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Abstract: In patients affected by Parkinson’s disease (PD), up to 50% of them experience cognitive
changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset
of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is
characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc)
and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed
mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates
in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor
phenotypes. However, abundant Lewy pathology is also found in other brain regions including
the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction
of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during
the premotor phase of PD. However, little is known about the functional consequences of α-Syn
inclusions in this neuronal population other than DA neurons. Here, we provide an overview of
the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease.
Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide
a basis for identifying PD patients at risk for developing depression and could lead to a more targeted
therapeutic approach.
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1. Introduction

Parkinson’s disease (PD) is clinically characterized based on classic motor features
including the presence of hypokinesia, rigidity, resting tremor, and impaired postural
control [1–3]. A wide variety of incapacitating non-motor symptoms are also present over
the course of the illness. These non-motor signs include autonomic and neuropsychiatric
features such as fatigue, apathy, anxiety and depression, as well as cognitive deficits.
Neuropsychiatric symptoms are inherent to the disease and are neither a result nor a side
effect of long-term dopaminergic treatment [4,5]. These comorbidities are frequent and
can be found in all stages of PD, from the premotor and the early untreated phases of the
disease to the advanced stages of PD [6–13]. Among them, depression is one of the most
prevalent neuropsychiatric symptoms, ranging from 35 to 50% of patients with PD [14–16].
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Depressive disorder represents a huge burden on the quality of life in many PD patients,
but is frequently undiagnosed and left untreated [17–20]. Therefore, understanding the
neurobiology of depression in PD is critical to achieving the optimal care needed by patients
with PD.

While the etiology of PD still remains unclear, one major neuropathological hallmark
of PD is the degeneration and subsequent loss of DA neurons in the substantia nigra pars
compacta (SNc) leading to prototypic motor deficits [21–23]. The SNc involves a neuronal
population projecting to the caudate and putamen and is critical for the regulation of
basal ganglia circuitry [24,25]. Lewy pathology (LP), which can also be observed across
the central, peripheral, and enteric nervous systems (CNS, PNS, and ENS), is another
major pathological finding present in about 70% of “clinically typical PD cases” [26,27].
This includes both Lewy bodies (LB) and Lewy neurites (LN), which are composed of
a variety of different molecules, proteins, and organelles, including ubiquitin, tubulin,
neurofilaments, lipids, and mitochondria. Among them, aggregates of α-synuclein (α-Syn)
protein represent one of the main LP components [28–32]. To explain the widespread
localization of LP and the onset of the various non-motor symptoms of PD, a critical
point to consider is the dysfunction of other neuronal populations and neurotransmitter
systems in regions of the CNS and PNS, other than the SNc DA neurons. Indeed, several
studies reported LB-associated deficits—most likely occurring even prior to DA neurons—
in cholinergic neurons in the pedunculopontine nucleus, nucleus basalis of Meynert and of
the dorsal motor nucleus of the vagus, as well as in norepinephrine—NE neurons of the
locus coeruleus (LC), and serotonin—5-HT (5-hydroxytryptamine) neurons of the raphe
nuclei (RN) [33–35]. Furthermore, altered GABAergic and glutamatergic signaling was also
reported in the amygdala and several cortical brain regions that may play important roles
in the complex cognitive features of PD [34,36,37].

Lately, attention has been focused on the impaired integrity of the 5-HT system in PD,
in addition to its well-known role in the pathogenesis of anxiety and depressive disorders.
Notably, a growing amount of research supports a specific causal role of 5-HT system
dysfunction in the progression of several PD symptoms, such as tremor and dyskinesia, but
also anxiety and depression at early stages of the disease [5,38–43]. This review will discuss
recent findings of the role of α-Syn in regulating the 5-HT system. A better understanding
of the relative contributions of α-Syn-related abnormalities of the 5-HT system could lead
to the identification of PD patients who are at risk of developing depression, as well as to
better animal models of the disease and a more tailored therapeutic approach.

2. Connectivity of the Brain Serotonin System

A complete review of the brain 5-HT system is beyond the scope of the present article.
The reader is referred to several reviews in the literature [44–46]. Here, we would like to
highlight some features of the connectivity of the 5-HT system directly linked to its role in
the neurobiology of depression.

The brain 5-HT system exerts its widespread effects from a group of relatively small
brainstem nuclei known as the RN. Raphe 5-HT-producing neurons send ascending projec-
tions to the entire brain as well as descending projections to the spinal cord [47] (Figure 1A).
These projections form classical synaptic connections, as well as varicosities with no associ-
ated postsynaptic structure [48,49]. Upon release, 5-HT acts primarily on G-protein coupled
receptors (5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6, 5-HT7, and a single ionotropic receptor
5-HT3) encoded by more than a dozen distinct genes and many more isoforms, which are
differentially expressed in the brain [50,51]. Indeed, all brain regions express multiple 5-HT
receptors in a receptor subtype-specific pattern [52]. In addition, individual neurons may
express several 5-HT receptor subtypes. For instance, pyramidal neurons in layer V of
the ventromedial prefrontal cortex (vmPFC) express 5-HT1A and 5-HT2A receptors, which
exert opposite effects on neuronal firing activity [53,54]. Hence, the plethora of effects of
the brain’s 5-HT system is partly explained by the fact that 5-HT neurons are optimally
positioned to affect the activity of a wide range of brain networks.
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Among the different raphe nuclei, the dorsal raphe nucleus (DR) is the largest sero-
tonergic nucleus, containing approximately one third of all 5-HT neurons in the brain [47].
As such, the human DR comprises about 250,000 neurons, out of a total of 1011 neurons in
the whole brain—approximately 20,000 5-HT-producing neurons in the rat—and its axons
branch widely, innervating almost all brain areas. This can be illustrated in the rat cortex,
where >106 serotonergic nerve endings/mm3 were noted. In addition, each cortical neuron
may receive around 200 varicosities [55]. Unlike cortical and subcortical glutamatergic pro-
jection neurons that exhibit precise short- or long-distance connectivity with other neuronal
groups [56], DR 5-HT cells send highly divergent ascending projections connecting brain ar-
eas with different functions [57]. Indeed, correlations have been reported between changes
in DR 5-HT neuron activity and different cognitive processes, such as working memory [58],
cognitive flexibility [59], response inhibition [60], and exploration–exploitation balance [61].
Furthermore, the raphe 5-HT system is also involved in the modulation of mood, emotion,
perception, stress, reward, aggression, and social interactions, among others [62–66]. It is
difficult to find a human behavior that is not regulated by a 5-HT response.

Notably, deficits in the 5-HT signaling are implicated in the neuropathology of anxiety
and depression. Imbalances in the production and transmission of several neurotrans-
mitters, including 5-HT, are commonly observed in the CNS of patients suffering from
depressive disorder [67]. In fact, a widely accepted etiological theory is the “monoamine
hypothesis of depression”, which postulates that depression disorder is associated with a
decreased monoamine function (NE, DA, and 5-HT) in key brain areas, such as the vmPFC,
hippocampus (HPC), amygdala (AMG), nucleus accumbens (NAc), ventral tegmental area
(VTA), and hypothalamus [68–70]. Notably, neuroimaging studies associate vmPFC with a
broad spectrum ranging from emotion to cognitive functions, and alterations in vmPFC
activity have been correlated with the biology of depression as with favorable outcomes of
novel antidepressant strategies [71–73]. Likewise, structural and functional neuroimaging
studies show pronounced alterations in vmPFC circuits in patients with depression and
PD [74–76]. The vmPFC, which is composed of 75–80% glutamatergic pyramidal projection
neurons and 20–25% GABAergic local circuit interneurons, is strongly innervated by DR
5-HT neurons [53,54]. The 5-HT fibers exert an important modulatory role of excitatory
and inhibitory currents in vmPFC neurons [77,78], mainly through activation of 5-HT2A
and 5-HT1A receptors, respectively. In turn, the monoamine groups, including the 5-HT
neurons of the DR, are innervated by descending axons from layer V pyramidal neurons
in the vmPFC [79] that control the monoamine neuron activity [80,81], thus establishing a
reciprocal connectivity and mutual control (Figure 1B). Although it is beyond the scope of
this review, ultimately, one can be optimistic that the functional integrity of the vmPFC–
raphe nuclei circuit will play an important role in the pathophysiology of depression in
early PD. New approaches are advancing in many directions to identify early PD, and the
5-HT system and its connections are an important part of these recent efforts, as will be
described in the following sessions. Advanced neuroimaging techniques, next generation
RNA sequencing, the recent addition of the proximity ligation assay (PLA) that specifically
recognizes α-Syn aggregates and new animal models, among others, will provide support
for the classification of PD based on different pathological phenotypes, leading to a more
appropriate therapeutic strategy.
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Figure 1. Central serotonergic pathways. (A) Schematic representation of the raphe nuclei in hu-
mans (top) and mice (bottom), which give rise to ascending projections to large regions of the brain, 
as well as descending projections predominantly innervate the cerebellum and its input structures 
and to the spinal cord. (B) Diagram showing how the ventromedial prefrontal cortex (vmPFC) and 
the dorsal and median raphe nuclei (DR and MrR, respectively) are anatomically and functionally 
connected in both directions. Pyramidal glutamatergic neurons from vmPFC send axons to raphe 
nuclei, where they form excitatory synapses (AMPA receptors) with 5-HT and GABAergic neurons. 
Stimulation of glutamatergic neurons in vmPFC primarily triggers inhibitory responses in 5-HT 
neurons mediated by (i) the activation of local GABAergic circuits that control the activity of 5-HT 
neurons in the raphe nuclei and (ii) 5-HT1A autoreceptor-dependent self-inhibitory responses fol-
lowing excitatory activation of 5-HT neurons. In addition, DR/MnR 5-HT neurons control the activ-
ity of glutamatergic neurons in the vmPFC through inhibitory 5-HT1A receptors and excitatory 5-
HT2A receptors expressed in glutamatergic and GABAergic neurons. Similarly, the activity of the 
vmPFC-DR/MnR pathway may be affected by the activation of 5-HT4 receptors on glutamatergic 
neurons and 5-HT3 receptors on GABAergic interneurons in the outer layer of the vmPFC (not 
shown in the diagram). Adapted from [53,54,78]. 

3. α-Synuclein and Serotonin Neurotransmission 
α-Syn is a small, natively unfolded protein belonging to the synuclein family that 

also encompasses β-synuclein (β-Syn) and γ-synuclein (γ-Syn). These are evolutionarily 
conserved proteins that have currently only been described in vertebrates, supporting the 
notion that they regulate some essential physiological functions [82–85]. Between them, 
α-Syn is the most studied protein of this family, due to its crucial role in the pathogenesis 
of PD and other synucleinopathies [86]. This protein is characterized by a remarkable con-
formational plasticity, adopting different conformations depending on the environment, 
i.e., neighboring proteins, lipid membranes, redox state, and local pH [87–90]. In fact, α-
Syn adopts a monomeric, random coil conformation in an aqueous solution, while its in-
teraction with lipid membranes drives the transition of the molecule part into α-helical 
structure. The central unstructured region of α-Syn is involved in fibril formation by con-
verting to well-defined, β-sheet rich secondary structures. These structural and biophysi-
cal properties probably hold the key to their normal and abnormal function [91,92]. α-Syn 
is abundantly expressed in all neuronal types, where it localizes in presynaptic terminals 
[93–95] and modulates synaptic functions [96–98]. However, α-Syn is among the last pre-
synaptic proteins to become enriched at the synapse [94] and unlike γ-Syn, it does not 
seem to be involved in synaptic development [99,100]. Recent studies have revealed that 
α-Syn is also present in different organelles, including nuclei, mitochondria, Golgi, and 
endoplasmic reticulum (ER) [93,101–103], although in lower concentrations than those 
found in synaptic locations, and its function is even less well understood [84]. This feature 
makes α-Syn a hub within synaptic protein interaction networks [84]. Supporting this, α-

Figure 1. Central serotonergic pathways. (A) Schematic representation of the raphe nuclei in humans
(top) and mice (bottom), which give rise to ascending projections to large regions of the brain, as
well as descending projections predominantly innervate the cerebellum and its input structures
and to the spinal cord. (B) Diagram showing how the ventromedial prefrontal cortex (vmPFC) and
the dorsal and median raphe nuclei (DR and MrR, respectively) are anatomically and functionally
connected in both directions. Pyramidal glutamatergic neurons from vmPFC send axons to raphe
nuclei, where they form excitatory synapses (AMPA receptors) with 5-HT and GABAergic neurons.
Stimulation of glutamatergic neurons in vmPFC primarily triggers inhibitory responses in 5-HT
neurons mediated by (i) the activation of local GABAergic circuits that control the activity of 5-
HT neurons in the raphe nuclei and (ii) 5-HT1A autoreceptor-dependent self-inhibitory responses
following excitatory activation of 5-HT neurons. In addition, DR/MnR 5-HT neurons control the
activity of glutamatergic neurons in the vmPFC through inhibitory 5-HT1A receptors and excitatory
5-HT2A receptors expressed in glutamatergic and GABAergic neurons. Similarly, the activity of the
vmPFC-DR/MnR pathway may be affected by the activation of 5-HT4 receptors on glutamatergic
neurons and 5-HT3 receptors on GABAergic interneurons in the outer layer of the vmPFC (not shown
in the diagram). Adapted from [53,54,78].

3. α-Synuclein and Serotonin Neurotransmission

α-Syn is a small, natively unfolded protein belonging to the synuclein family that
also encompasses β-synuclein (β-Syn) and γ-synuclein (γ-Syn). These are evolutionarily
conserved proteins that have currently only been described in vertebrates, supporting the
notion that they regulate some essential physiological functions [82–85]. Between them,
α-Syn is the most studied protein of this family, due to its crucial role in the pathogenesis
of PD and other synucleinopathies [86]. This protein is characterized by a remarkable
conformational plasticity, adopting different conformations depending on the environment,
i.e., neighboring proteins, lipid membranes, redox state, and local pH [87–90]. In fact, α-Syn
adopts a monomeric, random coil conformation in an aqueous solution, while its interaction
with lipid membranes drives the transition of the molecule part into α-helical structure.
The central unstructured region of α-Syn is involved in fibril formation by converting to
well-defined, β-sheet rich secondary structures. These structural and biophysical properties
probably hold the key to their normal and abnormal function [91,92]. α-Syn is abundantly
expressed in all neuronal types, where it localizes in presynaptic terminals [93–95] and
modulates synaptic functions [96–98]. However, α-Syn is among the last presynaptic
proteins to become enriched at the synapse [94] and unlike γ-Syn, it does not seem to be
involved in synaptic development [99,100]. Recent studies have revealed that α-Syn is also
present in different organelles, including nuclei, mitochondria, Golgi, and endoplasmic
reticulum (ER) [93,101–103], although in lower concentrations than those found in synaptic
locations, and its function is even less well understood [84]. This feature makes α-Syn
a hub within synaptic protein interaction networks [84]. Supporting this, α-Syn was
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first identified at the presynaptic level as interacting with synaptic vesicle (SV)-associated
proteins [93]. Indeed, it cooperates with a large number of SV surface proteins including the
synapsin phosphoprotein family, complexins, and mammalian Munc 13-1, described to be
affected in brain samples from PD patients and in various human α-Syn transgenic mouse
lines [98,99,104–106]. Furthermore, several studies also indicated that α-Syn interacts with
the SV glycoprotein 2 (SV2) family to positively modulate vesicular functions in a variety
of ways, possibly by aiding in vesicular trafficking and exocytosis, as well as stabilizing
stored transmitters [107,108]. In this regard, both postmortem PD brain tissue and animals
overexpressing mutant α-Syn showed increases in the SV2C protein, which is abundantly
expressed in the basal ganglia and selectively localizes to DA neurons [109]. Similarly,
elevated levels of SV2A protein co-localizing with α-Syn were found in axonal swellings
across the caudate-putamen (CPu) and cingulate cortex in a mouse model overexpressing
human wild-type α-Syn in 5-HT neurons [110]. Other proteins such as Rabs, which in
addition to modulating axonal traffic are also very important for the regulation of each step
leading to SV release, docking and fusion at synaptic sites, interact with α-Syn [111,112].
Actually, several findings support that Rabs play a crucial role as direct mediators in
the induction of synaptic alterations concerning α-Syn leading to PD pathology [112].
Taken together, the loss of α-Syn function, coupled with changes in its levels at synaptic
terminals, can cause multifaceted dysregulation of many other synaptic proteins involved
in neurotransmission mechanisms.

In addition to being involved in synaptic vesicular trafficking, α-Syn is also di-
rectly engaged in the regulation of monoamine (DA, NE, and 5-HT) neurotransmission
homeostasis—β-Syn and γ-Syn are also involved in this regulation, although their role
is less known [85,113–118]. Monoamine transporters (MAT) are transmembrane proteins
solely responsible for the synaptic reuptake of DA, NE and 5-HT, and partly maintain the
homeostasis of monoaminergic neurotransmission. MAT are important pharmacological
targets in the therapy of various neuropsychiatric diseases, such as anxiety, depression,
and suicidal behavior, among others, due to their crucial role within the brain in the re-
placement of monoamine neurotransmitters [119,120]. Direct interactions between α-Syn
and MAT proteins have been described, indicating an important role for the synucleins in
regulating MAT function, trafficking and distribution at the synapse. Even though most of
the evidence is focused on DA neurotransmission and its transporter (DAT), in this review
we will emphasize the role of α-Syn in the homeostasis of 5-HT neurotransmission.

Previous studies showed that the cell-surface expression and function of the 5-HT
transporter (SERT) in co-transfected cells are negatively modulated by α-Syn in a non-Abeta-
amyloid component (NAC) domain-dependent manner [115]. In addition, pioneering
reports also showed direct interactions of α-Syn-SERT and γ-Syn-SERT proteins in cultured
cells and in rat brain tissue, assessed by immunoprecipitation [115,121]. α-Syn-induced
modulation of SERT trafficking is microtubule-dependent, as the microtubule-destabilizing
agent nocodazole disrupts the effects of α-Syn on SERT function, reversing the inhibi-
tion of uptake in co-transfected cells [116]. More recently, in vivo studies indicated that
down-regulation of α-Syn expression in raphe 5-HT neurons induced by an antisense
oligonucleotide (ASO) leaves an increased synaptic 5-HT concentration, which was de-
pendent on the reduction of SERT activity, as assessed by the selective SERT inhibitor
citalopram [118]. The overexpression of α-Syn in raphe nuclei produced the opposite
effects, with mice exhibiting a drop in extracellular 5-HT levels that was dependent on
SERT function [110].

Moreover, α-Syn is also involved in the vesicular storage of monoamine neurotransmit-
ters by the vesicular monoamine transporter 2 (VMAT2). VMAT2 mobilizes monoamines
from the neuronal cytoplasm into vesicles, where they are repackaged for release at
synapses [122,123]. VMAT2 co-localizes with α-Syn protein in the Lewy bodies from PD
brains [124], and overexpression of α-Syn negatively impairs VMAT2 expression/function,
leading to increased levels of cytosolic monoamine in presynaptic terminals, which in
turn induce neurotoxicity [113]. These findings suggest that α-Syn may maintain high
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VMAT2 activity to protect monoamine neurons form cell death [125]. In support of this
view, in vivo studies showed that down-regulation of α-Syn expression in DA and 5-HT
neurons increases the releasable pool of DA and 5-HT sensitive to tetrabenazine, a selec-
tive inhibitor of VMAT2 [118]. Overall, the presynaptic location of α-Syn has suggested
a physiological role in neurotransmitter release and it apparently associates with the SV
clustering and storage [98,99]. Furthermore, α-Syn is abundantly expressed in DA, NA, and
5-HT neurons [96,118], defining a precise role of α-Syn in monoamine synaptic plasticity
by interacting with specific proteins that maintain monoamine homeostasis.

4. Dysfunction of the 5-HT System in PD Patients

The investigation of premotor pathology presents one of the most difficult problems
in PD research. Although Braak and colleagues [26,126] proposed a significant premotor
phase that may last as long as the symptomatic period, the identification of this phase
in clinical practice is elusive. In fact, the profile of PD patients is also associated with
diverse symptoms and clinical phenotypes [127]. Cumulative evidence indicates the
existence of ongoing pre-SNc DA neurodegeneration during the premotor phase leading
to non-motor symptoms, mainly constipation, anxiety and depression, smell loss, and
rapid-eye-movement (REM) sleep behavior disorder [128]. A dysfunctional 5-HT system is
generally regarded as a risk factor for depression. Consistent with this view, several reports
suggest a positive correlation between decreased 5-HT neurotransmission and the severity
of depression and anxiety symptoms in PD, most likely caused by pathological changes of
the 5-HT neurons in the midbrain raphe nuclei [39,41,43,129,130].

By evaluating SERT availability with positron emission tomography (PET) and single
photon emission computed tomography (SPECT) scans using various radioactive ligands,
one can assess the integrity of the 5-HT system. The non-specific ligands [123I]β-CIT
and [123I]FP-CIT have mostly been employed in in vivo SPECT imaging. Although these
ligands have similar affinities for DAT and SERT, their thalamic and midbrain binding are
considered to be SERT-specific [131]. Hence, SPECT studies using [123I]β-CIT and [123I]FP-
CIT found decreased binding in the thalamus and midbrain of PD patients [132–136]. The
PET ligands [11C]-DASB and [11C](+)McN5652 are highly specific for SERT. Using these
ligands, several reports indicated reduced binding in different brain regions including the
frontal cortex, striatum, and raphe nuclei [137–139]. Interestingly, an early study using
[11C]-DASB to map SERT changes in various PD stages based on disease duration showed
reduced binding in the striatum, thalamus and anterior cingulate cortex of early-stage PD
patients [140]. In the same study, decreases in SERT binding were observed in the prefrontal
cortex of established PD and in the rostral and caudal raphe nuclei in advanced stages [140].
Moreover, recent SPECT and PET studies also showed 5-HT pathology in the premotor
phase in mutant A53T α-Syn gene (SNCA) carriers, before striatal DA loss, highlighting the
early role of 5-HT pathology in the progression of PD [130].

The aforementioned studies examined PD patients without depressive symptoms.
However, numerous investigations have assessed the connection between depression and
SERT binding in PD. In a small cohort of depressed PD patients, early studies with [11C]-
DASB PET demonstrated that depression correlated with increased SERT binding in the
dorso-lateral and prefrontal cortex [39]. Other studies also reported that the cingulate cortex
and caudal raphe nuclei of depressed PD patients showed higher levels of SERT than non-
depressed PD patients [41,141]. These findings are in agreement with the low levels of 5-HT
and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) found in the cerebrospinal fluid
(CSF) of patients with PD and depression [142]. Interestingly, CSF levels of homovanillic
acid (HVA), a DA metabolite, were not associated with the presence of depression in
PD [142]. Likewise, in response to the functional deficit of 5-HT availability, post-synaptic 5-
HT1A and 5-HT2A receptors were upregulated in cortical brain regions [143]. Furthermore,
the density of 5-HT2C and 5-HT2A receptors in SN pars reticulate and striatum, respectively,
appears to be increased in patients with PD [144–146]. These alterations may represent a
compensatory response to a reduction of functional 5-HT levels in these nuclei.
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In contrast, more recent PET studies revealed that the severe apathy in PD patients
correlates with a reduction of [11C]-DASB binding in the anterior caudate nucleus and
orbitofrontal cortex, while the depression degree was exclusively related to a reduction in
[11C]-DASB binding within the bilateral subgenual anterior cingulate cortex (ACC) [5]. In
another SPECT study, [123I]FP-CIT binding was decreased in the midbrain of a cohort of
PD patients with depression [147]. In light of this, it appears that, although imaging studies
indicate that SERT binding in the midbrain and forebrain differs between non-depressed
and depressed patients with PD, the extent to which these changes are crucial for the onset
of depression is still unknown. Data also suggest that the presence of 5-HT pathology
occurs at the beginning of the disease, preceding the development of the DA pathology
and motor symptoms. Therefore, molecular imaging of SERT could be used to visualize
the premotor pathology of PD in vivo as an adjunctive tool for screening and monitoring
progression for individuals at risk of PD, thereby complementing DA imaging.

Importantly, neuropathological studies have demonstrated the presence of LBs (α-
Syn positive staining) in raphe 5-HT neurons in the early stages of the disease [148–151].
Previous studies on the propagation of α-Syn proposed that PD begins in the medulla
oblongata with LB pathology in the dorsal motor nuclei of the glossopharyngeal and vagal
nerves and the adjacent intermediate reticular zone [126,152]. As PD progresses, it is
proposed that the LB pathology spreads up the brainstem in an upward direction, affecting
the raphe nuclei before reaching the SNc. In late stages, LBs are also found in limbic and
cortical brain areas. The caudal groups of the raphe nuclei (e.g., raphe major, raphe obscure,
and raphe pallidus) have been widely shown to contain LB-related lesions in the early
stages of PD or even before the onset of motor symptoms [126,152,153]. The 5-HT neurons
found in the caudal raphe nuclei play a role in a number of autonomic processes, including
pain and decreased gastrointestinal motility, which are recognized non-motor symptoms in
PD. In addition, the rostral raphe nuclei, containing the DR and median raphe nucleus (MR),
also appear to be affected in PD. LB pathologies have been found in both the DR and MR of
post-mortem PD brains and appear to be localized in 5-HT-containing neurons [148,149,154].
Some early studies found a significant neuronal loss within the DR from postmortem brain
samples of PD patients, and this was even more pronounced in depressed PD patients [155].
However, other studies did not observe neuronal loss in DR, but did in MR [148,149,156].
Surprisingly, we found that only one of these studies used an unbiased design-based
stereology method for counting cells [156]. In addition, some studies reported the absence
of significant cell loss in the DR of post-mortem PD brains, but found evidence of the
dysfunction of DR neurons based on reduced nucleolar volume and loss of cytoplasmic
RNA [157]. Recently, it was also reported that long-range 5-HT projections from raphe are
vulnerable in PD in response to hydrogen peroxide-induced cellular stress [158]. Taken
together, the above findings point to neuropathological alterations in the 5-HT system in
PD, comprising of the presence of LB pathology accompanied in some cases by neuronal
loss in the raphe nuclei, as well as morphological changes of 5-HT fibers, which would lead
to modified 5-HT neurotransmission.

5. Dysfunction of the 5-HT System in Animal Models with Overexpression of α-Syn

Abundant evidence suggests that the development of PD may comprise three main
phases. The onset of α-Syn buildup in the CNS or PNS/ENS, in the absence of observable
clinical symptoms, is referred to as the “preclinical PD” phase. The second phase, often
known as the “pre-motor” or “prodromal,” can last for more than 10 years before the
disease is clinically diagnosed. It is usually accompanied by the appearance of non-motor
symptoms caused in part by pre-SNc abnormalities. During this phase, PD patients may
display increased anxiety as early as 16 years prior to disease diagnosis; and depression
becomes significantly prevalent among PD patients in the last 3–4 years preceding diagnosis.
The third phase is the “motor phase of PD”, which is the one that is clinically visible
and easiest to diagnose [159,160]. Understanding the pathophysiological mechanisms
underlying non-motor symptoms in PD is important, but requires relevant preclinical
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animal models. In this sense, one of the main shortcomings of current PD-like animal
models is that they focus on DA pathways, which probably do not reflect the complexity
underlying the occurrence of these symptoms in patients [161,162]. In fact, there is still a
paucity of studies addressing the role of brain circuits other than nigrostriatal DA systems
in the early stages of the disease. In this review, we provide an overview of the current
state of the field by presenting different preclinical models used in research on measures of
anxiety and depressive phenotypes in rodent models of PD with emphasis on 5-HT systems.

In addition to the toxin-induced and genetic animal models of PD [162–167], in recent
decades, an alternative approach to modulate the disease based on the forced expression of
wild-type or mutant human α-Syn using (1) transgenic techniques, (2) viral vector mediated
transfer of α-Syn, or (3) injection of pathogenic pre-formed α-Syn fibrils (PFFs) has been
presented. Thus, an intracellular accumulation of α-Syn in raphe 5-HT neurons and in
hippocampal 5-HT fibers, without loss of 5-HT neurons in 12-week-old transgenic mice
overexpressing mutant A53T α-Syn, was reported [168]. In parallel, mice showed a reduced
5-HT release and compromised increase in doublecortin+ neuroblasts in the dentate gyrus
(DG), indicating a differential neurogenic response [168]. Another study also reported that
mutant A53T α-Syn–expressing mice (52-week-old) showed strong α-Syn expression in the
prefrontal cortex (PFC) along with reduced 5-HT innervation in layers V/VI of the PFC
and enlarged axonal varicosities [169], leading to altered 5-HT signaling.

Moreover, Khol et al. [170] generated an α-Syn transgenic rat model that displayed
important features of PD such as a widespread and progressive α-Syn aggregation pathol-
ogy, DA loss and age-dependent motor decline. Notably, prior to the occurrence of the
motor phenotype, rats showed profoundly impaired dendritogenesis of neuroblasts in the
hippocampal DG, resulting in the severely reduced survival of adult newborn neurons.
Reduced 5-HT1B receptor levels, lower 5-HT neurotransmitter concentration, and loss
of 5-HT nerve terminals innervating the DG/CA3 subfield were indicative of decreased
neurogenesis, but the number of 5-HT neurons in the raphe nuclei remained stable. The
authors highlight that this transgenic rat model elicited an early anxiety-like phenotype,
suggesting that α-Syn accumulation severely impairs hippocampal neurogenesis and 5-HT
neurotransmission prior to motor function [170].

Recently, the adeno-associated virus (AAV)-α-Syn and PFFs models have been specif-
ically adapted for study of α-synucleinopathies using stereotaxic delivery into differ-
ent brain areas, making them useful tools [171]. Therefore, a model of AAV-induced
α-synucleinopathy selectively in 5-HT neurons of rats resulted in progressive degeneration
of the 5-HT axon terminals in hippocampus, without the loss of raphe 5-HT neurons [172].
Furthermore, overexpression of α-Syn in raphe nuclei and basal forebrain cholinergic
neurons of rats resulted in a more pronounced axonal pathology and significantly impaired
anxiety response as assessed in the elevated plus maze [172]. Likewise, we demonstrated
that AAV-induced overexpression of human α-Syn in mouse 5-HT neurons causes a grad-
ual accumulation and aggregation of α-Syn in the 5-HT system. In parallel, we found
alterations in axonal transport, brain-derived neurotrophic factor (BDNF) production,
and 5-HT neurotransmission in 5-HT projection brain areas of PD-like mice, leading to a
depressive-like phenotype (Figure 2) [110].

Other studies using rodent models of PFF also reported motor deficits and emotional
and cognitive abnormalities, although the latter findings remained relatively unchanged in
PFF models up to 6 months after injection [173–175]. Whether this is due to the injection
site (primarily such as the striatum, SNc, or olfactory bulb) and/or the duration of the
pathological spread remains to be determined. For instance, a recent study found that PFF
injections in mice caused deficits in social dominance behavior and fear conditioning, two
activities linked to prefrontal cortex and amygdala function, suggesting that these brain
regions may be crucial in the complex emotional and cognitive traits of PD [37].
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Figure 2. Human α-synuclein (h-α-Syn) overexpression in mouse serotonin neurons triggers a
depressive-like phenotype. H-α-Syn expression was driven to raphe nuclei by a 1 µL AAV construct
harboring a chicken-actin promoter (AAV-h-α-Syn) or vehicle, and mice were killed 1, 4, and 8 weeks
(W) after injection. (A) Representative midbrain sections showing h-α-Syn mRNA levels in raphe
nuclei examined by an in situ hybridization technique (a1–a3). Schematic coronal representation
of mouse midbrain at −4.72 mm (AP coordinate) from bregma (a4). Scale bar: 500 µm. Abbrevia-
tions: Aq (aqueduct), DRD (dorsal raphe nucleus, dorsal), and DRV (dorsal raphe nucleus, ventral).
Representative coronal midbrain sections showing progressive increases of h-α-Syn protein levels
in the raphe nuclei assessed by immunohistochemistry procedures (b1–b3). Signal represents the
optical density (OD) of autoradiograms. Scale bar: 1 mm. Raphe serotonin (5-HT) neurons were
identify using tryptophan hydroxylase (TPH2) marker (b4). Scale bar: 25 µm. Representative confocal
microscopy images showing serotonin transporter (SERT) and h-α-Syn axonal co-localization in
different ventromedial prefrontal cortex (vmPFC) of mice injected with AAV5 examined 4 W and 8 W
later (c1–c3). The majority of the h-α-Syn-positive fibers also showed SERT staining, proving that they
originate from raphe nuclei. Scale bar: 25 µm. Immunohistochemistry procedure on representative
coronal brain sections reveals h-α-Syn-positive axonal swellings in the vmPFC (c4). Scale bar: 25 µm.
(B) Local infusion of veratridine (depolarizing agent, 50 µM) or citalopram (selective serotonin
transporter inhibitor 50 µM) into vmPFC induced a greater effect on 5-HT release in vehicle-injected
than in AAV-h-α-Syn-injected mice at 4 W post-administration. (C) AAV-injected mice evoked a
depressive-like state in the tail suspension (TST) and forced swimming (FST) tests characterized by
a longer immobility time compared to vehicle-injected mice. Values are presented as mean ± SEM.
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared to vehicle-injected mice. Adapted from [110].

In addition, some studies using cell cultures overexpressing α-Syn showed that 5-
hydroxyindoleacetaldehyde (5-HIAL), a 5-HT metabolite product generated by monoamine
oxidase (MAO-A), increases α-Syn oligomerization, which may explain the dysfunction
of 5-HT neurons in PD [176]. Recent studies also showed the importance of maintaining
the integrity of 5-HT systems, as 5-HT itself can affect the growth of amyloid-forming
protein fibrils. Indeed, 5-HT or selective serotonin reuptake inhibitors (e.g., escitalopram)
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activate signaling that alters the processing of α-Syn fibrils as well as amyloid precursor
proteins into β-amyloid (Aβ) to prevent protein aggregation by direct binding, and could
be beneficial to PD and other neurodegenerative disorders [177–179].

6. Conclusions

The frequent occurrence of depression in PD is a prevalent and complex issue. Al-
though often overlooked or underestimated, depression can seriously influence the course
of PD and the quality of life of patients. In addition to dopaminergic depletion, several
findings highlight the importance of serotonergic degeneration in PD. Thus, changes in
5-HT biochemical markers, LB pathology (α-Syn-positive staining) in raphe nuclei, and
structural and functional alterations in the serotonergic system have been described, and it
has been shown that these alterations in the serotonergic connectome are mainly associated
with the expression of neuropsychiatric symptoms at disease onset. In support of this, the
few available animal models demonstrating α-Syn-induced deficits in the serotonergic
system recapitulate the mechanisms and early premotor stages of the disease. Altogether,
measuring serotonergic integrity might be a useful in vivo tool to use in routines to guide
the choice of the pharmacological arsenal in order to alleviate PD-related neuropsychiatric
symptoms. Thus, such a measurement could serve as a sensitive marker of PD burden.
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