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Abstract: Angiogenesis is an important process in tumor growth as it represents the regime when
the tumor recruits blood vessels from the surrounding tissue to support further tumor growth.
Anti-angiogenic treatments aim to shrink the tumor by interrupting the vascularization of the
tumor; however, the anti-angiogenic agents are costly and the tumor response to these agents is
nonlinear. Simple dosing schemes, e.g., a constant dose, may yield higher cost or lower efficacy than
an approach that considers the tumor system dynamics. Hence, in this study, the administration
of anti-angiogenic treatment is considered as a nonlinear control problem. The main aim of the
controller design is to optimize the anti-angiogenic tumor therapy, specifically, to minimize the tumor
volume and drug dose. Toward this aim, two nonlinear optimal controllers are presented. The
first controller ensures exponential tracking of a desired, optimal tumor volume profile under the
assumption that all parameters in the system model are known. The second controller, on the other
hand, assumes all the parameters are unknown and provides asymptotic tracking. Both controllers
take pharmacokinetics and pharmacodynamics into account, as well as the carrying capacity of the
vascular network. Lyapunov based arguments are used to design the controllers, using stability
arguments, and numerical simulation results are presented to demonstrate the effectiveness of the
proposed method.

Keywords: angiogenesis; anti-angiogenic treatment; control systems; optimal control

1. Introduction

Breast cancer has the highest incidence rate compared to other types of cancer [1]. An
overview of the tumor angiogenesis is provided by the US National Cancer Institute [2]
and summarized in Figure 1. Initially, tumor cells get nutrients from the surrounding
tissues via diffusion. The diffusion supported growth regime ends when physical limits
(1–2 mm of tumor diameter) prevent nutrients and oxygen from reaching the core of the
tumor. Then, an angiogenesis triggering event occurs; the tumor cells release factors, such
as vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) [3],
that instigate the recruitment of blood vessels to support further tumor growth. The tumor
and support vasculature can then co-develop as the blood vessels supply nutrients and
remove waste products from the proliferating tumor cells, and the growing tumor signals
additional vascular growth, primarily vascular endothelial cells. The next major event is
metastasis when the tumor spreads to the other tissues and organs.

Anti-angiogenic treatment was proposed by Folkman [4] and aimed to control the
growth of the vascular network, described above, to indirectly control the tumor. The
relationship between the growth of the vascular network and the growth of the tumor
is dynamic, complex, and nonlinear. Therefore, applying a fixed or a time-varying dose
of anti-angiogenic agents, without observing the response of the tumor, i.e., open-loop
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control, may fail to shrink the tumor. Closed-loop control may be more effective to control
the growth of the vascular network, so as to shrink the tumor, by using feedback signals
from the co-developing tumor and vascular network. Since the commercially available
anti-angiogenic agents, like angiostatin and endostatin, are expensive, an optimal control
approach can be employed to keep the tumor size at a certain (desired) value by using an
optimum dose of an anti-angiogenic agent. Ledzewicz and her coworkers have proposed
many open-loop [5,6] and closed-loop optimal control schemes [7,8]. Swierniak et al. also
presented an optimal controller addressing the same problem in [9]. Nath et al. proposed
a novel approach that combines closed-loop tracking control with an optimization to
minimize the anti-angiogenic agents that needed to move the system to a setpoint (tumor
size) [10]. In 2013, Hasirci et al. proposed enhancements to the core tracking controller:
a robust controller in [11] and an adaptive controller in [12]. Researchers have used
nonlinear adaptive and robust control techniques in a wide range of applications, success
in controlling similar dynamical systems [13–17] inspires the current work.
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ing capacity are the only state variables. This model assumes drug concentration is equal 
to drug dose, and also assumes that the effect of the anti-angiogenic agents is instantane-
ous. A more realistic and, as a result, more complex view of the angiogenesis process dic-
tates the incorporation of pharmacokinetics (PK) and pharmacodynamics (PD) into the 
system model. As clearly stated in [18], pharmacokinetics equations describe the concen-
tration of a drug and pharmacodynamics equations model the effectiveness of drug dose. 
Incorporating PK/PD equations to the angiogenic tumor growth model begins to add the 
clinic reality of drug delivery to the model. 

In this paper, we present a novel approach for real-time dosing of the anti-angiogenic 
treatment by considering the richer tumor growth model, which incorporates PK/PD. The 
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Figure 1. Angiogenesis occurs as the tumor approaches a certain size that can no longer be supported
by diffusion alone; the tumor must recruit blood vessels from the surrounding tissue to support
further growth.

As a general control design methodology, the salient features of the system to be con-
trolled are first approximated with a mathematical model. In biological systems, especially,
it is a good and usual practice to make simplifying assumptions to make the mathematical
model tractable, while balancing accuracy and resolution. As experience and evidence
build, additional complexities can be added to the model. The controllers reviewed above
are based on a simplified dynamic model where tumor volume and vascular carrying
capacity are the only state variables. This model assumes drug concentration is equal to
drug dose, and also assumes that the effect of the anti-angiogenic agents is instantaneous.
A more realistic and, as a result, more complex view of the angiogenesis process dictates
the incorporation of pharmacokinetics (PK) and pharmacodynamics (PD) into the system
model. As clearly stated in [18], pharmacokinetics equations describe the concentration of
a drug and pharmacodynamics equations model the effectiveness of drug dose. Incorpo-
rating PK/PD equations to the angiogenic tumor growth model begins to add the clinic
reality of drug delivery to the model.

In this paper, we present a novel approach for real-time dosing of the anti-angiogenic
treatment by considering the richer tumor growth model, which incorporates PK/PD.
The main aim of the control design is to optimize the anti-angiogenic tumor therapy for
minimizing the tumor volume by using an optimal amount of the anti-angiogenic agents.
Two different controllers are presented to achieve the control objective. To minimize
the tumor volume, we first formulate a performance index to be minimized and then a
nonlinear optimal exact model knowledge controller is designed to drive the tumor volume
to an optimal desired time-varying trajectory. Then, a more realistic control design approach
is also presented for the same control objective; a nonlinear optimal adaptive controller
assuming all the system parameters is unknown. For the adaptive controller, a least-squares
estimation technique is used to identify the system parameters in the performance index
and the desired optimal trajectory is generated by using an optimization algorithm, which
seeks the minimum of the performance index. As demonstrated by simulation results, this



Biomedicines 2023, 11, 497 3 of 21

optimization algorithm successfully finds the optimum values of the carrying capacity of
vasculature and the tumor volume. The paper is organized as follows: Section 2 contains
discussion about the modeling issues and a definition of the control problem. Section 3
contains the details of the design of an exact model knowledge nonlinear optimal controller,
and then an adaptive controller. Performance results of the proposed adaptive scheme are
obtained via numerical simulation in Section 4. The last section discusses the results and
highlights some conclusions.

2. System Model and Control Problem Definition

Early mathematical models for tumor growth comprised one state variable: tumor
volume (p(t)) [19]. The carrying capacity of the vasculature network (q(t)) concept was pro-
posed to account for co-growth of the tumor and vasculature, i.e., angiogenesis, and then a
killing factor was introduced to model anti-angiogenic therapy, which targets endothelial
cells instead of the tumor cells [20]. Many mathematical models have been proposed for
this two-state system, some of which attempt to fully describe the complexity of biolog-
ical process [21–27]. Since these models are not tractable for mathematical analysis [28],
Hahnfeldt et al. proposed and biologically validated a simpler two-state model to describe
the interaction between the carrying capacity of vasculature and tumor size [29]. A use-
ful modification of this model was presented by Ergun et al. [30], and more recently by
d’Onofrio and Gandolfi [31]. Incorporation of PD/PK equations to this modified model
has been presented by Ledzewicz et al. [32] and is given by:

.
p = αp

(
1− p

q

)
.
q = bq− dp2/3q− Gscq
.
c = −mc + hu ; c(t0) = 0

(1)

where p(t) is the tumor volume in mm3, q(t) is the carrying capacity of the endothelial
cells, also measured in mm3, c(t) is the plasma concentration of the exogenous angiogenic
inhibitors, applied as treatment and measured in [conc.], and α is the tumor growth
parameter. The term bq accounts for the proliferation kinetics of the endothelial cells and
the term dp2/3q models endogenous inhibition of the tumor. Because the inhibitors release
through the surface of the tumor mass, the 2/3 exponent represents the conversion of the
tumor volume into a tumor surface area, and the product p2/3q is due to the interactions
of endogenous inhibitors with endothelial cells. The parameters b and d are constants.
The constant G denotes the anti-angiogenic killing parameter, and u(t) is the manipulated
control input which corresponds to the anti-angiogenic dose. The drug dose u(t) and
concentration of c(t) of the inhibitors are linked by a first-order, linear, ordinary differential
equation where m and h are constant parameters [32]. The effect of the applied drug is
proportional to the concentration of the inhibitor, given as effect = sc where s ∈ [0,1]. Note
that “[conc.]” is generic concentration and that the units of concentration do not affect
the states q(t) and p(t) when the parameters G, m, and h are written for a specific unit
of concentration.

Assumption 1. Only the biologically realistic domain where all the state variables are
always greater than zero for all time instants, i.e., p(t) > 0, q(t) > 0, and c(t) > 0, will be
considered. It is assumed that the tumor volume p(t), the carrying capacity of the vascular
network q(t), and the concentration of the angiogenic inhibitors c(t) are measurable.

The control objective is to minimize the tumor volume, p(t), by using an optimum
dose of angiogenic inhibitors, u(t). This objective is met if the following performance index
is minimized:

J = p +

(
Su
d

)3/2
(2)

where S = Gs. The performance index J(t) ∈ R captures the treatment goal by using the
summation of tumor size and drug dose. To obtain the same units, mm3, for each term in
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(2), the drug dose is multiplied by a factor of S/d and then raised to 3/2. The steady-state
expression of the performance index is:

J0 = p0 +

(
Su0

d

)3/2
(3)

where J0, p0, and u0 are the steady-state values of J, p, and u, respectively. The minimum of
this performance index gives the minimum tumor volume that can be obtained by using
the minimum drug dose; these values are found from the steady-state properties of the
system given in (1) by calculating its equilibria corresponding to a constant drug dose, u0.
By setting left-hand sides of the state equations in (1) to zero, an equilibrium at p0 = q0 = 0
is obtained, which is not an admissible point [26], and:

p0 = q0 =

(
b− Sc0

d

)3/2
, c0 =

h
m

u0. (4)

This equilibrium point analysis reveals some important properties of the system
given in (1). First, it is clear that the tumor volume is equal to the carrying capacity at
steady-state. It is also clear that an uninterrupted or a long-term therapy is needed to
prevent the growth of the tumor. By selecting the value of the parameter related to PD as
s = 0.8, and by setting the PK parameters m = h = 1, which is a case often considered in the
literature [33], and finally, by using the system parameter values taken from [31] and given
in Table 1, respective equilibria of the tumor volume and the carrying capacity are found as
p0 = q0 = 17,320 mm3, if the control input u(t) is equal to zero. Figure 2 shows the variation
of J0 with respect to the steady-state values of u(t), denoted u0, and Figure 3 shows the
variation of J0 with respect to the steady-state values p(t) and q(t), denoted by p0 and q0 for
selected parameter values.

Table 1. Parameter Values [31].

Parameter Value Unit

α 1.08 [day]−1

d 3.63 × 10−4 [day]−1 [mm]−2

b 0.243 [day]−1

G 1.3 [day]−1 [conc.]−1
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The minimum of the curves in Figures 2 and 3, i.e., the optimum values of the variables,
are found to be:

J∗ = 12, 247 [mm]3

p∗ = q∗ = 6118 [mm]3

u∗ = 0.1169 [conc .].
(5)

Considering the results of the analysis given above, the control objective can be more
precisely defined as driving q(t) to its optimum value, q*. Since the tumor volume is equal
to the carrying capacity of the vascular network at steady-state, this necessarily means that
the tumor volume, p(t), will also be driven to q* = p* by using the minimum drug dose, if
the control objective is achieved.

3. Control Design

In this section, two nonlinear optimal backstepping controllers are presented. The
first controller encapsulates an exact-model knowledge controller that ensures exponential
tracking of a desired optimal tumor volume under the assumption that all parameters in
the system model are known. The second controller, on the other hand, is an adaptive
controller that supports the practical reality that the parameters are unknown and provides
asymptotic tracking.

3.1. Exact Model Knowledge Controller

Assuming all parameters in the tumor model are known, a complete control scheme
is shown in Figure 3. The tracking controller uses feedback to drive the tumor volume
to a desired, optimal point, qd. That optimal point, qd, is known a priori from the static
optimization summarized in (5). A tracking controller shown in Figure 4 is needed that
moves the tumor system towards this optimum value.

To quantify the performance of the exact model tracking knowledge controller to be
designed, an error signal can be defined as:

e1 = q− q∗. (6)

Differentiating and substituting from (1) yields the error dynamics:

.
e1 = bq− dp2/3q− Gscq. (7)
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This equation lacks a control input to be manipulated to stabilize the error variable;
the actual control input appears in the last state equation given in (1). In such cases of
coupled subsystems, the backstepping technique [34] provides a tool to design a control
input signal that is propagated through the coupled subsystems. To apply this procedure, a
virtual control input, cd(t), is added and subtracted to the right-hand side of (7) as:

.
e1 = bq− dp2/3q− Scq− Scdq + Scdq. (8)

In practice, cd(t) is the desired trajectory for the concentration of the inhibitor. A new
error variable, e2(t), is defined to quantify the difference between the actual concentration
of the inhibitor and the desired concentration of the inhibitor as:

e2 = c− cd (9)

Temporarily ignoring the last two terms in (9), a desired trajectory for the concentration
of the inhibitors, that would force e1(t) towards zero, can be designed as:

cd =
1

Sq

(
bq− dp2/3q + k1e1

)
(10)

where k1 is a positive control gain. Substituting the proposed trajectory yields the closed-
loop dynamics for e1(t) as:

.
e1 = −k1e1 − Sqe2. (11)

Investigating the e2(t) dynamics yields:

.
e2 =

.
c− .

cd

= −mc + hu− d
dt

{
1

Sq

(
bq− dp2/3q + k1e1

)}
= Wθ + hu

(12)

where

W =

[
−c

2
3

p2/3
(

1− p
q

)
k1qe2 k2

1e1

]
(13)

is a 1-by-4 regression vector containing measurable variables and known gains, and

θ =
[
m αd

S S 1
]T

(14)

is a 4-by-1 vector containing the parameters. The actual control input, the concentration of
angiogenic inhibitor, can be designed as:

u =
1
h
(−k2e2 −Wθ + Sqe1) (15)



Biomedicines 2023, 11, 497 7 of 21

where k2 is a positive control gain, which renders:

.
e2 = −k2e2 + Sqe1 (16)

Remark 1. The above approach means that q(t) will be controlled directly, and that p(t) is indirectly
controlled in the sense that it follows q(t) towards an equilibrium. From (1) and Assumption 1,
it is evident that

.
p(t) ≤ 0 when p(t) ≥ q(t), thus p(t) decreases. If p(t) < q(t), then p(t) will

increase until p(t) = q(t). It will start to decrease again if p(t) ≥ q(t). Therefore, p(t) is bounded
as long as q(t) is bounded.

Theorem 1. For the tumor growth model given in (1), the dose of the angiogenic inhibitor applied
according to (15) ensures that the concentration of the inhibitor exponentially follows its trajectory,
cd(t), in order for the carrying capacity, q(t), of the vascular network to reach the constant value,
q*, exponentially fast. In other words, e1 goes to zero exponentially fast. It also guarantees that all
signals in the closed-loop system are bounded.

Proof 1. Consider the following nonnegative Lyapunov function:

V1 =
1
2

e2
1 +

1
2

e2
2. (17)

Taking the time derivative and then substituting the closed-loop dynamics of e1 and
e2, given by (11) and (16), respectively, yields:

.
V1 = −k1e2

1 − k2e2
2. (18)

By considering (17) and (18) together, one can write:

V1 = V1(t0) exp{−ηt}, η ∈ R+ (19)

where V1(t0) is the initial condition of V1(t) and exp{·} is the base of the natural logarithm.
This means that V1(t) and its components, e1(t) and e2(t), go to zero exponentially. According
to (6), if e1(t) goes to zero, then the carrying capacity, q(t), is bounded, i.e., q(t) ∈ L∞. From
Remark 1, p(t) ∈ L∞; therefore, cd(t) ∈ L∞. From (9), it can be concluded, c(t) ∈ L∞.
Finally, from (15), u(t) ∈ L∞. �

The following simulation is presented to illustrate the performance and feasibility of
the proposed controller applied to the tumor volume problem defined in this section. Note
that the approach used to design this exact model controller will be expanded to account
for parameter uncertainty in the following section. The simulation parameter values were
provided in Section 2. Figure 5 shows the time variation of the error between the actual
and optimum carrying capacity, defined in (6)—it goes to zero exponentially, as claimed.
Practically, this means that the actual value of the carrying capacity of the vascular network
goes to its optimum value, 6118 mm3, if the dose of the angiogenic inhibitors is applied
to the tumor, as in Figure 6. This figure also demonstrates that the required dose of the
anti-angiogenic agents is bounded. Finally, Figure 7 illustrates that the tumor volume
follows the carrying capacity to reach its optimum value at steady-state. Values of the
control gains were selected as k1 = 0.1 and k2 = 10 for this simulation. Initial values were
assigned as p(t0) = 12,000 mm3 and q(t0) = 14,000 mm3. This approach is now extended to
account for parameter uncertainty in the vector in (14).
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3.2. Adaptive Controller

Determination of the “exact” values of the system parameters b, d, and S, which
appear in the carrying capacity dynamics, for a specific patient is a very difficult and time-
consuming task. The biological experiments that would be required to measure the exact
values of the parameters for each patient would be costly, may delay the start of treatment,
and would likely ultimately fail because of the uncertainty in measuring such a complex
biological system. A more realistic and clinically feasible approach is to achieve the control
objective, to minimize the tumor volume, p(t), by using an optimum dose of angiogenic
inhibitors, u(t), despite measurement uncertainties in tumor growth model parameters.
To end this, an estimate of the performance index given in (2) is defined, denoted by
Ĵ(t) ∈ R, as:

Ĵ = p +

(
Ŝc
d̂

)3/2

(20)

where Ŝ(t), d̂(t) ∈ R are the estimates of the parameters S and d, respectively. Such a
definition reveals an important issue with the control problem definition; the control
problem will no longer be a set point problem, i.e., the desired trajectory for the carrying
capacity will not be a fixed point, q*. Instead, the desired carrying capacity will be a
time-varying trajectory as knowledge about the model parameters evolves.

Figure 8 shows an outline of the solution and indicates the three key components. First,
the calculation of the performance index given in (20) requires the individually estimated
values of the system parameters; a convergent estimation scheme is proposed to find the
estimates of these parameters. Specifically, a least-squares estimation technique is adopted
to generate the estimates of the unknown constant parameters. Second, an adaptive
controller is proposed so that the carrying capacity of the vascular network follows a time-
varying desired optimum trajectory qd(t), that is q(t)→ qd(t) as t→ ∞ . Third, the desired
trajectory, qd(t), is generated dynamically and online, using a numerical optimization
method to minimize the performance index given by (20), such that qd(t)→ q∗ where q∗
is the optimum value of q(t) at steady-state.
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3.2.1. Least-Squares Parameter Estimator

The least-squares estimation technique is used in many types of parameter estimation
schemes. The main idea behind the technique is to extract the maximum information
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about the unknown parameters by using the measurable quantities in the system. Since the
tumor volume, carrying capacity, and the concentration of the inhibitors are assumed to be
measurable, information about the unknown parameters can be extracted as explained in
the following.

To facilitate the estimator development, the q-dynamics given in (1) are parameterized as:

Q = Weθe (21)

where Q denotes
.
q(t),

We(t) ,
[
q −p2/3q −cq

]
∈ R1×3 (22)

is a measurable regression vector, and

θe =
[
b d S

]T ∈ R3 (23)

is a vector of unknown parameters. Such a parameterization allows the design of an
adaptive estimation rule for the unknown parameters, given in (23), through the known
quantities found in (22). To further facilitate the estimator design, a prediction error ε(t) ∈ R
is defined as:

ε , Q f − Q̂ f (24)

in which Q f (t) ∈ R is a filtered signal defined in the form of:

.
Q f , −βQ f + βQ ; Q f (t0) = 0 (25)

where β ∈ R is a positive constant. It should be noted that (25) cannot be implemented
directly since Q(t) is not measurable; however, an implementable form of this signal is
provided in Appendix A. Q̂ f (t) ∈ R is the estimate of Qf(t) and is defined as:

Q̂ f ,W f θ̂e (26)

where W f (t) ∈ R1×3 is a filtered regression vector expressed as:

.
W f , −βW f + βWe ; W f (t0) = 01×3 (27)

and 01×3 denotes a 1-by-3 vector of zeros. In (26), θ̂e =
[
b̂ d̂ Ŝ

]T ∈ R3 is the estimate
vector of unknown parameters. Substituting (21) into (25) yields:

.
Q f + βQ f = βWeθe. (28)

The last expression can be rewritten as:

.
Q f + βQ f =

.
W f θe + βW f θe (29)

where (27) was used. After taking the time derivative of (26), and then adding and
subtracting the term

.
W f θ̂e to the right-hand side of the resulted expression, the following

expression will be obtained:

.
Q̂ f + βQ̂ f =

d
dt

(
W f θ̂e

)
+ βW f θ̂e (30)

where (26) and (27) were used. After subtracting (30) from (29), and utilizing (24) and (27),
the resulting expression can be written as:

.
ε + βε =

d
dt

(
W f θ̃e

)
+ βW f θ̃e (31)
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where θ̃e ∈ R3 is the estimation error signal, defined as:

θ̃e , θe − θ̂e. (32)

From (31), it can be shown that a mathematically useful, but unrealizable form of the
prediction error ε(t) given in (24) can be written as [35]:

ε = W f θ̃e. (33)

Based on the subsequent analysis, the following continuous least-squares update law
.
θ̂e ∈ R3 is employed for estimating the unknown parameters:

.
θ̂e , ΓWT

f ε (34)

where Γ(t) ∈ R3×3 is the least-squares estimation gain matrix which is designed as:

.
Γ
−1
,WT

f W f . (35)

Remark 2. If Q(t) is bounded, from (25), it can be seen that Q f (t),
.

Q f (t) ∈ L∞. Similarly, if

We(t) ∈ L∞,is bounded, from (27), it can be seen that W f (t),
.

W f (t) ∈ L∞ [35].

Remark 3. It should be noted that if Γ−1(t0) is selected to be positive definite and symmetric, then
Γ(t0) is also positive definite and symmetric. Therefore, it follows that both Γ−1(t) and Γ(t) are
positive definite and symmetric. The following expression can be obtained from (35):

.
Γ = −ΓWT

f W f Γ. (36)

It can be easily seen from (36) that
.
Γ(t) is negative semidefinite; therefore, Γ(t) is always constant

or decreasing. Hence, it follows that Γ(t) is bounded [34,36].

Theorem 2. The update law defined in (34) ensures that
∥∥∥θ̃e

∥∥∥→ 0 as t→ ∞ , provided that the
following Persistency of Excitation condition [36] holds:

κ1 I3 ≤
to+δ∫
t0

WT
f (τ)W f (τ)dτ ≤ κ2 I3 (37)

where κ1, κ2, δ ∈ R are positive constants and I3 is a standard 3-by-3 identity matrix.

Proof 2. See Appendix B. �

3.2.2. Adaptive Controller Design

The parameter estimates, θ̂e(t), are ultimately used to generate the desired trajectories;
that is, the tracking objective for the control system. The current challenge is to now create
a tracking controller for a system with uncertain parameters—this suggests an adaptive
controller solution. To proceed with the development of an adaptive control law to achieve
the control objective, we again consider c(t) as the virtual control input and define the error
variables to rewrite the error dynamics as:

ea1 = q− qd (38)

ea2 = c− cd. (39)
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As stated before, cd(t) is the desired optimal trajectory for the concentration of the
inhibitors. Note that q-dynamics can be rewritten as:

A1
.
q = A1bq− A1dp2/3q− cq

= W1θ1 − cq
(40)

where A1 , 1/S, W1 =
[
q −p2/3q

]
∈ R1×2 is a 1-by-2 regression vector containing

measurable variables and θ1 =
[
A1b A1d

]T ∈ R2 is a 2-by-1 vector containing the
uncertain parameters. After substituting (39) into (40), the following expression is obtained:

A1
.
q = W1θ1 − ea2q− cdq. (41)

After taking the time-derivative of (38) and multiplying both sides of the resulting
expression by A1, the following expression will be obtained:

A1
.
ea1 = W2θ2 − ea2q− cdq (42)

where (41) was utilized. In (42), W2 =
[
W1 − .

qd
]
∈ R1×3 is a 1-by-3 regression vector

containing measurable variables and θ2 =
[
θT

1 A1
]T ∈ R3 is a 3-by-1 vector containing

the uncertain parameters. Then, the desired trajectory for the concentration of the inhibitors
can be designed as:

cd =
1
q
(
W2θ̂2 + ka1ea1

)
(43)

in which ka1 is a positive control gain. In (43), θ̂2(t) ∈ R3 is an estimate of the constant
vector, θ2. A parameter estimation error vector can be defined to quantify estimation
performance as:

θ̃2 = θ2 − θ̂2. (44)

Then the final dynamics for ea1 will be:

A1
.
ea1 = −ka1ea1 − ea2q + W2θ̃2. (45)

Following the same procedure, i.e., dividing both sides of the c-dynamics given in (1)
by h and then substituting the results into the time derivative of (39), one can write:

A2
.
ea2 = W3θ3 + u (46)

where A2 , h−1 ∈ R, W3 =
[
−c − .

cd
]
∈ R1×2 is a 1-by-2 regression vector containing

measurable variables and θ3 =
[
mA2 A2

]T ∈ R2 is a 2-by-1 vector containing the un-
certain parameters. Based on the subsequent stability analysis and the control input, the
concentration of angiogenic inhibitors, can be designed as:

u = −W3θ̂3 − ka2ea2 + ea1q (47)

where ka2 is a positive control gain and θ̂3(t) ∈ R2 is an estimate of the constant vector θ3,
which renders:

A2
.
ea2 = −ka2ea2 + qea1 + W3θ̃3 (48)

where
θ̃3 = θ3 − θ̂3. (49)

Theorem 3. For the tumor growth model given in (1), the concentration of the angiogenic inhibitors
proposed in (47) ensures that the carrying capacity of the vascular network follows a desired
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trajectory, qd(t), despite uncertainty about the values of parameters in the tumor dynamics with
update laws:

.
θ̂2 , γ1WT

2 ea1.
θ̂3 , γ2WT

3 ea2

(50)

whereγ1, γ2 ∈ Rare positive constants. In other words, ea1 and ea2 go to zero. It also guarantees
that all signals in the closed-loop system are bounded.

Proof 3. See Appendix C. �

3.2.3. Optimum Trajectory Generation

The desired carrying capacity input to the adaptive controller will be a time-varying
trajectory due to lack of knowledge about the model parameters, i.e., the cost function
is changed based on parameter updates from the least-squares estimator. The gradient
descent algorithm, also known as steepest descent, is a first-order optimization algorithm
to minimize a function. For a function defined by a set of parameters, the gradient descent
algorithm starts with an initial set of parameter values and then, by taking steps propor-
tional to the negative of the gradient of the function, reaches the set of parameter values
that minimizes the function. In general, it is considered as one of the simplest optimization
algorithms. It is used in this overall approach to determine an optimum trajectory for the
carrying capacity.

The desired trajectory, qd(t), is needed as the input to the adaptive controller. This
continuous optimum trajectory is designed to minimize the performance index given in
(20), where the estimates of parameters S and d, obtained as described in Section 3.2.1, are
utilized. For the minimization of the estimate of the performance index, a gradient descent
algorithm is employed, which guesses the optimum value qd[n] at each time step of the
algorithm [10]. The output of the algorithm, qd[n], is passed through a second-order, stable,
and proper low-pass filter to generate the continuous and bounded signals qd(t) and

.
qd(t).

The following filters are utilized:

qd(t) =
ς1

ς2s2 + ς3s + ς4
qd[n] (51)

.
qd(t) =

sς1

ς2s2 + ς3s + ς4
qd[n] (52)

where ς1, ς2, ς3, ς4 ∈ R are positive filter constants and n ∈ Z is a positive integer that
represents the iteration step of the algorithm. At step n, the optimum trajectory holds the
output, qd[n], constant until the response of the closed-loop system, q(t), has reached a
steady-state near qd(t). A new target optimum, qd[n + 1], is then issued. In other words,
the algorithm waits for certain thresholds to be satisfied before it proceeds to the next
iteration. For instance, if |q(t)− qd(t)| ≤ e1, |qd[n]− qd(t)| ≤ e2, and |q(t)− p(t)| ≤ e3,
then n = n + 1, where e1, e2, e3 ∈ R are threshold constants. Furthermore, the desired
trajectory can be concluded to have converged when the gradient of Ĵ(t), with respect
to q(t), is within a certain threshold. Once qd(t) has reached the termination threshold,
the optimization algorithm stops updating qd[n]. As the performance index approaches
its minimum value, the desired trajectory qd(t) and u(t) approach q̂∗ and u∗, respectively.
q̂∗, u∗ ∈ R are the estimates of the optimum values of q(t) and u(t), respectively, that result
from the optimum seeking algorithm. As mentioned earlier, at steady-state p(t) = q(t);
therefore, p(t)→ pd(t)→ p∗ as q(t)→ qd(t)→ q∗ , where pd(t) = qd(t) and p̂∗ = q̂∗.
Then, p̂∗ is the estimated optimum tumor volume that can be realized by applying the
estimated optimum drug dose, û∗.

4. Simulation Results

A numerical simulation study was conducted to evaluate the proposed tumor treat-
ment optimization technique using the MATLAB/Simulink environment. It should be
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noted that the least-squares estimator developed in Section 3.2.1, adaptive controller de-
signed in Section 3.2.2, and the optimization algorithm described in Section 3.2.3 were
run simultaneously, as shown in Figure 8. The parameter values were taken from [26]
and are summarized in Table 1. Initial values were selected as p(t0) = 10,000 mm3 and
q(t0) = 12,000 mm3 so that q(t0) > p(t0), i.e., the carrying capacity of the endothelial cells
is greater than the tumor volume; thus, the tumor volume is susceptible to an increase in
the absence of a proper therapy.

The least-square estimator given in (34) was initialized as θ̂e(t0) = 0.1θe and the
estimation gain matrix was initialized as Γ−1(t0) = 10I3. The positive constant β introduced
in (25) was set to β = 0.05. The adaptive update law was initialized as θ̂a(t0) = 03, where
03 denotes a 3-by-1 vector of zeros. The positive control gains were set to ka1 = 10, ka2 = 5,
and γ1 = γ2 = 1× 10−12. The initial guess, qd[n], was selected to be 7500 mm3. Figure 9
shows the least-squares estimate of the unknown vector, θe; it can be seen from this figure
that all the parameters are accurately identified.
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Figure 9. Least-squares estimation: (a) b̂(t), (b) d̂(t), and (c) Ŝ(t).

Figure 10 shows the time evolution of the drug dose, u(t). It can be seen from Figure 10
that u(t) converges to its optimum value u∗ = 0.1169 [conc .].
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Figure 10. The time evolution of the drug dose, u(t).

The time evolution of the tumor volume, p(t), and the carrying capacity of the endothe-
lial cell volume, q(t), are shown in Figures 11 and 12, respectively. It can be seen from these
figures that p(t) and q(t) converge to their respective optimum values p∗ = 6118 [mm]3

and q∗ = 6118 [mm]3 given in (5), respectively. It should be noted that if the initial condi-
tions, p(t0) and q(t0), were chosen to be smaller values, then the convergence would have
been faster.
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The time evolution of the estimate of the performance index, Ĵ(t), is shown in Figure 13.
It can be seen from Figure 13 that Ĵ(t) converges to J∗ = 12, 247 [mm]3.

Figure 14 shows the tracking error, ea1(t). It can be seen from the figure that the
tracking error, ea1(t), is driven to zero.
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Recently, an optimization method has also been proposed to analyze the mathematical
model of cancer chemotherapy, which includes anti-angiogenic effects of cytotoxic agents
in [37]. Similar to the study in [38], it provides a very useful discussion on modeling
and optimization aspects of the problem, but they are open-loop controllers, i.e., both
studies try to minimize to tumor volume by using the anti-angiogenic agents without
feedback. Some useful methods with state feedback are given in [39], but they lack any
optimization algorithm; on the other hand, lack of optimization in [39] leads to a very
important advantage of continuous protocols. A very useful controller is given in [40], but
it assumes all the system parameters are known. The main benefits of the controller given in
existing papers are that it offers a control of the tumor volume and optimization algorithm
to the drug dose. However, the parameter estimation scheme creates a disadvantage for the
implementation of the control input signal, which is the concentration of the antiangiogenic
agents. As seen from Figure 10, time variation of the drug dose has very high chattering.
Even if this variation is continuous, a real-world clinical application will be discrete in two
ways: drugs are not administrated continuously and the tumor volume is not measured
continuously. Therefore, the chattering may affect the performance of the proposed tumor
shrinking procedure, according to the selected drug-delivery frequency, especially in the
first 6 months of treatment. Effects of continuous and discrete applications of the drug
dosing controller has also been discussed in detail in [11].

5. Conclusions

A novel approach for the administration of anti-angiogenic tumor treatment by con-
sidering the nonlinear tumor dynamics and drug delivery pharmacokinetics and pharma-
codynamics was presented. A performance index was formulated and then minimized to
obtain an optimum tumor volume that would be realized; using an optimum drug dose
and a nonlinear tracking controller was proposed to drive the system states to this optimum
point. It was shown that if all the system parameters are known, the tumor volume can be
driven to its optimum value exponentially fast.

The problem is more complicated if the tumor model parameters are unknown; it
was shown that the performance index can be estimated, using a least-squares strategy,
and the optimum tumor volume trajectory can be generated numerically. The proposed
least-squares estimation scheme proves that the estimation errors can be driven to zero,
provided that the persistency of excitation condition is satisfied. An adaptive tracking
controller then drives the system to this optimum. The proposed adaptive scheme ensures
that the tumor volume and the carrying capacity of the vascular network go to their desired
values globally and asymptotically. Numerical simulation results were presented to show
the performance and feasibility of the proposed estimation and control approaches. The
simulations demonstrate that the developed estimation and control strategies successfully
minimize the tumor volume, along with the carrying capacity of endothelial cells, with an
optimum drug dose, despite of the lack of knowledge about system parameters. It can be
concluded from the simulation study that the proposed tumor minimization technique can
efficiently reduce the tumor volume with an optimum drug dose.
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Appendix A. Implementable Form of the Filtered Signal Qf(t)

In order to obtain an implementable form of (25), an auxiliary filter signal ζ(t) ∈ R is
designed as:

.
ζ , −βζ − β2q ; ζ(t0) = −βq(t0). (A1)

Furthermore, the filter signal Q f (t) is defined as:

Q f , ζ + βq. (A2)

After taking the time derivative of (A2), the following expression is obtained:

.
Q f = −β(ζ + βq) + β

.
q (A3)

where (A1) was utilized. After substituting (A2) into (A3), the following expression can
be obtained:

.
Q f , −βQ f + βQ (A4)

which is the same as (25). Thus, it is clear that (A2) and (A3) can be implemented to obtain
Q f (t) without measuring

.
q(t).

Appendix B. Proof Details for Theorem 2

Consider the following nonnegative Lyapunov function:

Ve =
1
2

θ̃T
e Γ−1θ̃e. (A5)

Taking its time derivative results in:

.
Ve = −θ̃T

e Γ−1
.
θ̂e +

1
2

θ̃T
e

.
Γ
−1

θ̃e (A6)

where the time derivative of (32) was utilized. After substituting (34) and (35) into (A6), the
following expression, the following is obtained:

.
Ve = −ε2 +

1
2

ε2 (A7)

where (33) was utilized. This expression can be further simplified as:

.
Ve = −

1
2

ε2. (A8)

After integrating (A8), the following expression is obtained:

1
2

∞∫
t0

ε2(τ)dτ = Ve(t0)−Ve(∞) (A9)

From (A5) and (A8), it can be concluded that Ve(t) ∈ L∞; thus, θ̃e(t) ∈ L∞. From
(A9), it is clear that ε(t) ∈ L∞ ∩ L2. Since θ̃e(t) ∈ L∞, from (32), it follows that θ̂e(t) ∈ L∞.
Assuming p(t), q(t), u(t) ∈ L∞ (see Proof 3), from (22), it follows that We(t) ∈ L∞, and
from (21), it follows that Q(t) ∈ L∞. Since Q(t), We(t) ∈ L∞, from Remark 2, it follows that
Q f (t),

.
Q f (t), W f (t),

.
W f (t) ∈ L∞. Since W f (t), ε(t) ∈ L∞, and from Remark 3, Γ(t) ∈ L∞,

therefore, from (34), it can be concluded that
.
θ̂e(t) ∈ L∞; thus, the time derivative of (32)

can be utilized to show that
.
θ̃e(t) ∈ L∞. Since

.
W f (t),

.
θ̃e(t) ∈ L∞, the time derivative of (33)

can be utilized to show that
.
ε(t) ∈ L∞. Since ε(t) ∈ L∞ ∩L2 and

.
ε(t) ∈ L∞, from Barbalat’s

Lemma [41], it can be concluded that ε→ 0 as t→ ∞; thus,
∥∥∥W f (t)θ̃e(t)

∥∥∥→ 0 as t→ ∞.
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Upon the satisfaction of PE condition [36] given in (37), it can be further concluded that∥∥∥θ̃e

∥∥∥→ 0 as t→ ∞.

Appendix C. Proof Details for Theorem 3

Consider the following nonnegative Lyapunov function:

V2 =
1
2

A1e2
a1 +

1
2

A2e2
a2 +

1
2

γ−1
1 θ̃T

2 θ̃2 +
1
2

γ−1
2 θ̃T

3 θ̃3. (A10)

Taking its time derivative and then substituting the dynamics of ea1 and ea2, given by
(45) and (48), respectively, then the updates laws given in (50) yields:

.
V2 = ea1

[
−ka1ea1 − ea2q + W2θ̃2

]
+ea2

[
−ka2ea2 + qea1 + W3θ̃3

]
−γ−1

1 θ̃T
2
[
γ1WT

2 ea1
]
− γ−1

2 θ̃T
3
[
γ2WT

3 ea2
]

.
V2 = −ka1e2

a1 − ka2e2
a2.

(A11)

From (A11), the following inequalities can be written:

.
V2 ≤ −ka1e2

a1 (A12)

.
V2 ≤ −ka2e2

a2. (A13)

After integrating (A12) and (A13), the following inequalities will be obtained:

k1

∞∫
t0

e2
a1(τ)dτ ≤ V2(t0)−V2(∞) (A14)

k2

∞∫
t0

e2
a2(τ)dτ ≤ V2(t0)−V2(∞). (A15)

From (A10) and (A11), it can be concluded that V2(t) ∈ L∞; hence, ea1(t), ea2(t), θ̃2(t),
θ̃3(t) ∈ L∞. From (A14) and (A15), it is clear that ea1(t), ea2(t) ∈ L2. Since qd(t) is designed
to be bounded, from (38), qd(t) ∈ L∞; thus, from Remark 1, p(t) ∈ L∞. The fact that
θ2 and θ3 are constant vectors and θ̃2(t), θ̃3(t) ∈ L∞, from (44) and (49), it follows that
θ̂2(t), θ̂3(t) ∈ L∞. Since p(t), q(t), qd(t) ∈ L∞, it is clear that W2(t) ∈ L∞. Further, since
θ̂2(t) ∈ L∞, therefore, from (43), cd ∈ L∞; thus, from (39), c(t) ∈ L∞. From (50), it follows

that
.
θ̂2(t) ∈ L∞. Since cd(t) is a function of bounded and continuous signals, after taking

its time derivative, it follows that
.
cd(t) ∈ L∞; therefore W3 ∈ L∞. Now it follows from (50)

that
.
θ̂3(t) ∈ L∞. From (47), it follows that u(t) ∈ L∞. Since ea1(t), ea2(t) ∈ L∞ ∩ L2, and

from (42) and (46)
.
ea1(t),

.
ea2(t) ∈ L∞, from Barbalat’s Lemma [41], it can be concluded that

ea1(t), ea2(t)→ 0 as t→ ∞.
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