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Abstract: Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult
diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking
is a critical risk factor for this global health problem, its molecular mechanisms remain unclear.
Several phenomena are thought to be involved in the evolution of emphysema, including airway
inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modi-
fications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human
tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malig-
nancy maturation (0.8–1.7% of COPD cases develop cancer/per year). Recently, the development
of more research based on COPD and lung cancer molecular analysis has provided new light for
understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many
connections between these diseases. Our review emphasizes the biological factors involved in COPD
and lung cancer, the advances in their molecular mechanisms’ research, and the state of the art of
diagnosis and treatments. This work combines many biological and genetic elements into a single
whole and strongly links COPD with lung tumor features.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by lung airflow
limitation and tissue destruction; it is the third leading cause of death worldwide [1].
COPD can result from chronic bronchitis with characteristic airway inflammation and
scarring [2]. Tobacco smoking is the most common COPD risk factor. However, many
other inhaled irritants are still involved (burning biomass fuels, smoke, air pollutants, and
chemicals), leading to heterogeneous COPD phenotypes [3,4].

Next, numerous studies have highlighted the strong relationship of COPD with lung
cancer (LC) and have represented COPD as a significant LC risk factor independent of
smoking behavior [5–7].

In this review, we summarized the current research on the pathogenesis and role of
biological factors, such as inflammation, oxidative stress, and protease roles in COPD and
LC expansion. In addition, we underlined the genetics of the diseases (gene polymor-
phisms and epigenetic mechanisms), which can cause COPD/LC appearance and its varied
severity. Furthermore, we reviewed the current COPD/LC knowledge about diagnoses and
treatments. This work aims to evaluate all the factors which link COPD with LC, point out
their genetic connections, and underline the vital need for deeper molecular investigation,
which can help accelerate their early diagnosis and more efficient treatment.
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2. COPD Causes

Chronic obstructive pulmonary disease (COPD) involves the chronic inflammatory
condition of the lung, particularly the conducting airways and parenchyma [8]. Imbalances
accompany the process of progressive inflammation in proteinase/anti-proteinase activity
or oxidant–antioxidant balance, triggering emphysema formation (the abnormal enlarge-
ment of the air spaces located peripherally from the terminal bronchioles and destruction
of the walls of these structures) [1–3]. Emphysema may lead to further changes in lung
tissue, i.e., deterioration of elasticity, poor expiratory flow, gas trapping, and impairment of
the gas exchange [2].

COPD affects millions worldwide, making it a significant health burden connected
with high healthcare costs [9]. COPD is attributed to increasing morbidity and mortality
in low- and middle-income countries, especially in acute exacerbation patients [10]. The
impact of the COPD issue is that many people are underdiagnosed, and only 50% of
patients are adequately treated with medications [11].

Tobacco smoking is the most common risk factor for developing COPD, with patients
more likely to develop the disease if they smoked one pack per day for 20 years or more [3].
However, the absolute risk of COPD developing in continuous smokers is around 25%,
suggesting that there may be other predisposing factors, such as genetic, epigenetic, or
host-dependent factors (Figure 1).
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Figure 1. Chronic obstructive pulmonary disease (COPD) manifests by inflamed airways and
damaged lung tissue. Smoking cigarettes is the most common cause of COPD; however, other factors
can be involved. COPD includes chronic bronchitis (inflammation of the bronchial tubes that causes
a persistent cough) and emphysema (damage of the air sacs).

Among these factors are gene polymorphisms in molecules, such as α1-anti-trypsin [12],
tumor necrosis factor (TNF-α) [13], matrix metalloproteinases (MMPs) [14], or antioxidant
gene dependence [15], which show race, age, and disease severity/phenotype depen-
dence [16–18].

Next, the disease can be developed from inhalation of smoke from burning biomass
fuels, exposure to pollutants and chemicals, or other inhaled irritants [4].

The characteristic COPD symptoms are dyspnea, forced expiratory volume in 1 s
(FEV1), cough, and sputum production; less common symptoms are wheezing, tightness,
and chest congestion [19]. However, reported symptoms showed seasonal and weekly
variability and differed depending on the patient population’s disease severity. Frequent
exacerbations in COPD patients may eventually result in increased airway inflammation
with higher levels of eosinophils and neutrophils and enhanced inflammatory mediators
such as cytokines [20].
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All cigarette smokers have some lung inflammation, but those who develop COPD
present an enhanced or abnormal response to inhaling toxic agents [21]. This amplified
response may result in mucous hypersecretion (chronic bronchitis), tissue destruction
(emphysema), and disruption of regular repair and defense mechanisms, causing slight
minor inflammation and fibrosis (bronchiolitis) [21] (Figure 1).

Two major pathologic processes cause the progressive airflow limitation in COPD:
remodeling and narrowing of small airways and destruction of the lung parenchyma
with consequent destruction of the alveolar attachments of these airways as a result of
emphysema [22] (Figure 1).

After smoking cessation, the symptoms usually decrease. However, lung tissue
transformation and lung function are not restored, and increased airway resistance persists.
Furthermore, the inflammation persists, contributing to the irreversibility of the decreased
lung function. This can be associated with pathological tissue-like fibrosis and inflammation
that reduces the diameter of the airway lumen [23].

Due to the overlapping deterioration of processes controlling lung physiology, ageing
is regarded as an independent COPD risk factor. The age-related aspects are (i) the decline
in the strength of the respiratory muscles due to cardiac function, (ii) age-related reduction
in peripheral muscle mass (related to decreased physical activity and nutritional status),
and (iii) the geometric changes in the rib cage [24]. Moreover, due to the progressive
dilatation of the alveolar ducts and loss of supporting tissues for the peripheral airways, the
static elastic recoil of the lung diminishes. Thus, the ageing population is more vulnerable
to COPD due to physiological changes in the lung. Since life expectancy has risen, and
about 20% of people in developed countries are over 65 years old, focusing on the process
leading to lung dysfunction is highly important.

3. Genetics of COPD
3.1. Gene Polymorphisms

Genome-wide association studies have been conducted to find the genes responsible
for the onset or progression of COPD [25] (Table 1). One detected gene directly responsible
for COPD appearance is alpha-1-antitrypsin (AAT) [26]. AAT deficiency, due to alterations
in DNA sequence, is associated with disease development in 1–2% of the affected popu-
lation. Occurrence of specific alleles, ATT*Z allele homozygosity (Pi Z) or heterozygosity
of the Z allele with a null allele, is related with AAT deficiency. In Pi Z homozygotes, the
AAT protein polymerize reduces the amount of protein circulating in the body and causes
a decreased serum level of AAT [27]. The accumulation of AAT in the hepatocytes leads
to liver disorders, such as cirrhosis, hepatitis, and cancer [28]. Since AAT acts as a plasma
protease inhibitor of the enzyme leukocyte elastase (present in neutrophils), AAT deficiency
leads to loss of the natural defense mechanisms due to lack of proper protease activities
and results in inflammation that triggers emphysema, a common condition observed in
COPD patients [27,29].

Significant genes connected with susceptibility towards COPD showed a nucleotide
polymorphism (SNP) pattern with point mutations causing the replacement of a nucleotide
with another in a particular gene locus, resulting in different alleles [30]. In a case-control
cohort study conducted by Pillai et al. (2009), two SNPs were observed at the α-nicotinic
acetylcholine receptor (CHRNA3/5 in chromosome 5) locus to be significant in lung dys-
function and increasing the risk for COPD (12.2% cases in the population presented this
gene modification) [31]. Extensive cohort investigations of 1633–3000 individuals involving
controls (smokers) and COPD patients were studied for SNPs and their pedigree analysis.
The two SNPs (rs8034191 and rs1051730) in the CHRNA3/5 locus were found to be the most
reliably associated with COPD and significantly associated with lung function or the FEV1
parameter [32]. Furthermore, the observation provided by Wilk et al., 2012, showed that
CHRNA3/5 is a risk factor independent of smoking [33].

Next, the HHIP (Hedgehog interacting protein) locus in chromosome 4q31, a part of
the hedgehog gene family, was involved in morphogenesis and lung development [31–33].
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In the same region on chromosome 15q25.1, the IREB2 (Iron responsive element
binding protein 2) and ADPHD1 (Aspartate beta-hydroxylase domain containing 1) were
found to be involved in COPD development. The HTR4 (5-hydroxytryptamine receptor 4)
gene was also responsible for FEV1/FVC changes. Another important locus was identified
on chromosome 19q13, where the CYP2A6 (Cytochrome P450 family 2 subfamily A member
6) gene was significant in smoking populations [34–36]. The CYP2A6 gene controls the
enzyme required for nicotine metabolism and is vital in smokers. A study by Bloom and
colleagues also implicated the gene responsible for hypoxia, EGLN2 (Egl-9 family hypoxia
inducible factor 2), playing a role in COPD; furthermore, CYP2A6 acts independently of
the nicotine metabolism and hence can be responsible for COPD in both smokers and
non-smokers [37]. Other genome-wide association studies and meta-analysis examinations
have also shown the identification of 39 new loci (such as EEFSEC, DSP, MTCL1, and
SFTPD) relating COPD to lung function, asthma, pulmonary fibrosis, lung composition
(cells, tissues, and smooth muscles) and other comorbidity factors [38,39].

Table 1. Gene polymorphisms in COPD.

Gene Identified Location of Polymorphisms Critical Effects Reference

α-1-antitrypsin (AAT)
ATT*Z allele (Pi Z) homozygosity,

single amino acid substitution
causing base pair changes

low levels of AAT in serum,
accumulation in hepatocytes

leading to liver damage, neutrophil
inactivity, emphysema

[26–29]

Alpha-nicotinic
acetylcholine receptor

2 SNPs (rs8034191 and rs1051730) at
locus of CHRNA3/5 in

chromosome 5

lung dysfunction (deviations in
FEV1 parameter) [31,32]

HHIP (Hedgehog
interacting protein)

chromosome 4q31
(HHIP mutations)

developmental problems in the
lung and abnormality
during morphogenesis

[31–33]

IREB2 (Iron responsive element
binding protein 2)

chromosome 15q25.1
(SNP rs7937)

lung developmental changes
and emphysema [34,40]

ADPHD1 (Aspartate
beta-hydroxylase domain

containing 1)
chromosome 15q25.1 airflow obstruction, AAT deficiency [34]

HTR4 (5-hydroxytryptamine
receptor 4) chromosome 5q31-q33 FEV1/FVC changes,

airflow obstruction [36]

CYP2A6 (Cytochrome P450 family
2 subfamily A member 6) chromosome 19q13 nicotine metabolism affected [34,37]

EGLN2 (Egl-9 family hypoxia
inducible factor 2) chromosome 19q13.2 hypoxia response destroyed [37]

3.2. Epigenetic Regulation (Methylation and Deacetylation)

DNA methylation is a reversible modification of DNA structure involving the transfer
of a methyl group onto the C5 position of the cytosine, often as part of a CpG island
or cluster [41]. DNA methylation is found to play a critical role in COPD development,
and this epigenetic mechanism can be altered by cigarette smoking (Table 2) [42]. Lung
macrophages substantially affect the polarization of innate and adaptive immunity and
the recognition and elimination of bacteria. In this context, it was detected that several
inflammatory/immune-related genes of lung macrophages, including HSH2D (Hematopoi-
etic SH2 domain containing), SNX10 (Sorting nexin 10), CLIP4 (CAP-Gly domain containing
linker protein family member 4), and TYKZ are 95 CpG loci with significant difference of
methylation [43]. As the authors confirmed, this DNA methylation of selected gene loci in
lung macrophages is associated with metabolic differences regionally in the lung.

Next, mitochondrial transcription factor A (mtTFA) was remarkably decreased in the
skeletal muscle of COPD patients, which was enhanced by cigarette smoke [44]. This
phenomenon was positively correlated with the initiation and progression of COPD [44].

Interestingly, the methylation pattern changes can be affected by air pollution com-
ponents like particulate matter (PM), ozone, nitrogen oxides, and polyaromatic hydro-
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carbons [45]. Twenty-seven differentially methylated regions (DMRs) in CpGs in NEGR1
(Neuronal growth regulator 1), ARID5A (AT-rich interaction domain 5 A), FOXl2 (Fork-
head box 12), WDR46 (WD repeat domain 46), AKNA (AT-hook transcription factor), and
SYTL2 (Synaptotagmin like 2) genes were correlated with prolonged exposure to PM10 and
nitrogen dioxide [46].

Differentially methylated regions were detected in parenchymal fibroblasts in COPD,
located in genes such as TMEM44 (Transmembrane protein 44), RPH3AL (Rabphilin 3 A
like), WNT3A (Wnt family member 3 A), HLA-DP1 (Major histocompatibility complex,
class II, DP beta 1), and HLA-DRB5 (Major histocompatibility complex, class II, DR beta
5) [47]. In addition, GWAS suggested that common SERPINA1 variants might influence
COPD risk and associated lung function phenotypes [48]. Furthermore, hypermethylation
of SERPINA1 in COPD patients was associated with tobacco addiction [49]. As a result,
this epigenetic change can affect excessive mucus secretion and production, and goblet cell
metaplasia can cause COPD.

Histone acetylation is a reversible epigenetic change unequivocally associated with
increasing the propensity for gene transcription [50]. Histone deacetylation and histone
acetylation comprise two enzyme families (histone acetyltransferases (HATs) and histone
deacetylases (HDACs) [51] and play an influential role in the occurrence of inflammation
in COPD [52]. Studies proved the changeability of the acetylation/deacetylation balance
toward acetylation in patients with COPD (Table 2) and resultant inflammation [53]. An
increase in acetylated histone 4 was found in current smokers; conversely, ex-smokers with
COPD showed an increase in histone 3.

Cigarette smoking and oxidative stress are two significant features to inhibit inflam-
mation in lung parenchyma and airways in COPD cases. Consequently, cigarette smoking
elevated oxidant stress and promoted COPD glucocorticoid resistance during patients’
treatment. It was associated with higher HDAC2 activity [54]. Ding et al. reported
Trichostatin A-an inhibitor of HDAC1/2-suppressing skeletal muscle atrophy and histo-
morphological alteration in COPD individuals [55]. H3K9 histone acetylation was high in
the COPD-diseased human bronchial epithelial group [56].

Table 2. Gene methylation and histone acetylation in COPD.

Epigenetic
Mechanism Altering Factors Targets Phenotype/Function in COPD Context Reference

Methylation cigarette smoking,
air pollution

HSH2D, SNX10,
CLIP4, TYKZ

regulation of lung macrophage activity,
maintaining lung metabolic balance [43]

mtTFA
hypermethylation of the promoter is

associated with the initiation and
progression of COPD

[44]

NEGR1, ARID5A,
FOXl2, WDR46,
AKNA, SYTL2

air pollution-dependent regulation of
gene expression in Asians [46]

HLX, SPON2 alteration of functional gene expression
in parenchymal fibroblasts [57]

IREB2, PSMA4
smoke-independent association of

COPD with genetic variants in
chromosome 15q25.1

[58]

Acetylation
cigarette smoking,

regulators of HDACs
activity (Trichostatin A)

Histones: H3K9,
H3, H4

increased levels are associated with
inflammation, active gene transcription [56]

3.3. Transcriptional Regulation and Splicing

Transcriptional regulation (effective mechanism in proteostasis) in COPD is affected by
malfunction of factors, including β-catenin, TGF-β1, and SMAD signaling. These molecular
changes are accompanied by an epithelial to mesenchymal transition (EMT) [59] that can
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result in organ fibrosis or malignant tumorigenesis [60]. The transcription factor clusters of
β-catenin/Snail1/Twist were upregulated, translocated in the nucleus in COPD patients,
and correlated with EMT activity and airway obstruction [61]. Next, TGF-β1 was enhanced
in COPD samples but was not found to be related to EMT or airflow obstruction. On
the other hand, pSMAD was upregulated in the smoking COPD populations and directly
associated with EMT and airflow obstruction. mRNA post-transcriptional alterations
in COPD cases were closely related to oxidative stress and inflammation [62] and were
mediated by factors like RNA-binding proteins (RBPs), microRNA (miRNA), and long
non-coding RNA (lncRNA) and posttranscriptional modifications, such as polyadenylation,
pre mRNA splicing, and mRNA editing and turnover [63].

Non-encoding RNAs that are not translated into proteins are mainly divided into two
categories based on size: (i) short-chain non-coding RNAs (including miRNAs) and (ii) long
non-coding RNAs (lncRNAs) [64]. Both short and long non-coding RNA structures were
found as potential biomarkers in COPD prognostication and diagnosis. Qu et al. reported
that the lncRNA ENST00000502883.1 was decreased in peripheral blood mononuclear
cells in COPD patients. At the same time, Qie et al. found that lncRNAs, including
ENST00000447867 and NR-026690, were significantly upregulated in CD4+ T cells of COPD
samples [65].

Following, miR-1236 was found to bind to 3/-UTR of TLR4 mRNA and pose the risk
of ventilator-associated pneumonia in COPD patients. miR-206 was upregulated in skeletal
muscle and plasma of COPD patients and associated with advanced disease [66].

MiR-206 expression was higher in the lung tissues, and the manifestation of NOTCH3
and VEGFA mRNAs was decreased in the COPD group [67]. MiR-199a-5p was repressed
by approximately four times and enhanced regulatory T cells in COPD patients compared
to healthy smokers [68]. Interestingly, the miRs were differently regulated by tobacco
smoking and biomass exposure; miR-34a was downregulated in COPD exposed to biomass
compared with tobacco smokers [69].

Some of the RBPs, including iron-responsive element binding protein 2 (IREB2),
Human antigen R (HuR), and T-cell antigen 1 (TIA-1), are highly expressed in the lungs
of COPD patients. In IREB2 knockout mice, smoke-induced pulmonary inflammation
was found, but mucociliary airway clearance was regular [70–73]. Next, the miR-218-5p
in human bronchial epithelial cells upon cigarette smoke extract exposure leads to higher
overexpression of chemokines, such as CCL20 and CXCL8, which play an essential role in
COPD progression [74].

The genes associated with COPD progression differ from normal genes due to the
transcriptional complexity of the gene loci that can produce up to 2.65 transcripts per gene—
this is much more than the expected number of transcripts [75]. This phenomenon was
connected with these genes’ susceptibility to alternative splicing [76]. Interestingly, the
genes mostly associated with COPD, like SERPINA1 and AGER, showed highly regulated
expression of splice variants in lung tissue [77,78], and splice variants were replaced with
alternative splicing products. This link of COPD-associated genes may be one possible
reason behind the development and progression of the disease.

4. Pathogenesis of Lung Cancers
4.1. Lung Cancer Epidemiology and Subtypes

Lung cancer (LC) is one of the most prevalent cancers, with more than two million
new cases yearly, constituting 21.2% of all diagnosed cancers in men, and 8.6% among
women, after breast and colorectal malignancies. LC is one of the most common causes
of death, responsible for more than a million annually. It has a relatively high fatality
rate: the overall mortality ratio to incidence is 0.87. LC is the leading cause of mortality in
highly developed countries, and lung cancer mortality accounts for 18–20% of deaths due
to cancer yearly [79]. LC in women, as compared with men, occurs at a slightly younger
age, and almost half of LC cases in patients under 50 years old occur in women, even in
those who have never smoked.
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Cancer statistics in Poland (data from 2020) show that around 30,000 new LC cases
were diagnosed in 2020, accounting for 14.4% of cancer incidence [80]. LC mortality was
23% of all cancer deaths. In men, it is the predominant type of cancer, accounting for
17.8% of the total cancer incidence. At the same time, it is the second most common cancer
incidence in women, accounting for 11% of the total cancer incidence right after breast
cancer [80,81].

Five-year survival after lung cancer surgery is approximately 10–70% depending on
the stage of the tumor. The best prognosis is for early-stage lung cancers (American Joint
Committee on Cancer; AJCC stage I)—the 5-year survival rate exceeds 80%. However, only
16% of LC patients are diagnosed at an early stage [82,83]. Unfortunately, most NSCLC
patients are diagnosed in an advanced stage; the 5-year survival rate for LCs in an advanced
stage (AJCC stages III-IV) is about 6,6% [82,83]. The high mortality of LC cases also results
from a high percentage of patients starting their treatment at an advanced stage, once
tumors have metastasized. In the case of metastasis, mainly to the brain, the 5-year survival
rate of patients drops to only 4% [84].

LC originates in the epithelial cells of the airways. The lesion often starts growing
centrally, in the large bronchi, or peripherally (in the periphery of the lung, closer to the
chest wall). It can also spread through local infiltration of the anatomical structures of
the mediastinum, diaphragm, pleura, and chest wall. Once cancer spreads from the lung,
it infiltrates the regional lymph nodes (infiltration LC metastases), most often appearing
in lymph nodes located regionally, followed by the second lung, liver, brain, and bone
marrow [85].

In clinical classification, depending on the treatment concerns, two main types of
LCs are distinguished: (i) non-small cell lung carcinoma (NSCLC), representing almost
80% of all primary LCs, and (ii) small cell lung carcinoma (SCLC), which accounts for
approximately 20% of LCs [86]. The SCLC is more insensitive to chemo-and radiation
therapies than NSCLC. The NSCLC patients, after cancer resection, may be additionally
treated with adjuvant chemotherapy.

Among the NSCLC type, the three main NSCLC subtypes are distinguished: squa-
mous cell carcinoma (SSC; 30–40% of patients), adenocarcinoma (AC; 10–30% of patients),
and large cell cancer (LCC; 10% of patients) [87]. SCC carcinoma arises from squamous
epithelial cells, morphologically characterized by the proliferation of atypical, often pleo-
morphic squamous cells [88]. The SCC subtype is more frequent in males and elders and is
associated with cigarette smoking. Unfortunately, LC, especially SCC, can be asymptomatic
until it reaches a significant size. AC is more common among younger women, Asian
populations, or never-smoking patients, and LCC is characterized by rapid growth and
distant metastases [89].

4.2. Genetics of Lung Cancer
4.2.1. Genetic Susceptibilities to Lung Cancers

Apart from environmental factors, many genetic susceptibilities may be involved in
carcinogenesis in the lung, and numerous molecular changes are responsible for different
histopathological types of LC. So far, many molecular alterations (including mutations,
polymorphisms, and expression changes due to promoter hypermethylation) in many
genes localized in different chromosomal regions have been proposed as leading to NSCLC
development [90]. Some patients are more vulnerable to this carcinogenic activity due to
inherited genetic mutations or polymorphisms (mainly single-cell polymorphisms) impair-
ing the DNA damage repair processes or the inactivation of harmful components of tobacco
smoke. For example, polymorphism in the tumor suppressor protein 53 (TP53) may weaken
or change its function and the Arg72Pro alternative results in a slight structural change
accompanied by higher efficiency in cell cycle arrest and DNA repair. This polymorphism
increases the LC in heavy smokers (observed for patients with squamous-cell carcinoma);
however, the increase in LC depends on the population studied [91,92]. On the other hand,
the Arg72Pro variant is related to an elevated risk of developing pancreatic cancer among
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males, hefty smokers, and excessive alcohol drinkers [93]. Asp353Glu polymorphism
in TP53 binding protein 1 (TP53BP) can worsen the cellular response to DNA damage
and contribute to the increased risk of LC [94]. Another gene whose single nucleotide
polymorphism can increase the LC risk is P21/CDKN1A. The Ser31Arg variant leads to a
lower apoptosis rate and extension of G1 cell cycle arrest as a response to the carcinogens
(i.e., smoke) [91].

4.2.2. Genetic Factors Involved in the Pathogenesis of NSCLC

LC initiation and progression result from permanent genetic changes that include
point mutations, deletions, translocations, amplifications, and epigenetic modifications.
Genetic analyses of NSCLC subtypes have shown a higher mutation rate in these tumors
compared to acute myeloid leukemia, glioblastoma multiforme, breast cancer, ovaries,
and large intestine [95]. The involvement of several genetic factors in the mechanisms of
tumorigenesis in the lung has been revealed; however, in about half of the patients, critical
molecular change has not been established.

The vast majority of mutant genes encode proteins involved in the receptor tyrosine
kinase (RTK) signaling pathway, promoting proliferation, survival, migration, and invasion
of NSCLC cells [96]. Some alterations were found in the genes for the tyrosine kinase
receptors: EGFR, ALK, MET, RET, FGFR1, and DDR2, or in genes associated with cell
signaling mediated by Kirsten rat sarcoma viral oncogene homolog (KRAS), B-Raf proto-
oncogene, serine/threonine kinase (BRAF), and phosphoinositide-3-kinase catalytic subunit
alpha isoform (PIK3CA) in NSCLC [97]. Another frequently mutated gene is Phosphatase
and tensin homolog deleted in chromosome 10 (PTEN), having a solid TSG role due to the
negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway. Moreover, the
PTEN protein plays a role in chromosomal stability maintenance and activates the RAD51
protein in the DNA repair process [98]. According to the TCGA data, the PTEN mutation
frequency strongly depends on the LC subtype, occurring in 15–20% of the SCC and only
3% of AC [99]. Early growth response gene 1 (EGR1) gene expression predicts PTEN levels
and survival after surgical resection of NSCLC; lower levels of EGR1 are associated with
poor outcomes [100]. Although the genetic changes occurring in both ADC and SCC affect
RTK signaling, these NSCLC subtypes have different dominant mutations, amplifications,
or rearrangements [97].

Numerous transcripts in which genetic changes have occurred have been identified in
adenocarcinomas, including EGFR, EML4-ALK, KRAS, MET, RET, BRAF, and TP53 [97,101].
One of the most common genetic changes characteristic of the adenocarcinoma lung cancer
subtype is the KRAS gene mutation affecting the proliferation and development of chemo-
resistance and cancer cell survival [97]. The second most prevalent is the Epidermal growth
factor receptor (EGRF) gene mutation, occurring in 10–15% of LC patients. EGFR mutation
increases cancer cells’ proliferation, survival, angiogenesis, and metastasis. There are
two therapies targeting the mutated EGFR-small-molecule EGFR tyrosine kinase inhibitor
(TKI)—gefitinib and erlotinib—and monoclonal anti-EGFR antibody—cetuximab. The
L858R missense mutation (exon 21) stands for the vast majority of the EGFR kinase muta-
tions (85%) and is sensitizing to EGFR TKIs [102]. Based on the mutational status of the most
prevalent genes, EGFR, KRAS, and TP53, lung adenocarcinoma classification into seven
prognosis-related subtypes can be performed. EGFR-positive patients that underwent lung
surgery had better OS than tumors with co-mutations in KRAS and TP53 [101].

EGFR, one of the most commonly modified genes in AC, is rarely altered in the SCC
subtype [103]. In the SCC subtype, the mutations mainly concern the genes for FGFR1,
PIK3CA, DDR2, MET, SOX2, PTEN, and CDKN2A [102]. The two most common mutations
in the SCC subtype, present in the majority of SCC patients, are the TP53 and Cyclin-
dependent kinase inhibitor 2A (CDKN2A) (mutations [104]. Highly prevalent (accounting
for up to 1

4 of cases) is the fibroblast growth factor receptor 1 (FGFR1) amplification. Altered
FGFR1 is associated with increased cancer cell proliferation and survival but also with the
development of chemo-resistance rearrangements [97].
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The KEAP1 is part of the Keap1/Nrf2 signaling pathway, which is critical in main-
taining homeostasis and protecting against various respiratory tract diseases [105]. This
pathway has been linked to oxidative stress, tumor progression, and the development of
resistance to chemotherapy. The transcription factor NRF2 regulates the activity of enzymes
involved in carcinogen detoxification [106]. Moreover, mutations in the genes encoding the
Keap1 and Nrf2 proteins are associated with the short survival time of patients diagnosed
with LCC [106].

The diagnosis of molecular changes is helpful in the classification of the neoplasm
and prognosis of the course of the disease and also supports the selection of the optimal
therapy [107]. The conducted molecular research, including the most modern approach—
next-generation sequencing (NGS)—allows for developing an ever more comprehensive
panel of assessed molecular markers. In turn, detailed diagnostics broaden the possibility
of qualifying NSCLC patients for molecularly targeted therapy.

Detection of Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma
kinase (EMLK4-ALK) and ROS Proto-Oncogene 1, Receptor Tyrosine Kinase (ROS1) gene
rearrangements in NSCLC is required for directing patient care. For screening the ALK-
positive patients, two methods: (i) the fluorescence in situ hybridization diagnostic test
(FISH) and (ii) immunohistochemistry assays, have been approved by the FDA [108]. In
the cases where established gold standard methods might give false-positive results, the
NGS approach is reliable for assessing ALK and ROS1 rearrangement [109]. In the case
of ROS1 tyrosine kinase, many fusions with different proteins are detected, e.g., CD74-
ROS1, SLC34A2-ROS1, FIG-ROS1, or CCDC6-ROS, among others [110]. Detection of the
ROS1 rearrangements can be performed with FISH break-apart probe methodology and
targeted real-time PCR (for already-known fusions) and NGS panels (for novel fusion
partners) [108].

In addition to somatic mutations predisposing to lung cancer and mutations acquired
from exposure to inhaled carcinogens, genetic instability is an essential factor contribut-
ing to lung cancerogenesis. The chromosomal instability via structure and/or number
aberration has been claimed as a universal biomarker. The structural alteration of the chro-
mosomes may lead to the loss of heterozygosity-LOH (more frequently) and microsatellite
instability—MSI [90]. Those changes may occur both within the coding region of the genes
or as microdeletion in the non-coding sequences. Several studies in LC revealed the pres-
ence of LOHs in different chromosomal regions: 1p, 3p 7q, 9p, 11p, 12q, and 16q. The allele
loss occurring within the most studied area—the short arm of the third chromosome—loci of
many TSGs, represents the “discontinuous LOH pattern.” LOHs were detected in different
concentrations in several sites, starting from the short 600-kb 3p21.3 region. Furthermore,
minor and less frequent alterations were observed in preneoplastic/preinvasive respiratory
epithelium, and the range of loss increased with cancer progression [111]. Two frequently
affected regions (FARs): LUCA (lung cancer region in 3p21C) and AP20 (Alu-PCR clone
20 region, 3p21T), are also located within 3p [112]. In the study performed on the bronchial
epithelia of smokers (in the pre-cancer stage), the occurrence of genetic instability in 3p21,
9p21, 17p13, and 5q11 was associated with carcinoma in situ incidences [113]. The high
LOH/MSI frequency within the TSPs located in 3p-RARβ, FHIT, and MLH1 were correlated
with tobacco smoking, indicating the single factor boosting the risk of developing COPD
and lung cancer [114]. Many studies on LOH/MSI presence in one genomic region showed
contradicting information regarding the association of the genetic change with cancer
subtype, stage, or smoking. Therefore, instead of analyzing LOH/MSI in one locus, one can
rely on the indicator that calculates the percentage of chromosomal loci with LOH/MSI
concerning all examined loci-Fractional allele loss (FAL) [90].

4.3. Epigenetic Susceptibilities to Lung Cancers

Different DNA methylation patterns in cancer cells compared to normal tissues have
been studied for more than 25 years. The cancer cell can undergo global genome hy-
pomethylation, including demethylation of the promoter regions of oncogenes or the
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repetitive DNA, which under physiological conditions are heavily methylated [115,116].
The reverse process may take place in the areas that regulate the expression of the tumor
suppressor genes (TSGs), leading to changes in transcription and expression [115–117].

Demethylation of the retrotransposons (the mobile elements of the genome) leads to
their increased transcription and recombination events, though linking global hypomethy-
lation with genomic instability [117,118]. Long interspersed elements (LINEs), covering
almost 17% of the human genome, are observed to be transcriptionally active in many
cancers. The LINE-1 region demethylation in LC results in the transposition of the retro-
element, increasing the genomic instability and finally, contributing to chromosomal al-
teration formation. Its hypomethylation in early-stage NSCLC was indicated as a poor
prognosis factor. However, LINE-1 demethylation may suggest that patients need post-
surgical adjuvant therapy [119]. On the other hand, LINE-1 hypermethylation was regarded
as a good prognostic factor for LC patients [118].

The aberrant methylation in cancer usually occurs at CpG islands located in promoter
regions and the first exon of the TSGs, generally unmethylated in normal cells [120]. Tissue-
specific DNA methylation, particularly the genes’ promoter hypermethylation, is a valuable
biomarker of early detection, prognosis, risk assessment, and disease recurrence [121–123].
One of the first analyses of the CpG island methylation pattern in 98 primary human can-
cers, using restriction landmark genomic scanning (RLGS), analyzed 45,000 unselected CpG
islands. RLGS analysis demonstrated that an average of 600 CpG sites were methylated
aberrantly in different tumors; many changes occurred in early-stage cancer cells [124].
Furthermore, the CpG-island methylation pattern was also observed among distinct tumor
types. In the genome-wide search for methylated CpG islands in LCs, the microarray
analysis of the methylated immunoprecipitated DNA (MeDIP-methylated DNA immuno-
precipitation) has been performed on more than 50 k CpG islands (24 659 gene promoters
described in Human Refseq and 28 226 islands annotated on the UCSC genome browser).
MeDIP revealed 2414 genomic positions differentially methylated between the tumor and
adjacent lung tissue, with the vast majority of CpG hypermethylated in LC that were
annotated to 477 TSGs [125]. Some of the indicated genes, involved in the regulation of
gene transcription, apoptosis, DNA binding, or cell adhesion, were significantly hyperme-
thylated in cancer: DMRTA2, EVX1, GATA3, HOXA2, HOXA10, IRX2, PCDHA12, POU3F4,
PRDM14, SFMBT2, SHOX2, and TAL1 [125]. The silencing of HOXA2 and HOXA10 expres-
sion genes encoding the transcription factors was associated with worse prognosis [125].

Several differentially methylated genes were identified with the whole-genome DNA
methylation profile analysis of the microarray data covering nearly half of the million
cytosine positions in the human genome [126]. In addition, 3% of the analyzed CpG were
differentially methylated in the lung AC; 60% of sites were hypermethylated (3492 genes),
and 40% were hypomethylated (5860 genes). Among the silenced genes are the transform-
ing growth factor ß (TGFß), Insulin-like Growth Factor 2 (IGF2), and HOX transcription
factors family. Interestingly, the interleukins and chemokine ligand (c–C motif 3, 4, 8, 11 and
13, 14, 15, 26) genes having the immunomodulating activity were hypomethylated [126].

5. Role of Lung Inflammation in COPD Development and Lung Cancer

The progression of COPD is characterized by intense lung inflammation resulting
from long-term tissue damage and acute inflammation induced by noxious particles [127].
COPD’s chronic inflammatory process involves innate and adaptive immunity and presents
heterogeneity [128]. It results in both emphysema with parenchymal involvement and
chronic bronchitis, which predominantly affects the small airways [129]. A characteristic
feature of COPD is the presence of acute exacerbations, which are typically associated with
accelerated inflammation. Important causes of these exacerbations include bacterial and
viral infections and environmental factors [130], which are strongly associated with more
frequent hospitalization and mortality [131]. In the majority of smokers, COPD symptoms
develop many years after the initiation of smoking and they are diagnosed over the age of
≥45 years [131] with higher risk to II, III, and IV COPD stages [132]. Interestingly, it has
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been observed that smoking causes the senescence of the alveolar epithelial cells in a dose-
and time-dependent manner. The senescence-associated beta-galactosidase activity and
the p21(CIP1/WAF1/Sdi1) protein expression increase in the epithelial cells. Subsequently,
epithelial cells secrete significant amounts of pro-inflammatory cytokines [133].

Due to the accumulation of inflammatory mucous exudates in the lumen and an
increase in the tissue volume of the bronchial wall, the inflammatory process in COPD is
persistent despite smoking cessation and progresses over time [134]. The increase in the
tissue volume of the bronchial wall was characterized by infiltration of the wall by both
innate (macrophages/neutrophils) and adaptive inflammatory immune cells (CD4, CD8,
and B lymphocytes) that formed lymphoid follicles [135].

The factors that drive inflammation in COPD after smoking cessation have not been
established. However, autoimmunity, embedded particles/heavy metals from smoking,
and chronic bacterial infection have all been proposed to be involved [134]. In the study,
autoimmunity was characterized by the presence of anti-elastin antibodies and T-helper
type 1 [T(H)1] responses, which correlated with emphysema severity [136]. Next, the
exacerbations in COPD patients were directly connected with high levels of cadmium and
manganese in the lungs of patients with advanced COPD and infection with bacteria like
Haemophilus influenzae (NTHi). In addition, it was shown that NTHi could activate lung T
cells and cause the expression of reactive oxygen species and proteases in patients with
COPD [137].

The inflammatory process in the pulmonary tissue of COPD patients is characterized
by an influx of monocytes, neutrophils, CD8+ lymphocytes, and sometimes eosinophils [20].
The accumulation of macrophages in the alveoli, bronchioli, and small airways significantly
correlates with the development of emphysema [138].

Biopsy analysis of COPD samples detected an increase in neutrophils and CD8+ cyto-
toxic lymphocytes in the mucosal epithelium and macrophages in the subepithelium [139].
Macrophages can be directly activated by cigarette smoke and are thought to play a
critical role in sustaining the chronic inflammation in the pulmonary tissue of COPD pa-
tients [140]. Neutrophils can subsequently participate by responding to chemotactic factors
released by macrophages, epithelial cells, and other resident cells. Activated neutrophils
and macrophages can then contribute to developing tissue damage and emphysema by
releasing ROS and proteinases [141,142].

As chronic inflammation is an essential process in COPD, pro-inflammatory mediators
such as chemokines (e.g., interleukin (IL)-8) and cytokines (e.g., TNF-α) possibly play an
essential role in the pathogenesis of COPD. These modulators of immune cell function are
found in the sputum and bronchoalveolar lavage fluid of COPD patients [143]. Additionally,
these cytokines were detected in the plasma/serum of COPD, which can point to the
systematic burden effect of prolonged COPD inflammation [144].

6. Biological Mechanisms of COPD and Lung Cancer Development
6.1. Smoking in COPD and Lung Cancers

Smoking is the most common cause of COPD and LC, associated with approximately
85–90% of cases of exposure to tobacco smoke [145]. Since tobacco smoke contains sev-
eral dozen chemical compounds with proven irritating and carcinogenic importance, the
patient’s health is negatively affected by active smoking and passive smoking [146]. The
number of cigarettes smoked daily (smoking intensity) and initiation of smoking at a young
age increase the risk of developing lung cancer. With the duration of exposure to tobacco
smoke (the period of addiction), the risk of developing LC increases significantly, but the
risk is two to three times higher in men than in women [145].

Exposure to secondhand smoke (SHS) also plays a crucial role in lung cancerogenesis.
SDS is formed from the side-stream smoke emitted into the environment from smoldering
cigarettes and other tobacco products between puffs and from the mainstream smoke
exhaled by the smoker [147]. Many studies have shown strong and consistent associations
between SHS and various diseases, with the most substantial evidence for developing lung
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cancers, ischaemic heart disease, and asthma (new cases). In the case of SHS’s effect on
the health of children, there is strong evidence for low birth weight, sudden infant death
syndrome (SIDS), childhood chronic respiratory symptoms, lower respiratory illness in
young children, asthma (new cases and exacerbation), middle-ear effusion, and infection in
young children [148]. It has been estimated that SHS is independently the third leading
preventable cause of death, and therefore, a significant public health burden [149]. Globally,
80% of the world’s smokers live in low- and middle-income countries (IARC/WHO World
Cancer Report 2020) [148].

Smoking cessation attempts may reduce the morbidity and mortality due to lung
cancers; however, difficulty in quitting increases with increased nicotine dependence and
the number of prior quit attempts [150]. In people who quit smoking, the risk of LC
gradually decreases; after many years, it is about twice as high as in non-smokers [145].

In experiments with animal models, exposure to cigarette smoke led to tissue re-
modeling resembling the changes in COPD [151]. The activity of the irritating agents in
cigarette smoke and coal and liquid fuel fumes may disequilibrate the oxidant–antioxidant
balance [152]. These imbalances may lead to the leakage of electrons from the electron
transport chain, causing oxidative stress locally in the lung tissue [153]. In many investiga-
tions, reactive oxygen species (ROS), oxidative imbalances and activity are indicated as a
process triggering the development of the NSCLC and COPD [154,155].

With the co-existence with impaired antioxidant defense, all these issues lead to oxida-
tive and carbonyl stress. Both of these states play a significant role in COPD pathobiology
and may account for the development of substantial comorbidities of this disease. On the
other hand, in both COPD and LC, the leukocytes and macrophages will release ROS in
the ongoing inflammation process in bronchial branches, which secondarily contributes to
oxidative–antioxidative imbalance [154,156].

6.2. Oxidative Stress

Cellular damage or loss of viability in the air sacs of the lungs is commonly observed
in patients with COPD. Risk factors, such as smoking and air pollution, aggravate and
accelerate COPD symptoms based on molecular mechanisms connected with oxidative
stress and the recruitment of inflammatory cells or neutrophils to the lungs [157].

Oxidative stress is caused by over-accumulation of the ROS and reactive nitrogen
species (RNS), which leads to detrimental effects such as DNA damage, cellular damage,
and premature aging. It acts as a trigger for several diseases [158,159]. ROS includes ions
like hydroxyl radical (·OH) and superoxide anion (O2·−), which play an essential role in
defense against pathogens and intercellular signaling. These free radicals possess unpaired
electrons, which allow the oxidative transfer of electrons to other molecules, damaging
amino acids, fatty acids, or even nucleic acids. It can also lead to further production of ROS
or its inactivation. The human organism has several protective antioxidative mechanisms
and antioxidant sacrificial proteins, such as albumin, mucin, and glutathione, and some
antioxidant enzymes like superoxide dismutase (SOD), catalase, and glutathione peroxidase
(GPx), which neutralize the ROS and prevent damage [160,161]. However, upon long-term
oxidative stress exposure, these defense mechanisms fail, leading to imbalances in oxidant–
antioxidant balance. This disproportion may lead to the leakage of electrons from the
electron transport chain, causing oxidative stress locally in the lung tissue [154].

In the COPD patient context, free radicals start damaging the lung cells due to the
oxygen-rich environment and good blood pulmonary circulation, which is prone to free
radical production [162]. For smokers and people exposed to high levels of air pollution (in-
cluding air-borne pathogens and toxins), the exposure to ROS is relatively high, increasing
oxidative stress.

Consequently, oxidative stress on the molecular level leads to alterations in protein
structure and function and triggers inflammatory cell response. The ROS and RNS alter
amino acid residues, thus negatively affecting the secondary and tertiary protein structures
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and their function. Similar changes were observed due to thiol or amine modifications
caused by oxidative stress conditions [163,164].

Certain inflammatory factors such as TNF-α, IL-8, and leukotrienes (LTB4) in cells lead
to an inflammatory response and release of free radicals from cells along with proteases
and cytokines [165]. This phenomenon activates the neutrophils and their recruitment in
the lungs, which results in emphysema and bronchitis during COPD [142]. Therefore, the
damaged lung tissues lose elasticity in the smooth muscle, and the secretion of mucus
blocks the airways [166].

6.3. Protease Involvement and Matrix Remodeling
Role of Proteases in COPD and Lung Cancer

Several enzymes, including proteases, play an essential role in COPD disease pro-
gression. The three most important families of proteases involved in COPD progression
include (i) serine proteases (responsible for alveolar tissue destruction), (ii) MMPs (induce
severity of COPD), and (iii) cysteine proteases (control of cellular apoptosis) [167]. The func-
tion of these proteases is controlled by endogenous inhibitors (known as anti-proteases),
which prevent their over-secretion and over-activation, and thus do not allow for their
uncontrolled harmful effects. However, in COPD, this protease–anti-protease stability is
disrupted and affects lung damage [168]; protease-inhibitors imbalance is enhanced by a
decrease in antiproteases such as α1-protease, neutrophil elastase, and leukocyte protease
inhibitors and secretory proteinase inhibitors, which are inactivated by oxidants.

Serine proteases neutrophil elastases (NE) play an anti-microbial role (especially in
Gram-negative bacteria) during neutrophil phagocytosis to digest the microbial outer
membrane proteins in a ROS-dependent mechanism [169,170].

In physiological conditions, NE is predominantly expressed on the cellular membrane,
while 4–5% of NE is released extracellularly [171]. In COPD cases, a high concentration of
NE in the extracellular membrane results from neutrophil necrosis [172].

This NE dysregulation results in several detrimental effects in the lungs, including
mucus obstruction of the airways (accompanied by upregulated mucin MUC5AC gene
expression) and bronchial epithelial cells. This phenomenon is connected with intracellular
signals, such as activation of ROS, NADPH quinone oxidoreductase 1 (NQO1), and EGFR
higher expression [173–175]. The higher NE level leads to the release of TGFα on the cell
surface and increases the epithelial permeability by degradation of the junctional proteins
(Zona occludins-1 and E-cadherin), which also activates the apical receptor, EGFR [176–178].
All these events increase goblet cell metaplasia and enhance mucus production in the airway
epithelium [179]. High NE inflicts damage to ciliary structures, reduces their motility, and
disturbs the hydration of the airway surface [180,181]. NE plays a significant role in COPD
progression by degrading extracellular matrix (ECM) proteins such as elastin on the release
of TGF-β1, thereby damaging the alveolar structure, causing emphysema and subepithelial
fibrosis [182–184]. NE has also been found to activate several pro-inflammatory factors,
such as IL-8 (by activating TLR4 and EGFR signaling pathways), leading to increased
COPD severity in patients [166].

Other serine proteases involved in COPD progression include cathepsin G and pro-
teinase 3, which are involved in degrading proteins such as elastin and phospholipid
transfer protein) [185]. A study identified higher amounts of elastin neo-epitopes from cys-
teine G and proteinase 3 activity in COPD patients compared to normal individuals [186].

The MMPs are responsible for the degradation of the ECM components and are
considered vital in tissue remodeling [187]. The elevated levels of these proteases have
been implicated in lung damage and COPD development [188]. The MMPs most crucial
for COPD severity include MMP-2, MMP-9, MMP-12, and MMP-13. Studies have indicated
that MMP-12 interacts with the enzyme macrophage elastase in smokers, resulting in
emphysema in COPD patients [189]. MMP-12 levels and activity from COPD patients’
sputum samples were directly related to the extent of emphysema measured from lung
function [190]. Some genetic connections have also been identified linking MMP-12 and its
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role in COPD progression. Individuals with homozygous A/A allele SNP in the rs652438
region in MMP-12 have high chances of severe COPD [191]. These SNP have also been
associated with emphysema and increased macrophage infiltration [192].

MMP-9 can degrade proteins such as fibronectin and elastin useful in the cellular
invasion of the basal membrane by mononuclear phagocytes and synovial fibroblasts
where it is present [193]. MMP-9 has been found to play a significant role in the migra-
tion of eosinophils, and its accelerated activation with MMP-2 was linked with airway
inflammation in COPD [194,195]. Upregulation of MMP-9 was found in serum, sputum,
and peripheral blood samples collected from COPD cases compared with non-COPD con-
trols [14,196]. Additionally, the increased MMP-9 level was associated by the production of
cough and decreasing FEV1 in a population-based cross-sectional study [197]. It plays a
significant role in fibrosis during COPD due to its matrix remodeling properties [198,199].
Next, MMP-13 has also been found to be overexpressed in the lung tissues of COPD pa-
tients [200]. In a viral exacerbation model of COPD, MMP-13 was identified as responsible
for lung structure destruction [200].

Cysteine proteases like caspase-3, caspases-8, and caspase-9 are essential in controlling
apoptosis in COPD patients. High mRNA expressions of caspases were observed in COPD
patients, where an increased number of alveolar epithelial and endothelial cells were found
to be apoptotic [201]. In the case of the bronchial epithelial cells, apoptosis was found to be
mainly due to caspase-8 activity, which was triggered by increased levels of the protein
p53-a cell cycle regulator [201]. Next, cathepsin S was found at a high concentration level
in the serum of COPD patients [202], and cathepsin type K was detected at a high level in
lung homogenates from COPD patients exposed to chronic smoking [203].

Aspartyl protease–cathepsin E was observed to mediate the expression of the mito-
chondrial fission protein, dynamin-related protein 1, which destroys the lung parenchyma
via caspase-dependent apoptosis in murine models [204]. It is directly related to airflow
limitation and inversely to lung function in COPD patients [205].

Protease–antiprotease imbalance is one of the most crucial factors for COPD disease
progression. The most critical antiprotease deficiency triggering COPD is that of α-1-
antitrypsin (AAT), which plays a vital role in neutrophil elastase inhibition and other
proteases such as proteinase-3, cathepsin G, caspase-3, and neutrophils serine protease-
4 [206–208]. It was found that genetic mutations (a single allele of the Z α-1 antitrypsin)
are responsible for AAT deficiency [209], and this defect results in a lack of NE regulation
resulting in parenchymal destruction of the lung [210]. Other protease inhibitors, such as
chelonianin, elafin, and secretory leukocyte protease inhibitors (SLPI) can inhibit NE [211].
Consequently, the deficiency of these proteases leads to emphysema, alveolar tissue damage,
cellular apoptosis, and higher severity of COPD.

Among potential genes of interest are those involved in ECM reorganization, which
plays a crucial role in cancer development and progression. ECM remodeling accompanies
many physiological processes like embryogenesis, angiogenesis, apoptosis, wound healing,
and damage repair [212,213]. Physiologically, one of its primary functions is the degradation
of collagen type IV, a basement membrane component [214].

In pulmonary carcinoma, the presence of MMP2 protein or elevated gene expression
was demonstrated both in highly invasive areas and those of moderate growth (lepidic
growth) [215], as well as in stromal fibroblasts [216]. It was also observed in preneoplastic
bronchial squamous lesions [217]. The upregulation of MMP2 metalloproteinase expres-
sion in NSCLC patients has been found to correlate with larger tumor size, lymph node
involvement, and distant metastasis [218]. In ECM remodeling, the action of MMPs is
countered by the endogenous tissue inhibitors of the metalloproteinases (TIMPs) family,
i.e., these act as inhibitors of tumor growth and angiogenesis. One TIMP family member,
the TIMP3 protein, inhibits tumor growth by preventing the adhesion of cells to ECM and
promoting the activation of apoptosis via the caspase-8 pathway [219]. The TIMP3 protein
explicitly inhibits the action of MMPs by non-covalently binding to them and protects the
proteolysis of the ECM. Due to its pro-apoptotic function, TIMP3 is regarded as a tumor
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suppressor gene (TSG) [220]. TIMP3 expression has been altered in many human cancers,
i.e., gastric, hepatic, prostate, endometrial, and lung [221]. In NSCLC, TIMP3 silencing by
EZH2 protein, known to cause histone lysine methylation (H3K27), was linked to tumor
progression and metastasis [215]. TIMP3 expression decreases with pTNM grade and nega-
tively correlates with cancer staging and prognosis [222]. Downregulation of the TIMP3
gene has been observed both in cancer tissue and in neighboring non-cancerous tissue and
correlated negatively with miR-20a, which can point out the epigenetic silencing of the
genes controlling the ECM remodeling. TIMP3 downregulation observed in long-term
smokers may be one of the examples of epigenetic protease deregulation and one of the
molecular causes of cancerogenesis among SCC patients [223].

7. Diagnosis and Treatment of COPD
7.1. Detection of COPD

At present, little is known about when the earliest changes of COPD begin in sus-
ceptible individuals. Several authors suggest that these changes may start as early as in
utero, progressing during childhood, for example, with recurrent infections, exposure to
passive smoke, etc., and go on into adolescence, with further active and passive exposure
to cigarette smoke, resulting in a reduction in the peak attained lung function, which
subsequently increases the risk of being diagnosed with COPD in later life.

There is a great deal of uncertainty regarding the moment of COPD onset. The
condition may develop in utero [224,225], stay dormant or progress during childhood,
and acquire the detectable phenotype only in adulthood. Next, external risk factors, such
as active and passive exposure to cigarette smoke can significantly accelerate disease
development at any age. The importance of early COPD diagnostics is emphasized by all
research that explicitly stresses the difference between early and mild forms of COPD [226].
A mild form of COPD describes the degree of airflow obstruction, which can be persistent
for several years, while early COPD describes the time point and substantial processes of
the disease onset. Unfortunately, these two terms were used interchangeably at the dawn
of COPD research, which distorted present statistical data. The situation is worsened by
the uncertainty in the early COPD stage definition due to the heterogenicity of the disease.

Traditionally, COPD is diagnosed by the method of spirometry, which detects
FEV1/forced vital capacity (FVC) ratio. The post-bronchodilator administration ratio
FEV1/FVC < 0.70 indicates the presence of persistent airflow obstruction and confirms
the presence of COPD. To date, spirometry is the only instrumental method used for the
clinical diagnostics of COPD, as it is considered the most reproducible and objective for
measuring airflow obstruction. Nevertheless, accumulating evidence demonstrates that the
exclusive use of spirometry as the only diagnostical approach is not enough. SPIROMICS
study [227] showed that patients with preserved pulmonary function, meaning no present
evidence of airflow abruption, may have other respiratory symptoms, such as reduced
exercise capacity and more frequent exacerbations compared with asymptomatic patients,
indicating the spirometry method to be sufficient for the diagnosis of the established dis-
ease but not its onset. In addition, patients with the same numerical degree of airflow
obstruction can obtain different severity of other COPD symptoms and a different course
of the disease [228].

7.2. COPD Patient Classification and Treatment

In 2022, the Global Initiative for Obstructive Lung Disease (GOLD) proposed a com-
bination of two evaluation systems for COPD patient classification (https://goldcopd.
org/archived-reports/, accessed on 15 December 2022). The first one presents a spirom-
etry scoring system, i.e., grading the patient from one to four based on the percentage
prediction of FEV1, and the second shows the separation of patients into four groups
(A, B, C, or D) based on the symptom severity and the exacerbation occurrence rate
in the past year. Recently, the new system was suggested in the 2023 Gold Report
(https://goldcopd.org/2023-gold-report-2/, accessed on 15 December 2022), where groups

https://goldcopd.org/archived-reports/
https://goldcopd.org/archived-reports/
https://goldcopd.org/2023-gold-report-2/
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C and D are combined into a group E, highlighting the clinical relevance of exacerbations
(Figure 2). Thus, the modern assessment system considers structural anatomical changes,
resulting in the decrease of predicted percentage FEV1, symptomatic pattern, and the
dynamic of exacerbation, thereby reflecting the change towards personalized analysis and
choice of individual COPD treatment.
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Circulating cancer cells (CTCs) in peripheral blood have already shown diagnostic
and prognostic utility in oncology [229]. In studies with computed tomography scan, CTCs
were detected in patients with COPD (without clinically detectable LC). This strongly
highlighted the value of this parameter for monitoring CTC-positive COPD patients for
early LC diagnosis [230]. Furthermore, it was shown that alveolar cells may be discharged
into the bloodstream and that these cells could be identified in the peripheral blood of
patients with COPD with liquid biopsy techniques. In the studies, circulating pulmonary
cells or remnants of these cells were detected in the peripheral blood of COPD patients
(using immunoreaction against hyaluronan receptor CD44v6-specific marker of lung tissue)
and showed significant correlations [231].

Due to the lack of knowledge about the origins of the disease, currently there is no
cure to halt the progression of COPD. Existing therapy is aimed solely at relieving the
symptoms, slowing down the progression of the disease, reducing the frequency of disease
exacerbations, and improving the quality of life. The spirometric FEV1 parameter was
shown to be essential for COPD diagnostics, mortality prediction, and hospitalization at the
population level, but more is needed for the estimation of individual patients and choice of
therapy. Currently, belonging to a particular group of the GOLD ABE model is the critical
parameter for evaluating the patient’s condition and treatment choice. Pharmacological
treatment can be divided into initial and follow-up therapy. Initial treatment is determined
based on the ABE group of the patient and consists mainly of short- or long-acting bron-
chodilators. Follow-up is based on the clinical response to the previous medication and
the development of side effects like pneumonia, review dyspnea, and exacerbation risks
(Table 3). In the treatment of COPD, much attention is paid to smoking cessation, which
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is vital for all patient groups [232], and to the monitoring of bacterial and viral infections,
which may lead to rapid COPD progression and exacerbations, so vaccination is highly
recommended [233].

Table 3. GOLD group classification and treatment of COPD. Abbreviations: SABA, short-acting beta-
agonists; SAMA, short-acting antimuscarinic; LABA, long-acting beta-agonist; LAMA, long-acting
antimuscarinic; ICS, inhaled corticosteroids.

A B E

Pharmacological
therapy

Initial therapy SABA or SAMA or
LABA or LAMA

LABA or LAMA
or

LABA + LAMA

LAMA
or

LABA + LAMA
or

LABA + LAMA + ICS

Follow-up therapy

Persistent dyspnea:
(1) LAMA or LABA monotherapy→ LAMA + LABA
(2) LABA + LAMA→ LAMA + LABA + ICS
(3) Investigation and treatment of comorbid conditions
Exacerbations:
(1) LABA or LAMA→ LABA + LAMA or LABA + LAMA + ICS
(2) LABA + LAMA→ LABA + LAMA + ICS or roflumilast or azithromycin
(3) LABA + LAMA + ICS→ roflumilast or macrolide or
LABA + LAMA

Non-pharmacological
therapy

Essential Smoking cessation Smoking cessation
Pulmonary rehabilitation

Recommended Physical activity

Optional

Flu vaccination
Pneumococcal vaccination
Pertussis vaccination
COVID-19 vaccination

Although COPD predisposes to LC, these conditions are different and heterogeneous
in their pathogenesis and require other treatments. Meanwhile, the chosen treatment
methods for one disease should not complicate the course of another. In some instances,
COPD treatment cannot give a beneficial outcome in reducing the incidence of cancer.
Thus, antioxidant therapy with N-acetyl cysteine (NAC) for COPD was shown to provide
inconsistent results in preventing cancer development [234]. A nationwide cohort study
in Taiwan showed that patients with COPD treated with one, two, or more medications
had a 2.6-fold, 3.0-fold, and 3.3-fold risk of any cancer development, respectively [235]. In
addition, in the case of joint diseases, the choice of LC therapy should consider the state of
COPD, such as impaired FEV1 percentage, emphysema, etc., and be safe for COPD patients’
treatment [236]. In this way, treatment of one disease should be specific and based on the
therapy history of another illness, and consider possible side effects potentially influencing
their progression.

In our understanding, current difficulties in COPD diagnosis and treatment emerge
due to a lack of understanding of the etiology of this disease in each patient. Considering
the current problem of COPD classification and the possible overlap of its subtypes in one
clinical case, we can assume a variety of starting points for the development of the disease
and the complexity of its evolution, which need to be carefully studied. State-of-the-art
research methods, such as single-cell sequencing, multi-omics [237], the development of
COPD models [238], and inflammatory microbiome studies [239], may shed light on the
molecular mechanisms of COPD development.

8. Targeted Therapy for Lung Cancer

Intensive research in the pharmacological treatment of LC highlights the promising
results in the direction of molecularly and immunologically targeted drugs [112]. Advanced
molecular diagnostics is possible thanks to the latest molecular techniques enabling the
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identification of specific mutations and rearrangements of genes, which are predictive
and allow for individualization of therapy in many cases. The tremendous success in the
systemic treatment of LC is the introduction to the clinical practice of personalization of
the procedure and the sequential application of subsequent—often different in terms of
the mechanism of action—treatment methods. Modern treatments, such as molecular tar-
geting drugs and immune checkpoint inhibitors, are increasingly combined with standard
therapies [240].

Many inhibitors have already been proposed to target tyrosine kinases-epidermal
growth factor receptor (TKI-EGFR), inhibitors of ALK, ROS1, BRAF, NTRK, and im-
munotherapy using monoclonal antibodies, mainly against the programmed cell death
one receptor (PD-1, programmed cell death 1) or its ligand (PD-L1, programmed cell death
ligand 1) to improve the therapeutic efficacy of NSCLC [241]. PD-1 is expressed by T-cells,
and PD-L1 expression by the tumor can suppress the T-cell–mediated cell death. PD-1/PD-
L1-blocking drugs inhibit the adverse regulatory effects of the PD-1/PD-L1 pathways,
resulting in the restoration of the initial anti-tumor immune response [242].

Among the tyrosine kinases inhibitors, the broad selection of FDA-approved drugs
targets the activating mutation in the EGRF. Presence of EGFR mutations is more prevalent
among young women, non-smokers, and patients of Southeast Asian ethnicity (mainly
China and Japan) [243]. EGFR targeting TKIs, erlotinib and gefitinib (first-generation),
and osimertinib (second-generation), established longer progression-free survival (PFS)
in EGRF-positive patients (with locally advanced or metastatic cancers), versus platinum-
based doublet chemotherapy [244,245]. The anti-EGFR treatment also comprises mono-
clonal antibodies (mAbs) such as necitumumab, blocking the EGFR ligand binding site and
downstream processes [246].

Third-generation drugs could counter resistance against first-generation TKI-EGFR,
e.g., osimertinib can act against resistant mutations like T790M [247]. KRAS inhibitors
such as the G12C mutant protein have been found to be very effective against severe
TKI-EGFR resistance. Similarly, therapy options based on HER-3 targeting can be used
to counter resistance against TKI-EGFR. Compounds such as U3-1402 and patritumab
(U3-1287) combined with a TKI-EGFR, erlotinib, can act against EGFR-resistant NSCLC
cells [248]. Several miRNAs have been found to affect drug resistance by affecting the
PI3K/AKT/mTOR pathway. Targeting miRNAs such as miRNA-328, miR-21, and miR-23a
showed a reversal of resistance against cisplatin, gefitinib, and erlotinib, respectively [249].
Attempts have also been made to combine the miR-34a with siKRAS and cisplatin to
increase the efficacy of the drug against the KRAS/P53 mutation [250]. JAK-2 inhibitors
such as ruxolitinib and CYT387 (in combination with cetuximab) have shown good efficacy
against resistant NSCLC cell lines [251]. On the other hand, treatment with tyrosine kinase
inhibitors is more effective than standard chemotherapy, which can be seen by improving
the quality of life of patients, and also shows a different toxicity profile.

According to the NCCN Guidelines for NSCLC, it is recommended to test NSCLC pa-
tients for ALK and ROS1 rearrangements. In up to 5% of NSCLC patients, particularly those
with AC subtype and non-smokers, the EMLK4-ALK rearrangements are detected [108].
One of the drugs targeting the anaplastic lymphoma kinase rearrangements is alectinib, an
oral TKI recommended as a preferred first-line treatment for metastatic patients [252,253].
Other ALK-targeted TKIs suggested are crizotinib and ceritinib. In case of progression,
the secondary treatment can include another TKI (e.g., alectinib, ceritinib, after first line
crizotinib) or cytotoxic chemotherapy (after first line alectinib or ceritinib) [108]. Crizotinib
is also approved as a first-line therapy for patients with the ROS1 fusion protein (ROS1 has
high similarity to ALK) having locally advanced or metastatic NSCLC [254]. Crizotinib has
a very high response rate of 70–80% [255].

Therefore, it is essential to perform molecular determinations in tissue/cytological
material in patients with NSCLC before qualification for systemic chemotherapy, and in the
case of finding molecular disorders, to apply molecularly targeted therapy in the first-line
treatment [256].
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9. COPD and Lung Cancer Connection

COPD is an independent risk factor for lung carcinoma, particularly squamous cell
carcinoma, and LC is up to six times more likely to occur in smokers with airflow obstruction
than in those with normal lung function [6,257] (Figure 3). The meta-analysis of the
associations of the previous lung diseases as risk factors for lung cancer, performed by
Brenner et al., revealed that COPD, emphysema, chronic bronchitis, pneumonia, and
tuberculosis conferred relative risks of LC formation firmly in the smoking population [258].
The increased risk of LC development in the case of never-smoking patients may be
explained by the inflammatory response induced by the primary disease within lung
tissue. Previous lung conditions are known to cause an inflammatory response in the
lung [154,238,258]
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The retrospective study by Wang et al. comparing the COPD-NSCLC versus non-
COPD NSCLC patients showed that COPD-NSCLC patients developed the squamous
cell carcinoma histological subtype more often. It was demonstrated that the overall
survival time (OS) was significantly shorter for LC cases with COPD comorbidity [259].
The neutrophil to lymphocyte ratio (NLR), related to inflammation, was elevated in the
NSCLC-COPD group but was also considered a predictor for shorter OS. The elevated
NRL was proposed as an independent inflammatory marker for COPD aggravation [260].
The increased NLR (pretreatment NLR level ≥5) was also correlated with worse outcomes
in NSCLC patients treated with nivolumab [261]. Elevation of the neutrophils vs. lym-
phocytes is associated with deterioration of the immune system response, observed in
chronic inflammation.

The high prevalence of lung cancer in COPD suggests that there may be common
mechanisms, such as premature aging in the lungs, genetic predispositions to either disease,
or common pathogenic factors (such as growth factors, activation of intracellular pathways,
or epigenetics).

GWAS studies in significant COPD and LC cohorts have found the same risk loci,
including CHRNA3 and CHRNA5 SNPs (15q) and regions at 4q31 (HHIP), 4q24 (FAM13A)
and 5q (HTR4). Nicotine smoking may explain the overlap in risk loci between LC, smoking
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behavior, and COPD. In addition, EMT and inflammation are pathogenic features of COPD
and lung cancer [262]. The global methylation pattern analysis, using an epigenome-
wide association study (EWAS), revealed that downregulation of the CCDC37 and MAP1B
genes was associated with COPD and LC [263]. Examination of the epigenetic regulation
of human mitochondrial mtTFA, associated by its function with oxidative stress and
inflammation, revealed groups of silenced (AIMP1, IFNG, LTA, LTB, TNF) and activated
genes (BMP2, CCL2, IL5, VEGFA) for both LC and COPD [264].

Another recent experiment identified a correlation between COPD-associated genes
that can cause SCC using a genetic network analysis software named Cytoscape. They
identified the differential expression of genes associated with heat shock proteins (90 α

family class A member 1 (HSP90AA1) and family B (small) member 1 (HSPB1)), adrenocep-
tor β2 (ADRB2), and transducin β like 1 X-linked receptor 1 (TBL1XR1), for both SCC and
COPD [265].

Several microRNAs were identified to be upregulated both in COPD and lung cancer.
For example, miR-1 has been linked to cigarette smoking-related conditions, including
cancer, and is downregulated in the skeletal muscle of patients with COPD compared
with non-smoking controls and expression correlated with clinical features. The activity
of miR-1, miR-21, and mir-146a has been altered in the inflammation process and cancer
proliferation. NF-κB (nuclear factor κB) activating the miR-146a was implicated as a causal
link between inflammation and carcinogenesis [266]. Fathinavid et al. [267], through
a pathway enrichment analysis method, identified the miRNAs implicated in common
pathogenesis mechanisms between COPD and NSCLC. Among three common pathways:
(1) non-small cell lung cancer, (2) cell cycle, and (3) p53 signaling pathway, the following
miRNAs were upregulated miR-15b, miR-106a, miR-17, miR-103, and miR-107. MiR-107
targets the epidermal growth factor receptor (EGFR) [267]. EGFR overexpression has been
observed in NSCLC and COPD and is inversely correlated with %FEV1.0 [268].

10. Conclusions

COPD not only contributes to the development of LC, but the significant overlap be-
tween COPD and LC symptoms might lead to a delay in recognizing an LC diagnosis [269].

LC with COPD comorbidity patients more commonly suffer from sputum retention,
respiratory failure, and air leak. Patients operated on due to lung cancer, also suffering from
COPD, are more vulnerable to post-operative pulmonary complications and prolonged
hospital stay [270].

The many genetic, epigenetic, and biological factors involved in COPD and LC devel-
opment are closely related.

Early detection of COPD and LC is urgently needed, so further studies investigating the
links between critical biomarkers can elucidate the molecular signals responsible for COPD
and LC development. More studies can provide insights into the creation of novel diagnostic
and prognostic tools for early intervention and personalized therapeutic strategies.

Clarifying the molecular mechanisms of COPD and LC can improve early diagnosis
and more efficient treatments.
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