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Abstract: Sepsis remains one of the leading causes of death worldwide. Oncostatin M (OSM), an
interleukin (IL)-6 family cytokine, can be found at high levels in septic patients. However, little is
known about its role in sepsis. This study aimed to determine if the genetic knockout of OSM receptor
(OSMR) type II signaling would improve survival in a murine model of sepsis. Aged (>50 weeks)
OSMR type II knockout (KO) mice and wild-type (WT) littermates received an intraperitoneal
injection of fecal slurry (FS) or vehicle. The KO mice had better survival 48 h after the injection of FS
than the WT mice (p = 0.005). Eighteen hours post-FS injection, the KO mice had reduced peritoneal,
serum, and tissue cytokine levels (including IL-1β, IL-6, TNFα, KG/GRO, and IL-10) compared to
the WT mice (p < 0.001 for all). Flow cytometry revealed decreased recruitment of CD11b+ F4/80+

Ly6chigh+ macrophages in the peritoneum of KO mice compared to WT mice (34 ± 6 vs. 4 ± 3%,
PInt = 0.005). Isolated peritoneal macrophages from aged KO mice had better live E. coli killing
capacity than those from WT mice (p < 0.001). Peritoneal lavage revealed greater bacterial counts
in KO mice than in WT mice (KO: 305 ± 22 vs. 116 ± 6 CFU (×109)/mL; p < 0.001). In summary,
deficiency in OSMR type II receptor signaling provided a survival benefit in the progression of sepsis.
This coincided with reduced serum levels of pro-inflammatory (IL-1β, TNFα, and KC/GRO) and
anti-inflammatory markers (IL-10), increased bacterial killing ability of macrophages, and reduced
macrophage infiltration into to site of infection.

Keywords: fecal slurry induced peritonitis; knockout mice; macrophage recruitment; inflammation;
bacterial clearance

1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response
to a pathogen. Despite notable advances in critical care, sepsis remains a leading cause
of death in hospitalized patients [1–3], especially in the Intensive Care Unit [4,5]. Though
individuals of all ages may develop sepsis and septic shock, the elderly (>65 years of
age) account for a preponderance of affected patients [6]. Despite advanced age being an
established risk factor for sepsis-related mortality, elderly patients are often excluded from
both clinical and preclinical studies on the diagnosis and management of sepsis [7]. As the
elderly population continues to grow, the use of aging models in biomedical research is
becoming increasingly relevant; this is particularly true in the context of sepsis, since aging
is known to have profound effects on virtually all systems and pathways implicated in its
pathophysiology [6].

Cytokines are key mediators in the pathophysiology of sepsis and its progression
to septic shock. Septic patients present increased levels of pro- and anti-inflammatory
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cytokines, including Tumor Necrosis Factor α (TNFα) and interleukin (IL)-1β, IL-6, IL-8,
and IL-10 [7–9]. It has been proposed that the development of Multiple Organ Dysfunction
Syndrome in sepsis is related to the amount of pro- and anti-inflammatory cytokines
produced by the innate immune system, which mediates responses of the adaptive immune
system [10]. While this dual-arm immune response is generally responsible for battling
infection to restore homeostasis, uncontrolled and prolonged cytokine production may
lead to a dysregulated inflammatory response culminating in shock, organ dysfunction,
and death.

Oncostatin M (OSM) is a cytokine member of the IL-6 family [11]. Depending on
the species, OSM can signal via two morphologically distinct receptor complexes [12].
OSM initially binds with low affinity to the alpha subunit gp130 and then heterodimerizes
with high affinity with either the leukemia inhibitory factor receptor (LIFR) β subunit
(gp130α/LIFRβ), forming the type 1 complex (OSMR type I), or the OSM receptor β

subunit (gp130α/OSMRβ), forming the type II complex (OSMR type II) [13]. Though other
cytokines (e.g., IL-6) interact with OSMR type I, it is thought that only OSM can bind to the
OSMR type II complex. Notably, whereas human and rat OSM signals via both receptors
complexes, murine OSM signals almost exclusively via OSMR type II [14]. As such, the
OSMR−/− mouse model is attractive for studying the role of OSMR type II in immune cell
function during the acute-phase response [15]. OSM receptors are widely expressed in a
variety of cells, including leukocytes, endothelial cells, hepatocytes, neurons, and some
epithelial cells [16]. While OSM can elicit diverse immune responses, an important property
is its ability to modulate the responses of other cytokines, where co-signaling with other
cytokines can induce synergistic inflammatory responses [17]. Consequently, targeting the
OSMR type II complex using antibody-based approaches has been effective in reducing
inflammation and inhibiting leukocyte migration in rheumatoid arthritis [18], underscoring
an important role of this receptor in immune function. OSM levels are elevated in patients
with sepsis and septic shock [8,19], implicating OSM signaling in sepsis pathophysiology,
although its role remains unclear. Here, we hypothesized that the abrogation of OSMR type
II signaling could mitigate the inflammatory response during sepsis and in turn improve
survival in mice. As noted above, aging is associated with greater susceptibility to sepsis
and increased morbidity and mortality; therefore, the experimental design of this study
included an experimental group of mice with advanced age to increase the relevance of the
results to the clinical needs.

2. Materials and Methods
2.1. Animal Model

The protocols described herein were approved by the University of Alberta Animal
Care and Use Committee (Animal Use Protocol No. 00000414) in accordance with the
guidelines established by the Canadian Council on Animal Care. Male and female OSMR
type II (OSMR−/−) knockout (KO) mice and wild-type (WT) littermates (OSMR+/+), bred
on a C57BL/6 background were purchased from Charles River (St. Constant, QC, Canada).
The mice were housed in rooms in the University of Alberta animal care facility, which
maintained a 12 h light:12 h dark cycle and a room temperature of 22 ± 1 ◦C. The mice were
housed in shoebox cages (5 mice/cage) containing nesting material, aspen chip bedding,
and polyvinyl chloride tubing. The mice were given ad libitum access to a standard grain-
based rodent chow (PicoLab 5LOD, LabDiet, St. Louis, MO, USA) and tap water. Animal
care personnel performed welfare assessments routinely and prior to experimentation. The
mice were used for experiments at approximately 12 weeks of age (range: 11–14 weeks;
young group) or were aged in the animal care facility at the University of Alberta until
50–70 weeks of age (aged group). All live animal experiments took place in the same
laboratory operating theatre setting during daytime hours.
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2.2. Induction of Sepsis and Necropsy

A fecal-induced peritonitis (FIP) model of sepsis was used as previously described [20].
The cecal contents from male and female C57BL/6 mice (9–13 weeks of age) with no signs
of infection were collected, weighed, and suspended in 5% dextrose at a concentration
of 80 mg/mL. The mixture was then filtered using a sterile 100 µm cell strainer (Falcon)
resulting in a uniform suspension of fecal slurry (FS). Aliquots of FS were stored at −80 ◦C,
and each sample was thawed only once. An FS dose of 1.3 mg/g resulted in death in 70%
of the inoculated animals and was therefore used in all experiments to induce sepsis.

All mice received either FS or an equivalent volume of vehicle (5% dextrose) via
intraperitoneal injection. All mice were also administered subcutaneous injections of
buprenorphine (0.05 mg/kg) in accordance with the Canadian Council on Animal Care’s
guidelines for reducing or abolishing pain in animals. For the survival experiments, the
mice were kept for 48 h or until humane endpoints were reached. For all other experiments,
the surviving mice were anesthetized with isoflurane and euthanized via exsanguination
and excision of the heart 18 h post-FS injection. Peritoneal lavage was then performed
using ice-cold phosphate-buffered saline. The thoracoabdominal cavity was subsequently
opened, and tissues were collected (snap-frozen in liquid nitrogen and stored at −80 ◦C).
The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
lipase, as well as of creatinine and blood urea nitrogen (BUN), and albumin were measured
to assess the level of systemic tissue damage via a Catalyst One Chemistry Analyzer (IDEXX
Laboratories, Markham, ON, Canada).

2.3. Multiplex Cytokine and Tissue Analysis

The frozen tissues were thawed, weighed, and homogenized in a Tissue Protein Extrac-
tion Reagent (T-PERTM) containing Complete Mini Protease Inhibitor Cocktail (Complete™,
Hoffman-La Roche Ltd. Mississauga, ON, Canada) at 4 ◦C. The homogenates were cen-
trifuged at 9000× g for 10 min. The supernatants were collected and snap-frozen in liquid
nitrogen for subsequent analysis. Cytokines IL-1β, IL-6, IL-10, TNFα, and keratinocyte
chemoattractant/human growth-related oncogene (KC/GRO) levels in the serum and in
lung and kidney homogenates, as well as in peritoneal lavage were measured via the V-plex
mouse kit (Meso Scale Discovery) and normalized to protein content. Myeloperoxidase
(MPO) activity was used as a marker for neutrophil content [21] and was measured in
tissue homogenates using a colorimetric assay as previously described [22].

2.4. Peritoneal Bacterial Load

The peritoneal lavages were cultured on Centre for Disease Control blood agar plates
(Anaerobe Systems) to assess bacterial clearance. The cultures were grown in anaerobic
conditions for 24–48 h at 37 ◦C and subsequently counted; the results were expressed as
colony-forming unit (CFU) × 109/mL.

2.5. Gentamicin Protection Assay

Peritoneal macrophages from the mice were isolated as described [23] and cultured
with Escherichia coli (E. coli) strain HB101 in Petri dishes at a multiplicity of infection of
10 E. coli per macrophage. The gentamicin protection assay was performed as described
previously [24]. The data are presented as percent of bacteria killed compared to time 0.

2.6. Flow Cytometry Analysis

The macrophages isolated via peritoneal lavage (as described above) were fixed with
ice-cold formalin. Phenotyping was performed as previously described [23]. Briefly,
~1.5 × 106 cells fixed-cells were placed into round-bottom polypropylene tubes, blocked
with 5% BSA for 30 min on ice. The fixed cells were then mixed with the antibodies
anti-F4/80-PE/Cy5 at 0.2 mg/mL (eBioScience), anti-CD11b-PE at 1.6 mg/mL (Abcam),
and anti-Ly6c-PE/Cy7 at 0.2 mg/mL (Abcam). The cells were gated for CD11b+ F4/80+

Ly6c[low or high]+.
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2.7. Statistical Analyses

The data are presented as mean ± standard error (SEM) unless otherwise indicated.
Student’s t test or 2-way analysis of variance with Sidak’s multiple comparison posthoc test
was used to compare groups. Kaplan–Meier curves were obtained to depict survival; the
survival analysis was performed using the Mantel Cox log rank test. All data analyses were
performed using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA). Statistical
significance was set at p < 0.05.

3. Results
3.1. OSMR Type II Deficiency Improves Survival in Mice

The induction of FIP by intraperitoneal injection of FS decreased survival in aged
WT and KO strains compared to vehicle-treated mice (Figure 1). Twenty-four hours
after the injection of FS, 30% of WT mice survived, whereas 60% of KO mice survived;
this corresponds to a 30% improved survival in aged KO mice compared to their WT
counterparts. There were no differences in clinical score (data not shown) or survival rate
between male and female mice; therefore, male and female mice were combined for the
subsequent analyses.
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time point in the progression of FIP associated with severe inflammation that preceded 
all deaths. In pilot experiments (using WT and KO mice at 12 weeks of age), we identified 
18 h post-injection of FS as a time point associated with pronounced increases in systemic 
and tissue cytokines levels (data not shown). Moreover, pilot experiments revealed evi-

Figure 1. OSMR type II receptor knockout (KO) confers a survival advantage compared to wild-type
(WT) mice subjected to fecal slurry-induced peritonitis (FIP). Kaplan–Meier curves depicting the
survival of OSMR type II receptor knockout (KO) and FIP mice that received an intraperitoneal
injection of 1.3 mg/g of fecal slurry (FS). WT Veh (n = 3); KO Veh (n = 3); WT FIP (n = 14); KO FIP
(n = 6). p = 0.005 via log-rank (Mantel-Cox) test.

3.2. OSMR Type II Deficiency Decreases Pro-Inflammatory and Anti-Inflammatory Responses
in Mice

To study the pathophysiological mechanisms of sepsis, we endeavored to choose a
time point in the progression of FIP associated with severe inflammation that preceded all
deaths. In pilot experiments (using WT and KO mice at 12 weeks of age), we identified 18 h
post-injection of FS as a time point associated with pronounced increases in systemic and
tissue cytokines levels (data not shown). Moreover, pilot experiments revealed evidence
of organ dysfunction (Figure 2), including elevated levels of BUN (Figure 2A), creatinine
(Figure 2B), ALT (Figure 2C), as well as reduced levels of albumin (Figure 2D) in FIP mice
compared to their vehicle-treated counterparts 18 h post-FS injection; however, there was no
effect of the genotype on these parameters, despite young KO mice also showing improved
survival compared to their WT counterparts (data not shown).
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At 18 h post-injection of FS in aged mice, a pronounced elevation of IL-1β, IL-6,
TNFα, and KC/GRO levels was seen in the serum samples of FIP mice compared to
those of vehicle-treated mice (Figure 3A–E), suggesting systemic inflammation. There
was an overall effect of the genotype on all cytokines analyzed, such that the KO mice
had mitigated increases in serum pro- and anti-inflammatory cytokines, including IL-6
(Figure 3B), TNFα (Figure 3C), KC/GRO (Figure 3D), and IL-10 (Figure 3E). In contrast,
there was no overall effect of the genotype on the serum IL-1β levels. We then examined the
cytokine levels in various compartments, including peritoneal lavage samples (Figure 4),
as well as in the lung, kidney, and liver (Table 1). Invariably, the cytokines levels were
markedly elevated in FIP mice compared to vehicle-treated mice, as expected. The KO
mice had attenuated inflammatory responses compared to the WT mice; this was evident
in the peritoneal lavage cytokine levels (Figure 4A–C,E), except for the KC/GRO levels
(Figure 4D). Similarly, the tissue levels of these cytokines in the lung and kidney were
attenuated (Table 1). Interestingly, the cytokine levels in the liver exhibited different trends;
whereas IL-10 was reduced in KO mice compared to WT mice in the liver, the levels of IL-6
and KC/GRO were unaffected by the genotype, and IL-1β and TNF were increased in KO
compared to WT mice (Table 1).

To determine if the reduced cytokine levels coincided with reduced neutrophil infiltra-
tion, a myeloperoxidase (MPO) activity assay was performed in lung tissue. Eighteen hours
post-FS injection, the FIP mice showed pronounced elevations in MPO activity, suggesting
neutrophil infiltration, compared to vehicle-treated mice. Notably, the KO FIP mice had
comparatively greater lung tissue infiltration compared to the WT FIP mice (Figure 5).
MPO activity was also assessed in a limited number of peritoneal lavage samples, as well
as in liver and kidney homogenates, but the assay signals were comparatively low and
therefore not pursued in WT and KO FIP mice.

Table 1. Tissue cytokines/chemokine profiles.

Veh FIP p Values

Lung WT KO WT KO Gen. FIP Int.

IL-1β (pg/mL) 2.7 ± 0.2 (3) 3.4 ± 0.3 (4) 178.5 ± 15.6 (12) 99.6 ± 2.3 (12) **** 0.02 <0.0001 0.01

IL-10 (pg/mL) 2.4 ± 0.1 (3) 2.6 ± 0.9 (4) 269.3 ± 12.1 (15) 167.7 ± 9.2 (7) **** 0.005 <0.0001 0.005

IL-6 (ng/mL) 16.4 ± 0.8 (3) 11.2 ± 5.1 (4) 3168.4 ± 162.4 (15) 1377.4 ± 152.0 (9) **** 0.0005 <0.0001 0.0005

TNF-α (pg/mL) 3.9 ± 1.1 (3) 4.1 ± 1.0 (4) 236.9 ± 8.8 (15) 150.6 ± 4.2 (8) **** 0.0008 <0.0001 0.0008

KC/GRO (pg/mL) 16.5 ± 4.3 (3) 7.5 ± 1.7 (4) 2668.9 ± 104.0 (14) 1491.2 ± 84.5 (8) **** 0.001 <0.0001 0.001

Kidney

IL-10 (pg/mL) 4.1 ± 0.3 (3) 4.5 ± 0.3 (3) 209.5 ± 13.0 (10) 59.1 ± 5.1 (8) **** <0.0001 <0.0001 <0.0001

IL-6 (ng/mL) 16.4 ± 0.8 (3) 27.1 ± 7.3 (3) 2388.6 ± 107.7 (11) 1339.3 ± 54.8 (6) **** 0.0007 <0.0001 0.0006

IL-1β (pg/mL) 2.2 ± 0.2 (3) 2.8 ± 0.8 (3) 239.3 ± 22.2 (12) 93.7 ± 11.0 (7) **** 0.01 <0.0001 0.01

TNF-α (pg/mL) 2.5 ± 0.5 (3) 3.8 ± 1.2 (4) 57.6 ± 3.2 (14) 43.9 ± 1.4 (4) * 0.18 <0.0001 0.11

KC/GRO (ng/mL) 6.3 ± 0.5 (5) 10.4 ± 3.1 (3) 911.0 ± 81.5 (15) 488.9 ± 45.1 (6) ** 0.06 <0.0001 0.05

Liver

IL-10 (pg/mL) 2.2 ± 0.7 (3) 1.4 ± 0.2 (3) 459.4 ± 80.9 (5) 152.2 ± 16.4 (6) *** 0.01 <0.0001 0.01

IL-6 (ng/mL) 0.01 ± 0.0 (3) 0.03 ± 0.0 (3) 13.76 ± 1.41 (12) 10.03 ± 1.12 (10) 0.67 <0.0001 0.66

IL-1β (pg/mL) 2.6 ± 1.6 (3) 15.5 ± 4.1 (3) 870.1 ± 90.1 (9) 1541.9 ± 224.7 (4) ** 0.03 <0.0001 0.04

TNF-α (pg/mL) 1.5 ± 0.4 (3) 2.0 ± 0.5 (3) 65.6 ± 8.2 (13) 124.9 ± 16.4 (6) ** 0.05 <0.0001 0.05

KC/GRO (pg/mL) 4.9 ± 2.3 (3) 7.8 ± 2.7 (3) 3450.7 ± 273.4 (12) 3482.7 ± 261.5 (4) 0.97 <0.0001 0.96

Tissues were collected from mice 18 h after FS injection. The p values reflect the outcomes of 2-way analysis of
variance; Sidak post-hoc test outcomes are shown as * p < 0.05, ** p < 0.01, **** p < 0.0001. Data are mean ± SEM (n).
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 Figure 3. Serum cytokine profiles in wild-type (WT) and OSMR type II receptor knockout (KO) mice
subjected to fecal slurry (FS)-induced peritonitis (FIP) or treated with vehicle (veh). Serum collected
18 h post-injection of Veh or FS was analyzed for the levels of (A) IL-1β, (B) IL-6, (C) tumor necrosis
factor alpha (TNFα), (D) keratinocyte chemoattractant (KC)/human growth-related oncogene (GRO),
and (E) IL-10. The p values reflect the outcomes of 2-way analysis of variance; Sidak post-hoc test
outcomes are shown as ** p < 0.01, **** p < 0.0001, ns not significant. Each bar represents n = 3–13 mice.
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To determine if the reduced cytokine levels coincided with reduced neutrophil infil-
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Figure 4. Peritoneal lavage (PL) cytokine profiles in wild-type (WT) and OSMR type II receptor
knockout (KO) mice subjected to fecal slurry (FS)-induced peritonitis (FIP) or treated with vehicle
(Veh). PL samples collected 18 h post-injection of Veh or FS were analyzed for the levels of (A) IL-1β,
(B) IL-6, (C) tumor necrosis factor alpha (TNFα), (D) keratinocyte chemoattractant (KC)/human
growth-related oncogene (GRO), and (E) IL-10. The p values reflect the outcomes of 2-way analysis of
variance; Sidak post-hoc tests outcomes are shown as ** p < 0.01, **** p < 0.0001, ns not significant.
Each bar represents n = 3–14 mice.
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3.3. OSMR Type II Deficiency Affects Macrophage Function

We next examined macrophage populations in the peritoneum by flow cytometry.
Notably, the flow cytometry protocol used herein did not distinguish between live and
dead cells, to provide a complete picture of cells at the site of inoculation. The flow
cytometry analysis revealed no changes in resident macrophages, gated as CD11b+ F4/80+

Ly6c[low]+, due to either FS or genotype (Figure 6A). Conversely, there was a greater
infiltration of macrophages, gated as CD11b+ F4/80+ Ly6c[high]+, in the peritoneum of
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WT mice than in KO mice following injection of FS (Figure 6B). We next examined the
bacterial killing efficiency of macrophages isolated from the peritoneum. No differences
in bacterial uptake (at time 0) were evident between WT and KO FIP mice (data are
mean ± SEM × 109 CFU/mL: WT: 449 ± 26 (n = 3); Aged KO: 397 ± 25 (n = 4); p = 0.22).
The gentamicin protection assay revealed that the KO mice had a higher E. coli killing
capacity than their WT counterparts (Figure 6C). Finally, to assess the functional outcomes
associated with these changes in macrophage function, we assessed the peritoneal bacterial
loads 18 h post-injection of FS and found that the KO mice demonstrated worse peritoneal
bacterial clearance than the WT mice (Figure 6D).
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Figure 6. (A) Resident and (B) infiltrated macrophages assessed in peritoneal lavage in wild-type
(WT) and OSMR type II receptor knockout (KO) mice subjected to fecal slurry-induced peritonitis
(FIP) or injected with vehicle (Veh). The resident macrophages depicted in panel (A) were identified as
CD11b+ F4/80+ Ly6c[low]+, and the macrophage infiltrates depicted in panel (B) were identified as
CD11b+ F4/80+ Ly6c[high]+. (C) In vitro bacterial killing assay for wild-type (WT) and OSMR type
II receptor knockout (KO) mice. (D) KO mice had reduced peritoneal bacterial clearance compared to
WT mice. (D) In panels (A,B), the p values reflect the outcomes of 2-way analysis of variance; Sidak
post-hoc tests outcomes are shown as ** p < 0.01, *** p < 0.001, **** p < 0.001, ns not significant. In
panel (D) the, p values reflect the outcome of Student’s t test. Each bar represents n = 3–14 mice.

4. Discussion

In this study, we assessed the impact of OSMR type II signaling on survival and
immune markers following induction of FIP in a murine OSMR type II KO model. Prior
studies have shown that the OSM is increased in sepsis [8,19], and some studies suggest it
plays both direct and indirect (i.e., via modulating immune responses) roles in inflammatory
conditions. To summarize the findings of the present study, OSMR type II KO mice had
(1) improved survival outcomes at 48 h; (2) reduced systemic and local inflammation 18 h
after the induction of sepsis; and (3) altered macrophage function at the site of infection.
Together, these data suggest that the OSM type II receptor signaling and/or its cognate
ligands play a role in mediating the morbidity and mortality from sepsis in a murine model.
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Sepsis was recently redefined by the joint task force of the Society of Critical Care
Medicine and the European Society of Intensive Care Medicine as a “life-threatening organ
dysfunction caused by a dysregulated host response to infection” [25]. This terminology
update reflects a more nuanced appreciation of the role of immune dysregulation, involving
both proinflammatory and immunosuppressive components within the pathophysiology
of sepsis. Both pro- and anti-inflammatory profiles are associated with increased mortality
from sepsis [26–28], suggesting an imbalance in immune function, rather than a specific
effector, is associated with reduced survival.

The initial phase of peritonitis, which precedes the progressive and systemic deteriora-
tion of tissue function, was the primary focus of this study. Arguably, this phase would
be most suitable for therapeutic intervention to prevent or mitigate sepsis-induced organ
damage [2]. We found that FIP in WT mice caused widespread increases in both pro- and
anti-inflammatory mediators (including IL-1β, IL-6, TNFα, KC, and IL-10), concomitant
with increased infiltration of in CD11b+ F4/80+ Ly6c[high]+ cells—a subset of macrophages
recruited to sites of infection where they phagocytose pathogens and induce local proin-
flammatory cytokine production [29–32]. In contrast, OSMR type II KO mice had less
severe cytokine responses. Indeed, even at the site of infection, the cytokines levels were
almost invariably reduced in the KO mice, and this coincided with reduced infiltration
of macrophages in the peritoneum. The bactericidal actions of infiltrating leukocytes in
response to infection are mediated by phagocytosis, the release of cytokines and proteases,
and the generation of potentially cytotoxic levels of reactive oxygen species. The dysregu-
lation of these processes, as occurs in sepsis, is thought to contribute to tissue injury and
organ dysfunction. The impaired macrophage recruitment in OSMR type II KO mice may
reduce systemic and local inflammation and tissue injury, resulting in improved survival in
polymicrobial sepsis. Studies utilizing macrophage-specific OSMR type II deficiency could
provide insights into these beneficial effects.

Alterations in innate immune responses may also affect the susceptibility to infection
and sepsis [33–35]. Macrophages isolated from OSMR type II KO mice had superior
bacterial killing capacity in vitro than those from WT controls, a factor that could contribute
to the increased survival in this group. Notwithstanding, the higher bacterial loads in the
peritoneum 18 h after the induction of sepsis suggest this increased bactericidal activity
did not completely compensate for the reduced macrophage infiltration. Yet, the improved
survival in this group, despite higher bacterial loads, further emphasizes the critical role of
a dysregulated host response in the pathophysiology of sepsis and does not depend solely
on the infectious organism per se.

There are contrasting views as to whether OSM constitutes a pro-inflammatory or
an anti-inflammatory mediator. The administration of OSM has been shown to promote
polymorphonuclear adhesion and transmigration into endothelial cells and to increase
the expression of PMN activators (e.g., IL-6) [36]. In contrast, Wallace et al. showed
that the in-vivo administration of OSM was associated with reduced inflammation and
mortality in a model of acute inflammatory disease [37]. The findings from the present
study suggest that OSM signaling via the OSMR type II receptor modulates both pro-
and anti-inflammatory responses, and therefore its cumulative effects on the immune
function are likely more nuanced and context specific. For example, our previous studies
showed that genetic deletion of OSMR conferred protection in the lungs but caused more
severe renal damage and increased mortality in a model of acute intestinal inflammatory
disease [38]. These outcomes were attributed, at least in part, to a more pronounced
anti-inflammatory response, characterized by increased IL-10 levels in KO mice, thus
limiting their ability to mount an effective immune response. Here, after the induction
of sepsis, IL-10 levels were attenuated in OSMR KO mice following the induction of FIP,
as were the levels of the pro-inflammatory cytokines IL1β, IL-6, TNF, and KC, which
may reflect a more balanced attenuation of inflammation with improved survival. Yet,
while macrophage infiltration within the peritoneum was reduced, increased MPO activity
in the lungs suggests increased neutrophil invasion within that tissue, supporting the
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notion that the effect of OSMR abrogation is likely cell- and tissue-specific and depends on
physiological and pathophysiological circumstances in the host.

The benefits of an attenuated inflammatory response secondary to OSMR type II
abrogation may extend beyond the immediate survival. Animal and human studies show
that recovery from critical illness is associated with an increased risk of post-discharge
morbidity and mortality from new-onset cardiovascular and renal disease [39], and the
post-discharge risk tends to correlate with the severity of the critical illness. The prevailing
notion is that immune, metabolic, and neurohumoral responses associated with critical
illness induce a prolonged pro-inflammatory and immunosenescent state, resulting in
cardiac and vascular remodeling and eventual cardiovascular dysfunction [39]. In this
regard, the mitigated inflammatory response may in turn be associated with reduced
post-illness complications. There are caveats. First, while inflammation is thought to be an
important mediator, regional increases in lung MPO, which suggests increased regional
neutrophil infiltration in some tissues, may exacerbate the damage in those tissues and
thus offset the long-term survival advantage. Second, although the severity of illness was
found to correlate with the post-illness risk of complications, the role of inflammation per
se in dictating post-sepsis outcomes is difficult to study, particularly in studies involving
humans. That is, with a mitigated inflammatory response, the severity of illness may be
reduced in tandem, but the subsequent risk of long-term dysfunction remains elevated due
to the unmitigated damage caused by the infectious agent. Indeed, the increased levels of
BUN, creatinine, ALT, and LDH and the reduced levels of albumin indicate a profound
multi-organ dysfunction in both WT and KO mice, which may be associated with long-term
morbidity despite the increased short-term survival in the latter group. Future studies will
be needed to resolve these issues.

As noted above, a majority of ICU admissions are patients over the age of 65 [40].
Despite this disproportionate representation of aged patients, the majority of preclinical
studies use young rodents as model systems [41]. For this reason, we utilized an aging
model of polymicrobial peritonitis. Although no comparisons were made with young
mice, we found that aged WT and KO mice had reduced survival compared to their
young counterparts in pilot studies (unpublished observations), which is consistent with
other studies [42–44]. This outcome was expected, given that elderly patients not only are
predisposed to sepsis (due to existing co-morbidities, increased hospitalizations, etc.), but
also have poorer outcomes due to the age-related physiological decline (e.g., immunity,
cardiovascular function, etc.) [45]. The increased susceptibility to sepsis in the elderly is
attributed, at least in part, to dysregulated immune function [46]. Notably, older age is
associated with chronic elevations in inflammatory cytokines [42–44], and higher levels
of cytokines tend to be associated with poorer outcomes in sepsis [47]. Hence, decreasing
the levels of circulating cytokines, via the inhibition of the OSM/OSMR type II pathway
(which we attribute to reducing the circulating and tissue cytokine levels) or via alternative
anti-inflammatory therapies, may be particularly beneficial in aged mice with chronic
inflammation, and these beneficial effects may have been overlooked in young mice.

Although employing aging mice to model sepsis in humans is a strength of the study,
the age range of the mice used was considerable (50–70 weeks old). With a typical lifespan of
over 2 years, mice within this range are more likely to model humans of middle age, rather
than the elderly that make a preponderance of septic patients. The choice to use advanced-
age mice instead of elderly mice (>2 years) was a pragmatic one to minimize the attrition
due to age-related illness. Nevertheless, the increasing age could differentially affect the
immune responses in WT and KO mice in sepsis, and this should be examined in future
studies. There are other limitations of this study that warrant discussion. Mice inoculated
with FS were given neither antibiotics nor fluids, which constitute the standard of care for
septic patients. Although this model does recapitulate a select group of cases in which sepsis
goes undiagnosed and untreated (and thus represents its most severe form), the inclusion of
standard of care would increase the translatability of this work. Additionally, tissues were
collected at only a single time point in the progression of sepsis to interrogate the role of
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OSM signaling therein. Multiple time points would have provided more valuable insights,
particularly since the transition from pro-inflammatory to immunosenescent phases in
sepsis is thought to be important in dictating recovery and predicting long-term outcomes.
The examination of the organ damage markers BUN and creatinine in aged mice would
also provide additional insight into sepsis severity in these mice. Finally, sex differences are
increasingly being recognized in relation to both the susceptibility and the pathophysiology
of sepsis [48]. Here, male and females were combined, and though the results tended to
be consistent among groups, future studies should endeavor to investigate the respective
responses separately.

5. Conclusions

The findings presented herein demonstrate that the knockout of OSMR type II and
therefore its signaling pathways improved survival in mice of advanced age. These results
suggest that targeting this pathway may provide beneficial effects against the progres-
sion of sepsis clinically. The proposed mechanism involves a reduction in systemic pro-
inflammatory and anti-inflammatory mediators and reduced macrophage migration to the
site of infection. These findings also highlight the importance of including advanced-age
models, especially in disease studies where elderly populations are particularly impacted.
Understanding the mechanisms underlying the pathophysiology of sepsis, particularly in
vulnerable populations like the elderly, may lead to the identification of novel intervention
strategies [3].
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