is similarly dependent on the 5-HT7 receptor as is acute 5-HT-infused hypotension: both
are abolished by pharmacological antagonism [22] or genetic removal [17] of the 5-HT7
receptor. Similarly, the 5-HT1A/7 agonist 5-carboxyadmidotryptamine causes a 5-HT7
receptor dependent venous relaxation and hypotension [19]. However, long-term agonist
infusions will typically engage both complementary and opposing physiological responses
that complicate efforts to establish precise causes of the response under investigation.

4. Materials and Methods
4.1. Animals

Male Sprague Dawley rats from Charles River Laboratories (Mattawan, MI, USA) of
240–270 g were used. This work was reviewed and approved by the Michigan State Uni-
versity Institutional Animal Care and Use Committee through protocol PROTO201800191.

4.2. Anesthesia

Animals were initially induced with 5% Isoflurane and O2, and the weight was
recorded. The abdominal area above where the femoral artery is located was shaved.
Isoflurane was reduced to 2%, and the rat was transferred to a solid surgical table with
a 42 ◦C water-based heating pad underneath a surgical cloth. The rat was secured using
biocompatible tape in a spread-eagle position with the tail placed directly away from the
body. The ambient temperature in the laboratory was 22 ± 1.0 ◦C.

4.3. Surgery

A telemeter probe catheter (Data Sciences International, Minneapolis, MN, USA) was
implanted into a femoral artery (the transmitter was left outside the rat’s body) to measure
blood pressure continuously through the experiment. The mean arterial pressure was
recorded on DSI Data Art 4.31. Thermography data were recorded through PIX Connect
Software on an HP Spectre Laptop (i7 Intel).

4.4. Imaging System

An Optris PI640 camera was connected to a 2021 Spectre laptop and the PIX Connect
Software was used to capture images. The camera was mounted 30 inches above the animal
using a ring stand apparatus. The Optris PI640i infrared imager camera has a 640 × 480
resolution, 40 mK NETD, USB 2.0 interface, process interface, environmental protection
IP 67, and an automatic internal calibration system. At ambient temperatures within the
range of 18–28 ◦C, the system accuracy of the camera is ±2 ◦C.
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4.5. Data Acquisition

Eight (8) regions of interest were imaged: all four paws and four tail regions [tail
location, TL: TL1, TL2, TL3, and TL4]. This was done by placing a region of interest box
within the PIX Connect Software over the region of interest. The same size boxes were
used in the six (6) different experiments reported in this manuscript. Data were continually
acquired through three different phases of the experiment: prior to 5-HT infusion, during
5-HT infusion, and after 5-HT infusion. In this manner, the animal served as its own control.

4.6. Baseline, 5-HT Infusion, and Post-Infusion

Once the rat was secured and the catheter implanted, a 30-min period of baseline
measurements was obtained. At 30 min, an infusion of 5-HT at a rate of 25 mg/min
was carried out by means of an infusion pump (KD Scientific 780200). This delivered the
25 mg/kg/min dose reported previously to cause hypotension in the rat [13]. With this
same dose, the 5-HT infusion was continued for 20 min. At the end of 20 min, the infusion
pump was stopped, and a 15-min period of post-infusion data was collected. Euthanasia
was performed by cardiac exsanguination while the subjects were still under anesthesia.

4.7. Data Analyses and Statistics

Absolute magnitudes of mean arterial blood pressure and segmental temperatures
were transferred into Graph Pad Prism 9.0 (La Jolla, CA, USA) as individual values for
each rat. The graphs presented are the means surrounded by the shaded standard error of
the mean. Differences in mean arterial pressure and T during the pre-infusion, peak blood
pressure response, end of infusion, and end of recovery periods were analyzed using a
one-way repeated measure ANOVA, followed by Dunnett’s test for pre-defined multiple
comparisons. A p-value < 0.05 was considered statistically significant.
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