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Abstract: MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all
phases of patient management, starting from diagnosis, through therapy planning, to treatment
response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-
morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even
genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing
the technical aspects, strength and limits of each MR technique is crucial to correctly interpret
MR brain studies and to address clinicians to the best treatment strategy. This article aimed to
provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started
from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the
non-morphological techniques, and finally highlighted future perspectives, such as radiomics and
artificial intelligence.

Keywords: brain tumor imaging; MRI; advanced MR Imaging; perfusion MRI; functional MRI; DTI;
MR spectroscopy; AI; quantitative MRI

1. Introduction

Brain tumors (BTs) are a significant burden on people’s health and on public healthcare,
due to the poor prognosis of malignant subtypes (average five-year survival of 35%).
Worldwide, 308,102 new cases of primary brain and CNS cancers were diagnosed, and
251,329 people died from these malignancies in 2020 [1]. In the era of precision medicine, an
early diagnosis and an accurate follow-up are needed for better patient care. In this scenario,
magnetic resonance imaging (MRI) significantly contributes to diagnosis and plays a key
role in therapy planning and in evaluating treatment response and/or recurrence.

The evolution of MR equipment and techniques has gone hand in hand with the
ever-increasing needs of clinicians (surgeons, oncologists, radiotherapists) [2], so that the
current state of neuroimaging has evolved into a comprehensive diagnostic tool that allows
for the characterization of morphologic as well as functional, hemodynamic, metabolic,
cellular, microstructural, and sometimes even genetic information of BTs.

The purpose of this article was to provide a comprehensive overview about the role
of neuroimaging in the assessment of adult primary brain tumors. We started by dis-
cussing morphological MR sequences, then analyzed, one by one, the non-morphological
techniques, providing a brief overview on the technical aspects followed by a more prac-
tical description of their clinical application. Finally, we presented an outline of future
perspectives, such as radiomics and artificial intelligence.
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2. Conventional/Morphological MRI

MRI is the leading imaging modality in patients with primary intra-axial BTs [2].
Computed tomography (CT) has limited indications, mainly in emergency settings (de-
tection of intratumoral acute hemorrhage or critical mass effect as cerebral herniation or
hydrocephalus) or, less frequently, in detection/confirmation of calcifications. A standard
MRI protocol for BTs should always include T2 weighted (T2w) sequences in at least
two orthogonal planes (i.e., axial and coronal), 2D or preferably (if available) 3D-FLAIR
(fluid-attenuated inversion recovery), high-resolution 3D T2* gradient echo sequences
as susceptibility weighted imaging (SWI) [3], axial pre- and post-contrast T1 weighted
sequences, the latter preferably with 3D high-resolution iso-volumetric sequences (such as
spoiled gradient recalled acquisition or similar), which are useful in pre-treatment workup
for intraoperative MR guided navigational system or for stereotactic radiotherapy (RT)
planning [4,5].

The main roles of conventional/morphological MRI at the diagnosis are to determine
the size and the anatomical location of the lesion within the brain for treatment or biopsy
planning, to evaluate mass effect and edema in surrounding healthy brain tissue, to assess
the relationship with ventricular system and brain vascular structures, and finally, along
with other “functional” MRI sequences, to suggest a possible diagnosis [2].

The Publication of the 2021 World Health Organization (WHO) Classification of Tu-
mors of the Central Nervous System (CNS) has revolutionized the diagnostic workup of
CNS neoplasms, making the diagnosis of a specific tumor type particularly challenging.
In fact, the WHO 2021 classification has incorporated both histologic features and genetic
alterations into the diagnostic framework, with fundamental prognostic and therapeu-
tical implications [6,7]. Nonetheless, a detailed and comprehensive analysis of conven-
tional/morphological and ‘functional’ MR features can actually lead to a suggested shortlist
of likely possibilities.

From a general point of view, T2w/FLAIR images generally represent the key to
identify any ‘brain lesion’, of any nature/origin. With regard to BTs, these sequences allow
the detection of the lesion and in some way to tumor characterization. In fact, the T2w signal
may reflect tissue density and thus tumor cellularity: the more cellularity, the lower the T2w
signal (Figure 1). However, the T2w/FLAIR hyperintense signal does not always signify a
tumor. Signal abnormality may represent peritumoral edema or, as with infiltrative gliomas,
both edema and infiltrative tumor tissue [8]. Moreover, as many tumors have overlapping
T2w/FLAIR imaging findings, knowing other potentially distinguishing features (such as
calcification, hemorrhages, or necrosis) is useful to limit differential diagnoses (Figure 2).

SWI can help differentiate calcification from hemorrhages because calcification is
diamagnetic, whereas most hemorrhagic byproducts are paramagnetic. Due to their op-
posite magnetic susceptibilities, their phase deflections are opposite as well [9]. Dense
coarse calcifications are seen in 34–80% of oligodendrogliomas (ODs) [10], making them
the intra-axial tumors with the highest frequency of calcification among BTs. Although
the likelihood of an OD is high for a calcified supratentorial intraparenchymal tumor, the
differential diagnosis of a calcified intra-axial intracranial mass includes other tumors, such
as ependymomas and low-grade astrocytomas.

Cystic components are more frequently associated with lower grade gliomas (e.g.,
pilocytic astrocytoma). On the contrary, intra-tumoral necrotic areas are mostly seen in
higher grade tumors and depicted as areas of lack of enhancement on post gadolinium-
based contrast agent (GBCA) T1w images (Figure 2F) [11].

Ultimately, intratumoral contrast enhancement is generally considered to be associ-
ated with higher tumor grade, although certain low-grade gliomas (LGG), such as pilo-
cytic astrocytomas, generally enhance and certain high-grade gliomas (HGG) may not
(Figure 1F) [12].
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Figure 1. Morphological sequences: tumor cellularity. Morphological sequences: tumor cellularity.
Left deep temporo-mesial WHO grade 3 IDH-mut diffuse astrocytoma. Lesion is hyperintense on T2w
and FLAIR images (A,B), isointense on DWI (E), with areas of lower T2 signal intensity and diffusion
restriction (white arrows in (A,D) that reflect hypercellular and probably more anaplastic tissue.
No contrast enhancement is detectable on post-contrast T1w image (F) compared to pre-contrast
image (C).

Going back to the WHO 2021 classification, adult-type diffuse gliomas are divided into:

• Astrocytoma, IDH-mutant (IDH-mut);
• Oligodendroglioma, IDH-mut and 1p/19q-codeleted;
• Glioblastoma (GB), IDH-wildtype (IDH-wt).

Additionally, IDH-mut diffuse astrocytomas are now graded 2–4 within type and the
terms IDH-mut “anaplastic astrocytoma” and “glioblastoma” have been dropped.

In this new scenario, in which histopathology is integrated with tumor genetics for
the classification of brain tumors, some “morphological” MRI features have demonstrated
a significant correlation not only with histologic grade, but also with the mutational status
of adult gliomas.

Grade 2 IDH-mut diffuse astrocytoma frequently appears as a homogeneous T2-
hyperintense circumscribed supratentorial mass, more typically located in the frontal or
temporal lobes, without calcification or enhancement. Moreover, IDH-mut diffuse astrocy-
tomas are characterized by the recently described “T2-FLAIR mismatch sign” (Figure 3),
which consists of T2 homogeneity, with a relatively FLAIR hypointense signal through-
out most of the lesion except for a peripheral rim of hyperintense signal. This sign has
demonstrated high specificity but low sensitivity [13].

Grade 3 IDH-mut diffuse astrocytoma may be morphologically indistinguishable
from grade 2, but the former tends to have greater T2 heterogeneity and post-contrast
enhancement [14].

IDH-mut and 1p/19q-codeleted ODs typically involve frontal lobes, display intratu-
moral heterogeneity and calcification, with a variable degree of enhancement.
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Figure 2. Conventional MR sequences: necrosis and hemorrhages. Right deep thalamo-capsular
IDH-wt GB. The lesion shows a necrotic core (asterisk in (B,F)) and a thick and irregular rim of
hypercellular tissue with restricted diffusion (C,D) and contrast-enhancement ((F) compared to
(E)). (G,H) demonstrate hemosiderin marginal deposits (hypointense on both SWI and phase-map
respectively) suggestive of intratumoral bleedings. The “rim enhancing” lesion is surrounded by
a peripheral heterogeneous area of abnormal T2w/FLAIR signal (A,B), reflecting infiltrative “non
enhancing” tumor and vasogenic edema that also involves the mesial surface of the contralateral
thalamus and hypothalamus (arrow in (B). The caudal extension determines stenosis of the Sylvian
aqueduct and consequently supratentorial hydrocephalus.

Figure 3. T2/FLAIR Mismatch Sign. Upper Row Ax T2w images, Lower Row Ax T2-FLAIR images.
(A,E); (B,F) IDH-mut, 1p-19q codeleted ODs, respectively grade 2 (A,E) and grade 3 (B,F). (C,G); (D,H)
IDH-mut, 1p-19q non codeleted Diffuse Astrocitomas, respectively grade 2 (C,G) and grade 3 (D,H).
The T2-FLAIR mismatch sign (C) vs. (G) and (D) vs. (H) represents the T2 signal homogeneity
of the mass with relatively hypointense signal throughout most of the lesion on FLAIR except for
a peripheral rim of hyperintense signal. Notably, imaging features of grade 3 IDH-mut diffuse
astrocytoma and OD may be indistinguishable from grade 2 IDH-mut diffuse astrocytoma and OD.
However, grade 3 astrocytoma and OD may have more T2 signal heterogeneity (B,D).
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Finally, the presence of any of the following five histologic and molecular criteria is
sufficient to designate an IDH-wt diffuse astrocytic glioma as a GB (grade 4 by definition):
microvascular proliferation, necrosis, telomerase reverse transcriptase promoter (TERTp)
mutation, epidermal growth factor receptor (EGFR) gene amplification, and +7/−10 chro-
mosome copy number changes. At MRI, GBs typically present more aggressive and
heterogenous morphological features: larger lesions, relevant mass effect and surround-
ing edema, intratumoral hemorrhage and necrosis, thick ring or irregular/multinodular
contrast enhancement (Figure 2).

Although MRI can suggest possible diagnoses, histopathology and molecular analyses
are necessary to provide definitive and accurate diagnoses.

As said above, morphological MRI plays a fundamental role even in the post-treatment
follow-up. Interpreting findings after surgery, radiation, and chemotherapy requires
profound knowledge of tumor biology, as well as of the peculiar changes expected to ensue
as a consequence of each treatment technique.

The Response Assessment in Neuro-Oncology (RANO) criteria were developed as
an objective tool for radiologic assessment of treatment response in high-grade gliomas.
The updated RANO working group defines a complete response, partial response, stable
disease or progressive disease to therapy for high-grade gliomas as listed in Table 1.

Table 1. Summary of the RANO Response Criteria.

Criterion CR PR SD PD

T1 gadolinium enhancing disease none ≥50% <50% but <25% ↑ ≥25% ↑ a

T2/FLAIR stable or ↓ stable or ↓ stable or ↓ ↑ a

New lesions none None None present a

Corticosteroids none stable or ↓ stable or ↓ NA b

Clinical status stable or ↑ stable or ↑ stable or ↑ ↓ a

Requirement for response all All All any a

Abbreviations: RANO, Response Assessment in Neuro-Oncology; CR, complete response; PR, partial response;
SD, stable disease; PD, progressive disease; FLAIR, Fluid-attenuated inversion recovery; NA, not applicable.
a Progression occurs when this criterion is present. b Increase in corticosteroids alone will not be taken into
account in determining progression in absence of persistent clinical deterioration [15].

These assessment criteria provide a framework for treatment response evaluation
but do not account for some not univocal post-treatment brain modifications such as
pseudo-response (PsR) or pseudo-progression (PsP). A PsR may be seen with a marked
decrease in tumor contrast enhancement following treatment with antiangiogenic agent (as
bevacizumab) [16]. On the other hand, PsP may be seen as an increase in the tumor contrast-
enhancing portion and an increase of the T2w/FLAIR surrounding signal abnormality after
RT alone or with temozolomide. PsP is seen in around 20% of patients (approximately 50%
of the patients who initially “progress” on imaging) [17]. The detailed discussion of these
entities is beyond the purpose of this paper.

3. MR Perfusion
3.1. Overview and Techniques

Perfusion weighted imaging (PWI) denotes a variety of MRI techniques able to give
insights into tissues’ blood perfusion, by using an intravascular tracer which can be detected
in the area of interest. In brain PWI, it is possible either to use an exogenous, intravascular,
contrast agent such as GBCA, or to use the patient’s own water molecules as an endogenous
tracer [18].

Brain PWI performed after intravenous administration of GBCA analyzes quantitative
cerebral perfusion parameters by exploiting the signal changes through a series of dynamic
images following bolus administration and falls into two categories: dynamic susceptibility-
weighted contrast (DSC); and dynamic contrast enhancement (DCE).
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On the other hand, PWI without the use of GBCA, called arterial spin labeling (ASL),
is performed through “spin tagging”, which means that diffusible and magnetically labeled
protons within blood and water flow into the brain, where they are imaged.

Depending on the clinical-neuroradiological scenario, qualitative, semi-quantitative
and quantitative approaches, such as the review of color-coded maps to the region of
interest (ROI) analysis and analysis of signal intensity curves, can be applied [18].

3.2. Clinical Applications

DSC-PWI is the most used and validated perfusion imaging technique, particularly
dealing with brain tumors [19]. The relative cerebral blood volume (rCBV) and the per-
centage of signal intensity recovery (PSR) derived from DSC-PWI provide information
about neoangiogenesis and tumor capillary permeability respectively, which can be used
to characterize tumor type and grade, and to distinguish tumor recurrence from post-
treatment changes.

In recent years, DCE-MRI is increasingly being used for a more accurate mapping
of blood volumes in tumor lesions, and because it can add useful information for tumor
grading, differential diagnosis, evaluation of RT treatment effect, or for chemotherapy
treatment response monitoring. Some authors strongly underline how this technique
can represent a better alternative to DSC, given the drawback of the DSC to surgery-
and blood-dependent artifacts [20,21]. The main parameters indicating increased tumor
vascularity and BBB permeability are the area under contrast curve (AUC) and the Ktrans
respectively. Other DCE-derived parameters are the Ve and Vp, which represent the
fractional volume of the GBCA in the extravascular-extracellular space and in the plasma
space respectively. Longer scanning time, reduced temporal resolution, complex post-
processing and quantification of images are the disadvantages of DCE, which make it less
often used in clinical practice and less frequently investigated in literature compared to
DSC [22].

Regarding ASL, although completely noninvasive and potentially repeatable as many
times as necessary, it is still rarely used in neuro-oncology, mostly because the standard
MRI protocol for BTs requires the administration of GBCA, thus making it preferable to use
faster and more robust/validated techniques such as DSC and/or DCE, instead of ASL.

The main parameters derived from brain perfusion techniques are summarized in
Table 2.

Table 2. Main perfusion techniques parameters in brain tumors.

Parameter Meaning Units PWI Technique

CBV Cerebral Blood Volume mL of blood/100 g tissue DSC

CBF Cerebral Blood Flow mL of blood/100 g of tissue/min DSC, ASL

Ktrans Volume transfer constant between blood plasma
and extravascular extracellular space 1/min DCE

Ve Extravascular extracellular volume fraction mL/100 mL DCE

Vp Blood plasma fractional volume mL/100 mL DCE

AUC Area under the signal intensity/time curve mM/s DCE

PSR Percentage of signal intensity recovered at the end
of the first pass of GBCA, relative to baseline % DSC

3.2.1. Differentiating HGG from LGG and Clinical Prognosis

LGGs are mostly characterized by native vessel while the hypoxic angiogenic microen-
vironment of HGGs presents with an increased number of leaky vessels [23]. These features
are reflected by increased microvascular proliferation and increased BBB permeability in
more aggressive tumors. In fact, numerous studies have demonstrated DSC-rCBV and
Ktrans to be consistently higher in HGGs. ASL-derived CBF has also been reported to be
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higher in HGGs [24,25]. K.M. Schmainda et al. reported DSC-rCBV of 1.4 to have sensi-
tivity/specificity of 90/77% in distinguishing LGGs from HGGs [26]. However, several
papers suggest different threshold values, so that no clinically useful threshold values are
currently available (Figure 4) [27,28].

Figure 4. DSC-PWI in differentiating HGG from LGG. Axial T2-FLAIR (A) and post-contrast T1w
(B) of a low grade IDH-mut left insular astrocytoma. DSC-PWI demonstrates normal rCBV (C) and
complete return to baseline of the signal-intensity-time curve (D). The second row shows axial T2-
FLAIR (E) and post-contrast T1w (F) of a left temporal-occipital GB. DSC-PWI demonstrates increased
rCBV (G) and reduction of PSR consistent with BBB breakdown (H).

Of greater clinical importance, it must be remarked that increased DSC-CBV and DCE-
Ktrans could be predictive of decreased progression free survival (PFS) and overall survival
(OS) in diffuse cerebral gliomas, and that an increase in DSC-CBV during follow-up of
LGGs could be an unfavorable prognostic factor as it suggests the possibility of malignant
transformation [29–32].

3.2.2. Differentiating Tumors on the Basis of the Genetic Profiles

After the introduction of the WHO 2021 classification of CNS tumors, PWI has been
the subject of numerous studies to non-invasively identify molecular characteristics of
primary BTs, in order to actually determine tumor aggressiveness and grading [22].

IDH mutation can regulate hypoxia-inducible factor 1-alpha (HIF-1α), which is a
driving force in tumorigenesis and angiogenesis, thus suppressing aggressive behavior
(such as angiogenesis) [33]. Consistent with this, mutation of IDH status has been correlated
with lower DSC-CBV and DSC-CBF [23], as compared to IDH-wt, whereas PSR is reported
to be lower in IDH-wt tumors [23]. DCE studies mainly report that IDH-mut gliomas
exhibit decreased Ktrans, Vp, Ve, and AUC [23].

Other relevant molecular mutations concern the EGFR amplification and the TERTp
mutation [34]. EGFR amplification is known to accelerate tumor angiogenesis and the in-
duction of proangiogenic factors; increased DSC-CBV, and DCE-Ktrans have been reported
in EGFR-amplified GB [23]. Higher expression of TERT was found to be associated with
resistance to anti-growth signals and angiogenesis, which could explain the significantly
higher mean values of DSC-CBV, CBF and DCE-Vp in TERTp mutant IDH-wt gliomas.
Ultimately, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation is
known to be associated with an improved response to temozolomide and longer overall
survival. MGMT-methylated gliomas exhibit decreased DSC-CBV, whereas unmethylated
gliomas show increased Ve and Ktrans [23].
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3.2.3. Differentiating Recurrent Tumor from Pseudoprogression and Radiation Necrosis
and Be Aware of Pseudoresponse

The differences between PsP and radiation necrosis (RN) are related both to the timing
of presentation, i.e., 3–6 months for PsP and 1 year after RT in RN, but also to the different
pathophysiology whereby RN presents as permanent damage to the brain tissue, necrosis,
and vascular thrombosis [35–37]. Many DSC studies have shown that CBV is lower in
areas of RN or PsP than in those of tumor progression. DCE studies are less numerous
but have shown that patients with PsP and RN had significantly lower Ktrans values than
patients with tumor progression (Figure 5) [23,29–31,35–37]. Studies focusing on PsP or RN
specifically using ASL are scarce, but one study confirmed that the normalized ASL-CBF
ratio was significantly higher in tumor progression than in radiation injury [38].

Figure 5. Post-treatment changes vs. disease progression. (A–H): axial 3D-FSPGR post-contrast T1w
images (A,E) and T2w images (B,F) with corresponding DSC-CBV (C,D) and DCE-Ktrans perfusion
maps (G,H) of two IDHwt GBs 1 year after treatment (surgery and radio-chemotherapy). In the left
panel the enhancing tissue shows low DSC-CBV and DCE-Ktrans, consistent with post-treatment
changes. In right panel the enhancing tissue shows areas of increased DSC-CBV and DCE-Ktrans,
suggesting disease progression.

On the opposite spectrum, favorable false imaging signs are present in the PsR as it
occurs with the use of antiangiogenic treatment, i.e., inhibitors of VEGF, that induce the
normalization of the cerebral BBB, thus leading to a reduction of the DSC-CBV which,
however, represents only a consequence of the alterations of vascular permeability and
therefore is not correlated to the efficacy of the treatment [39,40].

4. Diffusion Weighted and Diffusion Tensor Imaging
4.1. DWI in Brain Tumors: Technical Notes, Clinical Application and Prognosis

Diffusion weighted imaging (DWI) is based on the random thermic motion, or Brown-
ian motion, of water molecules in tissues; “isotropic diffusion” is defined as unhindered
diffusion of water molecules, while “anisotropic diffusion” refers to restriction of movement
in some directions [41].

DWI enables calculation and mapping of the apparent diffusion coefficient (ADC) of
the respective target volume in vivo. Since ADC tumor profiles reflect the corresponding
microscopic tissue architecture, DWI has evolved as an important MRI modality, especially
in cancer imaging [42]. In fact, ADC can serve as an indirect measurement of cellularity,
since in solid tumors, increased cell density will limit free diffusion in the extracellular
space, resulting in lower ADC values (Figure 1D) [43]. On the contrary, cystic, and necrotic
areas show high ADC values, corresponding to more free diffusion of water molecules in
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comparison with normal tissue (Figure 2C,D). Similarly, high ADC values are characteristic
of peritumoral edema.

DWI has also shown to be useful in glioma grading, in assessing the growth potential
of gliomas, and in suggesting clinical prognosis [44].

HGGs show lower ADC compared to LGGs, even in the peritumoral edema, and
it is reported that low ADC values correlate with high expression of Ki67 expression,
indirectly reflecting proliferation and malignancy [45,46]. Moreover, an ADC cut-off value
of 0.0003156 is reported to indicate grade 4 astrocytoma with a sensitivity and specificity of
71% and 100%, respectively [42]. Regarding prognosis, low tumor ADC is reported to be
associated with shorter survival times [47,48].

In recent years, a few studies have analyzed the correlations between genetic alter-
ations and diffusion imaging in gliomas. IDH-mut tumors showed significantly higher
ADC values compared to the IDH-wt [49,50]. Additionally, Cui et al. reported a thresh-
old mean ADC of 1565.9 × 10−6 mm2/s to differentiate 1p/19q codeleted WHO grade
2 gliomas from those without codeletion, with 72% sensitivity and 88% specificity [51].
Higher ADC values were also reported to correlate with MGMT promoter methylation
in HGGs [52,53], whereas lower ADC values were found in GB with EGFR amplification
compared to that without [54].

During follow-up, ADC can be useful for differentiating treatment-related changes
(TRCs) from tumor progression in treated HGGs [55]. Through qualitative analysis, Lee
et al. found that the occurrence rate of homogeneous or multifocal high signal intensity
of tumor progression on DWI is higher than that of PsP, and a mean ADC value lower
than 1200 × 10−6 mm2/s is more common in tumor progression than in PsP [56]. On the
contrary, several meta-analyses have demonstrated that diffusion MRI is not suitable for
differentiating tumor progression from RN when used alone, and its diagnostic accuracy is
the lowest among all advanced MRI techniques [57].

Evaluation of gliomas with DWI has become standard; however, important limitations
must be considered when interpreting studies. Hemorrhages, paramagnetic materials,
geometric distortion, and susceptibility artifacts can significantly affect the quality of
DWI images [58]. Furthermore, HGGs have shown upregulation of aquaporin channels,
thereby altering the true estimate of diffusion properties in tumoral and peritumoral
environment [59].

4.2. Diffusion Tensor Imaging: Technical Notes and Clinical Application

In white matter tracts (WMTs) diffusion is “anisotropic”: higher following the direc-
tion of fiber bundles and lower perpendicular to them, due to multiple factors including
myelination, axon density and diameter, and axonal membrane integrity [60]. In diffusion
tensor imaging (DTI) studies, diffusion is evaluated in multiple different directions and
each point of the imaged tissue is represented by “diffusion tensors”, a mathematical model
that describes the multidimensional process of diffusion in different axes [61].

The most used indices in DTI are the mean diffusivity (MD), which corresponds to the
magnitude of diffusion, and fractional anisotropy (FA), which scales from 0 (completely
isotropic) to 1 (completely anisotropic) [60]. DTI images are commonly displayed as color
encoded FA maps, with standardized colors for the different fiber orientations: red (left-
right), green (antero-posterior), and blue (cranio-caudal) (Figure 6B,C) [60]. With the use
of specific software and through the definition of a seed region of interest (ROI), fiber
tractography enables 3D visualization of fiber bundles, thus allowing in vivo projection of
brain WMTs (Figure 6C).

In the management of brain gliomas, DTI has been applied to different levels: preoper-
ative tissue characterization (glioma grading) [62]; planification of surgical interventions
(individuation of ‘functional’ areas to spare) [63–66]; prediction of post-operative clinical
deficits [67–69]; intraoperative definition and adjustment of tumor location and extent of
resection [63,70,71]; and post-operative assessment, RT/radiosurgery planning and CRT
outcome monitoring (recurrent tumor versus RN) [72–74].
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Figure 6. Diffusion Tensor Imaging: (A) normal FA map without any directional information;
(B) Combined FA and directional map. Colors indicate directions as follows: red, left-right; green,
anteroposterior; blue, superior-inferior. Brightness is proportional to FA; and (C) 3D visualization of
normal corticospinal tracts.

4.2.1. Tumor Grading and Extension

Some studies evaluated the differences in FA between LGGs and HGGs, with various
results [75–77]. Usually, in HGGs, the coexistence of fiber destruction/infiltration and the
increasing cellular density and vascularity lead to a modest decrease in FA values when
compared to LGGs, in which cells are loosely distributed in a fibrillary matrix leading to a
significant decrease in FA [78,79].

Regarding tumor extension, authors reported that white matter surrounding neoplastic
brain tissues shows abnormalities in diffusion properties (i.e., reduction in anisotropy)
determined by different mechanisms: fiber destruction, fiber dilution (tumor or vasogenic
edema spread intact fibers apart), or fiber degradation, thus making it difficult to identify
tumor boundaries (Figure 7) [80,81].
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Figure 7. Tractographic reconstruction of arcuate fasciculi. DTI of the direct pathway of both
arcuate fasciculi (AF) fused with anatomic axial (A); and sagittal (B) FLAIR images. The right AF
on the affected side is superiorly and posteriorly displaced by an IDH-mut frontal-temporal-insular
astrocytoma; (C) 3D rendering of both arcuate fasciculi.

4.2.2. Presurgical/Intraoperative Assessment

BT surgery fundamentally aims to achieve both maximal tumor resection and preser-
vation of essential brain functions (i.e., motor, language, and visual function). While direct
electrical stimulation (DES) is regarded as the gold standard for mapping brain function,
numerous studies have reported the improvement of clinical outcome for glioma patients
when DTI-based neuronavigation was used [82]. In fact, by measuring tumor proxim-
ity to WMTs, preoperative tractography actually aids in the selection of optimal surgical
approaches and in predicting the post-operative functional burden of the resection [83].
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However, the so called ‘brain shift’, that refers to the intraoperative modification of
anatomical relationships of the cerebral tissue, affects the reliability of preoperative imaging
data [84,85], and it is reported to be as large as 20–30 mm at the cortical surface [86]. Thus,
DTI results must be interpreted with caution, and a critical safety distance of 5 mm is
often used in clinical settings, although many consider it to be arbitrary [87]. Recently,
intraoperative DTI has been proposed to limit the impact of such variations in the definition
of the extent of resection, thanks to fast imaging acquisition (less than 20 min) and ready
integration into navigational systems [70,88,89]; however, cost and availability severely
limit current clinical applications.

Finally, recent studies in the literature suggest that a combination of electrophysio-
logical brain mapping with functional navigation (fMRI/Magnetoencephalography data
and DTI-based fiber tracking acquired before or during surgery) should be used in order to
achieve maximal safety [84,90].

4.2.3. Radiotherapy/Radiosurgery Planning

The utilization of DTI in RT planning has the potential to guide the optimization of ra-
diation beam distribution, and of reducing the dose administered to radiosensitive areas of
brain [72]. Several papers have evaluated the integration of DTI-reconstructed corticospinal
tract into the planning system [91,92]; more recent research focused on multiple WMTs
that are associated with radiation-induced cognitive decline, such as superior longitudinal
fasciculus, inferior fronto-occipital fasciculus, and uncinate fasciculus [93–95]. In a recent
systematic review, the integration of DTI data improved the safety of RT/radiosurgery by
sparing essential WMTs without limiting target dose and coverage [72]; only a few studies
reported minimal neurologic sequelae by using DTI-guided treatment plans [96].

4.2.4. Differentiation between Recurrent Tumor and Radiation Injury

Usually, after radiation injury, white matter fiber bundles are extensively damaged,
with almost no normal fibers and cell structures left. As a consequence, FA values of
PsP or RN are considerably much lower than those of tumor progression [57]. Several
studies have also pointed out that the FA ratio in RN or PsP was lower than that in recurrent
tumors [73,97]. However, another retrospective study showed that DTI metrics were unable
to differentiate recurrent tumors and PsP compared to morphologic MRI features. These
discordant results might be a mirror of the weaknesses in DTI studies, affected by several
factors, either structural (interindividual variability, extracellular volume, tumor density,
gliosis/fibrous scar, etc.) and technical (b value, number of directions), which limit their
reliability, reproducibility and use in clinical practice [82].

5. MR Spectroscopy
5.1. Principles of MR Spectroscopy, Metabolites and Their Function

MR spectroscopy (MRS) is a non-invasive in vivo technique that allows for the mea-
surement of biochemical changes in the brain, especially in the presence of BTs. The vast
majority of brain MRS studies in vivo use the proton–hydrogen (1H) nucleus, for its abun-
dance and for the higher applicability within standard clinical MRI scanners, whereas
interest remains in nuclei such as phosphorus-31(31P) and carbon-13 (13C), particularly at
high magnetic fields and for isotopically labeled and/or hyper-polarized molecules.

The MR spectrum comprises a set of peaks (or resonances) of different metabolites
distributed along the x-axis and labelled in parts per million (ppm). The amplitude of the
resonances is measured on the y-axis using an arbitrary scale; the area beneath the peak
represents the concentration of the metabolite [98,99].

It is possible to use two main methods to select the brain volume to analyze:

1. Single voxel (SV) spectroscopy—provides a spectral trace of metabolites within a
voxel (1–8 cm3) selected by the operator;

2. Multi Voxel (MV) spectroscopy—also called “MR spectroscopic imaging” (MRSI),
or “Chemical Shift Imaging” (CSI)—allows the selection of a large volume of tissue,
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comprising many voxels (~0.5–1 cm3 in volume), each giving rise to a spectrum
simultaneously [98,100].

In proton MRS, the Time of Echo (TE) conditions the number of measurable neu-
rometabolites. At short TE (e.g., TE = 35 ms or less) it is possible to detect the three main
peaks normally observed in the brain—choline (Cho), creatine (Cr) and N-acetylaspartate
(NAA)—and other compounds which may pathologically increase their concentration,
such as myo-inositol (mI), lipids (Lip) and glutamate-glutamin (Glx). Using longer TE
(TE = 144 or 280 ms), apart from Cho, Cr and NAA, it is possible to better detect the peaks
of molecules with a longer T2, such as lactate (Lac) (Figure 8) [101]. The resonance peaks
and biological significance of the major metabolites are listed in Table 3 [98,101–103]; unfor-
tunately, there are no unequivocal cutoff metabolite signal ratios that clearly distinguish
neoplastic from nonneoplastic conditions. Published MR spectroscopic results showed a
sensitivity of 79% and a specificity of 77% for a choline/NAA ratio greater than 1 as an
indicator of a neoplastic process [104]; the main ratios are listed in Table 4.
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Figure 8. Example of normal spectrum (SV TE 144ms). Normal MR spectrum demonstrating Cho, Cr
and NAA peaks.

Table 3. Proton MRS Metabolites, peaks and biological significance.

Metabolites Peaks Biological Significance

N-Acetylaspartate (NAA) 2.02 ppm brain-specific molecule, marker for viable
neurons (“neuronal marker”)

Choline (Cho) 3.20 ppm marker of tumor cell proliferation

Creatine (Cr) 3.03 and 3.9 ppm marker of energetic systems and
intracellular metabolism

Lactate (Lac) doublet peak at 1.33 ppm, inverted below
the baseline at long-intermediate TE marker of anaerobic metabolism

Lipids (Lip) From 0.90 ppm to 1.30 ppm marker of cellular breakdown or necrosis

Myo-Inositol (mI) 3.50–3.60 ppm glial marker

“Glx”: overlapped peaks of Glutamine
(Gln) and Glutamate (Glu)

between 2.12–2.35 ppm and 3.74–3.75
ppm

Glutamate: neurotransmitter
Glutamine: astrocyte marker

2-Hydroxyglutarate (2-HG) 2.25 ppm Oncometabolite pooled in tumors with
IDH-mut

ppm: parts per million.

Phosphorus-31 MR Spectroscopy (31P MRS) allows for oinformation about cellular
energy or membrane metabolism to be obtained, enabling direct measurement of energy
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metabolites such as phosphocreatine (PCr), adenosine-triphosphates (ATP), inorganic phos-
phate (Pi), as well as indirect evaluation of intracellular pH and cell membrane phospho-
lipids composition through phosphomonoesters (PME) and phosphodiesters (PDE) [105]

The PCr/ATP ratio has been described as a marker for the energetic state of a tissue, the
PCr/Pi ratio for the oxidative capacity, the Pi/ATP ratio for ATP turnover, the PME/PDE
ratio as a surrogate for membrane turnover, and ratios between the membrane-related and
the energy-related ratios have been described as a reflection of tumor growth [106].

Table 4. Standard metabolic ratios [98,104,107].

NORMAL ABNORMAL (Neoplasm)

NAA/Cr 2.0 <1.6

NAA/Cho 1.6 <1.2

Cho/Cr 1.2 >1.5

Cho/NAA 0.7 >1.0

5.2. MRS in Brain Tumors

Proton MRS has been widely applied to BTs, helping to differentiate primitive tumors
from possible mimics and other tumors, to assess tumor malignancy, and to evaluate thera-
peutic response. However, because of lesion variability/heterogeneity, overlap between
different tumor types and between neoplastic and non-neoplastic lesions, MRS should
never be used alone for the diagnosis of a brain lesion but always together with other
conventional/morphological and advanced MRI modalities.

5.2.1. Differentiating HGG from LGG

Nearly all BTs show decreased NAA—as a consequence of replacement of neuronal
cells by tumoral, necrotic, and reactive tissues, and possibly reduced NAA synthesis, and
increased levels of Cho, as a consequence of increased density of proliferating tumor
cells [98,100,107].

However, LGGs usually show either modest Cho elevation or NAA reduction, some-
times accompanied by increased mI and mI/Cr ratio (Figure 9). Moreover, LGGs typically
lack Lac and Lip peaks, so that the appearance of Lac and Lip within the tumor is believed
to suggest transformation to HGGs.

On the other hand, HGGs tend to have more dramatic MRS changes, including a
marked increase in Cho and decrease in Cr, NAA, and mI. Thus, higher Cho/Cr and
lower NAA/Cho ratios suggest HGGs as opposed to LGGs (Figure 10). To note, pilocytic
astrocytomas are reported to have a low NAA/Cho ratio, despite their benign nature, and
some authors have reported low Cho levels in HGGs, which may be due to the presence of
necrosis [98,100].

Elevated levels of Cho and reduced levels of NAA together can also distinguish regions
of tumor from the normal brain beyond the enhancing lesion and can be used to guide
tissue biopsy to the most aggressive part of the tumor [108].

Recently, hyperpolarized magnetic resonance techniques (3T scanner) have opened
up new opportunities for the metabolic imaging of brain gliomas, allowing the detection
of 2HG, a oncometabolite pooled in IDH-mut glioma cells; thus, 2HG MRS may have
great potential in clinical practice, representing a noninvasive modality to detect IDH
mutation [109].
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Figure 9. MR Spectrum of LGG (SV TE 144ms). (A,B) Axial T2-FLAIR and post-contrast T1w of a
left frontal low grade IDH-mut and 1p/19q-codeleted OD. (C) SV MRS demonstrates moderate Cho
elevation and NAA reduction.

Figure 10. MR Spectrum of HGG (SV TE 144ms). (A,B) Axial T2-FLAIR and post-contrast T1w of a
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right parietal HGG, with necrotic areas; (C) SV MRS demonstrates a prominent increase in Cho and a
decrease in NAA, with high Cho/Cr and low NAA/Cho ratios. Double negative peak of lactates is
also present, consistent with the presence of necrosis.

Regarding 31P MRS, numerous studies demonstrated that an increase in the value of
PME is related to malignant progression and increasing grade of tumor malignancy. Typical
features of phosphorus spectra of proliferating intracranial tumors are predominant PME
peaks and increased values of PDE peaks as a result of the overall metabolism of higher
cellular density. Therefore, the PME/PDE ratio can serve as an index of the metabolism
of membrane phospholipids and reflect changes in the rate of membrane synthesis or
metabolic turnover.

Furthermore, tumor tissue also showed increased values of ATP, as well as Pi levels
and, conversely, decreased PCr, demonstrating high energetic demands and mitochondrial
inefficiency, leading to an anaerobic metabolic turnover. An increased Pi is associated with a
dysfunction of the respiratory chain, which is a hallmark of tissue hypoxia in brain tumors.

Therefore, PME (mostly PME/PDE), followed by PCr/Pi ratios, seems to be the most
useful marker for the detection of tumor tissue in 31P MRS ad for evaluating progression
to a higher grade [105].

5.2.2. Prediction of Survival and Response to Therapy, Differentiating Recurrent Tumor
from Pseudoprogression and Radiation Necrosis

High Cho/NAA and Cho/Cr ratios and the combined high Lac and Lip signal are
associated with a higher risk of poor outcome [100,107]. Also, increased Cr was found to be
a significant predictor for tumor progression, while gliomas with decreased Cr appeared to
have longer progression-free times and delayed malignant transformation [107,109].

A decreased mean tumor Cho/NAA ratio and decreased normalized Cho levels may
indicate response to therapy after completion of external beam RT. Moreover, the Lac/NAA
ratio in association with the change in Cho/Cr ratio after RT (4 weeks) are predictive of
better outcomes [110].

MRS also provides information on tumor heterogeneity, helping to differentiate resid-
ual or recurrent tumor from RN on follow-up [100].

MR spectra obtained from regions of recurrent or residual tumors tend to maintain or
show an increase in their Cho concentration whereas those areas corresponding to RN tend
to have a lower Cho signal, decreased NAA and decreased Cr. RN is also more likely to
show elevation in Lip and Lac [98,103].

Several studies have also described differences in energy and membrane metabolism
detected with 31P-MRS between stable and progressive disease, given that metabolism of
phospholipid cell membrane turnover is one of the major indicators for tumor growth.

In a recent paper, regional differences were shown between contrast-enhancing tumors
and normal-appearing brain tissue (adjacent and distant from the enhancing tumor) in
patients with GB treated with Stupp regimen; in patients with stable disease, at the FUP
scan (1 month) Grams et al. demonstrated significantly higher PCr/ATP and PCr/Pi ratios
in contrast-enhancing tumors. In the areas adjacent to the enhancing tumor, an increase in
the energetic state (PCr/ATP) and oxidative capacity (PCr/Pi), a decrease in ATP turnover
(Pi/ATP) and tumor growth (PME/PCr), as well as normalization of membrane turnover
(PME/PDE), in comparison to baseline and healthy controls, occurred under therapy, and
was more pronounced in patients with stable disease. In the controlateral hemisphere,
an up-regulation of the energetic state (PCr/ATP) was found, which was more marked
in patients with SD, demonstrating that cerebral energy and membrane metabolism is
modified in the entire brain in patients with GB [106].

Below, we propose a practical overview of the main morphological and non-morphological
MRI parameters useful in the daily work-up of patients with primary BTs (Figure 11).
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signal in that area [111]. 
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adjacent to the tumor, where the need for an extensive resection must be counterbalanced 
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6. Functional MRI

Functional MRI (fMRI) measures brain activity by detecting changes associated with
blood flow and relies on blood-oxygen-level-dependent (BOLD) contrast. Specifically,
BOLD contrast is based on the different ferromagnetic properties of oxygenated (diamag-
netic, oxHB) and deoxygenated (paramagnetic, dHB) hemoglobin. As a result of a stimulus
involving neuronal activation, there is a greater consumption of oxygen in this area and
consequently a localized increase in dHB. To cope with oxygen demand, there is a sub-
sequent increase in oxHB concentration and dHB elimination, resulting in a reduction in
the area inhomogeneity in T2*, and consequently, an increase in the BOLD signal in that
area [111].

To date, the use of fMRI is targeted towards pre-surgical planning and identification of
eloquent areas (language [112,113], motor [114], vision and memory areas [115]) adjacent to
the tumor, where the need for an extensive resection must be counterbalanced by the sparing
of functional cortical and subcortical structures. The assessment of lesion-to-activation
distance has been considered relevant for the evaluation of postoperative outcomes. In
general, it is assumed that the risk of postoperative loss of function, assessed with fMRI, is
significantly lower when the distance between tumor periphery and BOLD activity is at
least 10 mm [116,117].

Most fMRI clinical exams are task-based, so that the subject is asked to perform an
action in response to a stimulus aimed at the activation of a specific cortical area, alternated
with control/rest phases. Alterations of the BOLD signal are then analyzed to localize
the area under consideration (Figure 12). Task-based fMRI has proven to be a valid and
highly sensitive tool for localizing the distinct eloquent cortical and subcortical areas before
surgery in glioma patients, also showing good accuracy when compared to intraoperative
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stimulation mapping data. Task-based fMRI is reported to be more accurate in LGGs
than in HGGs, due to neurovascular uncoupling [118–120], the presence of arteriovenous
shunting, mechanical vasoconstriction caused by tumoral mass effect, and the presence of
intratumoral hemorrhages.
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by Biswal and his group in 1995, when they found out that resting state signals are 
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Figure 12. Language task-based fMRI. fMRI correlation maps of cortical activation during language
tasks in a patient with frontal-temporal-insular GB. Blue represents areas of increased cortical acti-
vation. (A) 3D surface rendering with BOLD signal overlay reveals the activation of Broca’s Area,
displaced posteriorly by the lesion (black arrow; expressive speech) and in the superior temporal
gyrus (white arrow, Wernike’s Area, receptive speech); (B,C) Axial and coronal deskulled T1w-
BRAVO with BOLD signal overlay confirm the activation and the dislocation of Broca’s Area and
shows a significant but smaller activation in the right inferior frontal gyrus (white arrow’s head).
Black arrow’s head indicates the supplementary Motor Area (C).

In recent years, fMRI of the resting state network (rs-fMRI) has attracted considerable
attention; it consists of the low frequency spontaneous hemodynamic fluctuations during
rest, to investigate the functional architecture of the brain [121]. Rs-fMRI was introduced by
Biswal and his group in 1995, when they found out that resting state signals are consistent
low frequency fluctuations in the range 0.01–0.08Hz [122]. Although the use of rs-fMRI
is mainly confined to research purposes, recent studies have shown similar reliability
compared to task-based fMRI with respect to mapping the sensorimotor network in healthy
subjects [123,124]; thus, rs-fMRI has the potential to become the noninvasive standard of
care for surgical planning and prognosis [121,125,126].

Finally, it must be mentioned that fMRI can be used as a guide for DTI tractography [127].
In fact, pre-surgical planning integrating fMRI and DTI may help to identify, and, subsequently,
allow surgeons to avoid, areas of important functional and anatomical redistribution.

7. Radiomics

Radiomics refers to the use of a series of characteristics (features) of an area, called
region of interest (ROI), which can be delineated either manually or automatically, within
a radiological image. Features are numerical indicators that describe the properties of
ROI regarding gray gradations, texture (or graininess), the presence of patterns (particular
configurations or structures). The goal of radiomics analysis is mainly to make the interpre-
tation of the image more objective and contribute significantly to the visual potential of
radiologists, helping in the identification of patterns present in the image but not detectable
to the naked eye. Radiomics features are divided into first order and second order. First
order features include mean, median, standard deviation of Hounsfield values, entropy,
indicating the degree of unpredictability of gray level distribution, skewness, indicating
histogram symmetry, and Kurtosis. Among the main second-order features there are de-
scriptors of the contrast group, type dissimilarity and homogeneity, descriptors related to
order, type angular momentum, energy and entropy, statistical descriptors that analyze the
frequencies of pairs of values, average type, standard deviation and correlation, descriptors
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that analyze the differences in gray levels between each element of the image and those
immediately adjacent, such as coarseness, contrast, and activity [128].

Following the extraction of the image-derived features, it is possible to process them
to make correlations to specific outcomes using statistical models or machine learning.
Statistical models are used to determine mathematical relationships between variables
and outcomes; the most used are univariate and multivariate analysis. Machine learning
models consist of a system which does not need programmed instructions to work, since
it is capable of learning from the data itself; these models are usually considered more
reliable than statistical ones when it comes to predictive purposes because they rely on
fewer mathematical assumptions, minimal human error, and they are built from larger and
more detailed datasets (Figure 13).

Radiomics is a fast-growing field in radiology where images from conventional ra-
diological examinations are converted into extractable quantitative data that can then be
used to decode the tumor phenotype for applications ranging from improvement of the
diagnosis to the prognosis, to the prediction of the response to treatment [129]. In that field,
radiogenomics refers to a specific application where imaging features are linked to genomic
profiles (Figure 14) [130].

Among clinical applications, radiomics could be useful in the evaluation of mutations
in primary tumors, particularly glial tumors.

Lu at al. built a multilevel quantitative imaging model based on post-contrast T1w,
T2-FLAIR, T2w, DWI, and ADC to recognize IDH and 1p/19q genotypes of gliomas, with
an accuracy up to 89.2% [131]. Radiomics predictors were also built for genetic features
implicated in prognosis such as MGMT methylation and EGFRA289V mutations in high
grade gliomas, and ATRX mutations in LGGs [132–134]. Additionally, Wang et al. built a
multidimensional quantitative radiomics model which integrates clinical data (individual
patient characteristics and glioma grading), MRI and PET imaging for the differential
diagnosis between post-surgical disease recurrence and RN [135].

Radiomics and radiogenomics could be useful in predicting response to RT treatment
in combination with temozolomide since the response is strictly dependent on biological
heterogeneity and patients would benefit from a therapy with a personalized dose [136].

Although radiomics is continuously expanding, it suffers from several limitations
due mainly to the standardization of data, which limits its robustness, reproducibility, and
generalizability. In fact, current standards lack validation of results and are characterized
by incomplete result reports and unidentified confounding variables in the source database,
especially for retrospective data. Moreover, segmentation is used in most imaging studies
to ensure high accuracy and fine delineation of irregular tumor margins, but it suffers from
subjective factors that make it poorly repeatable [137].

Figure 13. Multiparametric MRI-based radiomic analysis. A multiparametric MRI-based radiomic
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analysis in steps: (1) medical imaging acquisition, (2) imaging segmentation, (3) feature extraction,
(4) statistical analysis, and (5) results. The tumor ROI on all MR slices to extract the radiomic
features. Features such as tumor shape, histogram, and texture features were extracted from the
ROIs to discriminate the biological processes of GB habitats and facilitate personalized precision
medicine [138].
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quantitative spatial characterization, offering a means to noninvasively assess specific molecular
activities (C) with enriched molecular pathways (D) [139].

8. Artificial Intelligence

Nowadays artificial intelligence (AI) is widespread in many fields, such as in the
economy, the automotive industry, and medicine. Machine learning (ML) is a type of AI
that has the ability to acquire its own knowledge by extracting patterns from raw data.
Machine learning methods can be divided into supervised learning, in which the dataset
contains features that are used to train the algorithm, and unsupervised learning, in which
the algorithm experiences a dataset without pre-existing specifications. Deep learning (DL)
is a branch of ML inspired by the way in which the brain processes information. In fact,
it is constituted of layers of “artificial neurons” called units, which act in parallel with
other units of the same layer and in series with other layers to analyze data. There is a
hierarchy of features elaborated by each layer: deeper layers define higher-level features
and lower-level features help define higher-level features. The final layer, the so-called
output layer, produces the ultimate result (Figure 15) [140,141].

With regard to images acquisition/post-processing, AI can provide many advantages:
(1) it produces good quality images from under-sampled data, which means shorter ac-
quisition time, particularly useful with claustrophobic/uncooperative patients [142]; (2) it
recognizes and removes motion artifacts [143] and corrects other sources of degradation,
such as a low signal to noise ratio [144], magnetic field inhomogeneities and improper
water or lipid suppression [142]; (3) it reconstructs full-dose post-contrast images from
a low-dose or zero-dose acquisition, fundamental in settings in which GBCA cannot be
administered, such as renal insufficiency or pregnancy (but missing lesions <10 mm is
reported) [145–147]; and (4) it applies algorithms that allow to synthesize images with
higher spatial and contrast resolution than originals [148].

Dealing with BTs, AI algorithms allow lesion segmentation, based on one or multiple
sequences (the most used are T1w, post-contrast T1w, T2w and FLAIR). AI segmentation
divides the brain into different areas such as normal brain tissue, active brain tissue,
necrosis, and edema, supporting an early definition of the neurosurgical planning, which
is particularly helpful for those tumors which are hard to distinguish from normal tissue
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due to infiltration and/or unclear boundaries (i.e., GB) [149–152]. Although AI automation
provides benefits such as elimination of inter-observer variability and reduction of inference
time, it still has some limits: (1) poor performance of segmentation algorithms if large-scale
training datasets are lacking; (2) the necessity of a huge amount of computational and
memory resources; and (3) lower performance in cases of poor spatial resolution, ill-defined
boundaries, measurement noise, variability of object shapes [149,152,153].

Most of the studies concerning AI application to BTs classification deal with the use of
DL algorithms to differentiate four main tumor types: gliomas, metastases, meningiomas,
nerve sheath tumors [152]. Their accuracy varies from 70% and 97%, according to the
number of tumors included, which is very promising in the perspective of a non-invasive
diagnosis, which is safer and “wider” than biopsy. However, recent papers report greater
accuracy (higher than 80%) even in distinguishing IDH-mut codeleted 1p/19q tumors,
MGMT methylated tumors, and H3-K27M mutation status, a remarkable goal considering
their impact on the course of treatment and prognosis [139,154–157]. Intriguing data
obtained by Gao et al. showed that neuroradiologists’ accuracy increased when they
had access to DL results and made the necessary modifications and corrections to their
diagnoses [158].

AI has also been applied to the evaluation of prognosis and/or identification of
tumor progression.

In fact, several studies have shown that data from DTI and fMRI, analyzed by AI
algorithms, are more effective in dividing GB patients into short and long survival groups
than histopathologic information alone [159]. Moreover, DL algorithms demonstrated an
accuracy of 90% in differentiating between PsP and true tumor progression [156]. Ultimately,
DL could help identify molecular/genetic changes occurring during follow-up which could
need or address therapeutic changes (Figure 16) [157].
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9. Quantitative MRI

Longitudinal qualitative comparison of MR images acquired at different sites is limited
due to the dependence of signal intensity on magnetic field strength and its inhomogeneities
(B0), radiofrequency coil (B1) and imaging parameters (i.e., TE, TR, and flip angle) [161,162].
Moreover, BT pre- or post-treatment evaluation is difficult due to subtle changes in tissue
composition not visible on conventional MRI scans [162,163].

Quantitative MRI (qMRI) is a method that isolates the contributions of individual MR
contrast mechanisms (T1, T2, T2*) and provides maps (such as the subtraction between pre-
and post-contrast T1 or between following exams), which are independent of the MR proto-
col and have a physical interpretation often expressed in absolute units [161]. Measurement
of relaxation times needs a large set of images, each weighted slightly differently, to obtain
an adequate sampling of signal evolution and an accurate measurement. Inhomogeneities
of B0 or B1 are averaged out by the measurement series, or they are directly measured and
corrected thereafter [161,162].

There are many applications of qMRI in the evaluation of brain tumors. First, it is
used to detect tumor infiltration beyond the enhancing part of HGG, according to the fact
that recurrence often arises from resection margins, suggesting that this area represents a
non-enhancing infiltration zone. qT1 difference maps (post-contrast T1w—pre-contrast
T1w) show moderate GBCA accumulation in peritumoral edema, and in some cases even
beyond, not evident in conventional images, signs of subtle BBB leakage, and therefore
tumor infiltration [163,164]. Secondly, it allows neuropathological characterization of brain
microstructure. In general, BTs show increased T1 and T2 relaxation times. T1, T2, T2*
relaxation times are correlated with lactate dehydrogenase, inversely correlated with vessel
density; the relative difference between T1 relaxation times pre-to-post GBCA shows a weak
correlation with Ki67 and a negative correlation with the amount of necrosis [165]. Third,
it is helpful to distinguish between recurrence and post-treatment changes during follow-
up. Many studies evaluated patients under anti-angiogenic therapy (e.g., Bevacizumab)
and demonstrated that “longitudinal” subtraction maps (particularly post-contrast T1)
lead to an earlier detection of recurrence than conventional MRI (Figure 17). Moreover,
qMRI aids prediction of OS and PFS: Ellingson et al. suggested that patients with a post
Bevacizumab T2 relaxation time higher than 160 ms would progress earlier (both OS and
PFS were statistically significant) [166]; Ellingson et al. demonstrated also that post-contrast
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T1 subtraction maps allow for the prediction of OS and PFS from the decreasing tumor
volume after Bevacizumab, with a direct correlation between decreasing volume and OS
and PFS (data not showed from conventional MRI) [167].

Figure 17. Example of T2 subtraction maps at different time points during follow-up. Upper row:
T2 images at different time points. Lower row: T2 subtraction maps (with reference to time point
one, not showed) at the same time points. T2 subtraction maps sharpen the evolution of T2 signal
during time, hardly visible at the beginning on conventional T2 images (difference more evident at
time point 9, red arrow) [168].

10. Conclusions

Through this review article, we have highlighted the current role of morphological and
non-morphological MR techniques in the clinical setting of adult patients with primary BTs.

MRI is the mainstay of modern neuroimaging and nowadays it permits superior struc-
tural characterization capturing the cellular, vascular, metabolic, and functional properties
of BTs.

The combined use of all MRI techniques is actually the key to reaching the best clinical
patient care, independently from the stage of the patient’s disease.

Author Contributions: Conceptualization, M.M. and S.G.; methodology, S.G.; writing—original draft
preparation, M.M., M.P., G.D., F.S., R.R., A.P., C.G., G.V. and A.G.; writing—review and editing, M.M.,
F.S. and A.M.F.; supervision, S.G.; project administration, M.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Mabray, M.C.; Barajas, R.F., Jr.; Cha, S. Modern brain tumor imaging. Brain Tumor Res. Treat. 2015, 3, 8–23. [CrossRef] [PubMed]
3. Haacke, E.M.; Mittal, S.; Wu, Z.; Neelavalli, J.; Cheng, Y.C. Susceptibility-weighted imaging: Technical aspects and clinical

applications, part 1. AJNR Am. J. Neuroradiol. 2009, 30, 19–30. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.14791/btrt.2015.3.1.8
http://www.ncbi.nlm.nih.gov/pubmed/25977902
http://doi.org/10.3174/ajnr.A1400
http://www.ncbi.nlm.nih.gov/pubmed/19039041


Biomedicines 2023, 11, 364 23 of 29

4. Gumprecht, H.K.; Widenka, D.C.; Lumenta, C.B. BrainLab VectorVision Neuronavigation System: Technology and clinical
experiences in 131 cases. Neurosurgery 1999, 44, 97–104. [CrossRef]

5. Zhang, B.; MacFadden, D.; Damyanovich, A.Z.; Rieker, M.; Stainsby, J.; Bernstein, M.; Jaffray, D.A.; Mikulis, D.; Ménard, C.
Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning. Phys.
Med. Biol. 2010, 55, 6601–6615. [CrossRef]

6. Osborn, A.G.; Louis, D.N.; Poussaint, T.Y.; Linscott, L.L.; Salzman, K.L. The 2021 World Health Organization Classification of
Tumors of the Central Nervous System: What Neuroradiologists Need to Know. AJNR Am. J. Neuroradiol. 2022, 43, 928–937.
[CrossRef]

7. Iv, M.; Bisdas, S. Neuroimaging in the Era of the Evolving WHO Classification of Brain Tumors, From the AJR Special Series on
Cancer Staging. AJR Am. J. Roentgenol. 2021, 217, 3–15. [CrossRef]

8. Claes, A.; Idema, A.J.; Wesseling, P. Diffuse glioma growth: A guerilla war. Acta Neuropathol. 2007, 114, 443–458. [CrossRef]
9. Zulfiqar, M.; Dumrongpisutikul, N.; Intrapiromkul, J.; Yousem, D.M. Detection of intratumoral calcification in oligodendrogliomas

by susceptibility-weighted MR imaging. AJNR Am. J. Neuroradiol. 2012, 33, 858–864. [CrossRef]
10. Leonardi, M.A.; Lumenta, C.B. Oligodendrogliomas in the CT/MR-era. Acta Neurochir. 2001, 143, 1195–1203. [CrossRef]
11. Kondziolka, D.; Bernstein, M.; Resch, L.; Tator, C.H.; Fleming, J.F.; Vanderlinden, R.G.; Schutz, H. Significance of hemorrhage into

brain tumors: Clinicopathological study. J. Neurosurg. 1987, 67, 852–857. [CrossRef]
12. Garzón, B.; Emblem, K.E.; Mouridsen, K.; Nedregaard, B.; Due-Tønnessen, P.; Nome, T.; Hald, J.K.; Bjørnerud, A.; Håberg, A.K.;

Kvinnsland, Y. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction.
Acta Radiol. 2011, 52, 1052–1060. [CrossRef]

13. Patel, S.H.; Poisson, L.M.; Brat, D.J.; Zhou, Y.; Cooper, L.; Snuderl, M.; Thomas, C.; Franceschi, A.M.; Griffith, B.; Flanders, A.E.;
et al. T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-grade Gliomas: A TCGA/TCIA Project.
Clin. Cancer Res. 2017, 23, 6078–6085. [CrossRef]

14. Doig, D.; Kachramanoglou, C.; Dumba, M.; Tona, F.; Gontsarova, A.; Limbäck, C.; Jan, W. Characterisation of isocitrate
dehydrogenase gene mutant WHO grade 2 and 3 gliomas: MRI predictors of 1p/19q co-deletion and tumour grade. Clin. Radiol.
2021, 76, 785.e9–785.e16. [CrossRef]

15. Radbruch, A.; Lutz, K.; Wiestler, B.; Bäumer, P.; Heiland, S.; Wick, W.; Bendszus, M. Relevance of T2 signal changes in the
assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro-Oncology
2012, 14, 222–229. [CrossRef]

16. Thompson, E.M.; Frenkel, E.P.; Neuwelt, E.A. The paradoxical effect of bevacizumab in the therapy of malignant gliomas.
Neurology 2011, 76, 87–93. [CrossRef]

17. Brandsma, D.; Stalpers, L.; Taal, W.; Sminia, P.; van den Bent, M.J. Clinical features, mechanisms, and management of pseudopro-
gression in malignant gliomas. Lancet Oncol. 2008, 9, 453–461. [CrossRef]

18. Law, M. Advanced imaging techniques in brain tumors. Cancer Imaging 2009, 9, S4–S9. [CrossRef]
19. Chakravorty, A.; Steel, T.; Chaganti, J. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume

derived from dynamic susceptibility-weighted, contrast-enhanced MRI in the preoperative diagnosis of cerebral tumours.
Neuroradiol. J. 2015, 28, 574–583. [CrossRef]

20. Xi, Y.B.; Kang, X.W.; Wang, N.; Liu, T.T.; Zhu, Y.Q.; Cheng, G.; Wang, K.; Li, C.; Guo, F.; Yin, H. Differentiation of primary
central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic
contrast-enhanced magnetic resonance imaging. Eur. J. Radiol. 2019, 112, 59–64. [CrossRef]

21. White, M.L.; Zhang, Y.; Yu, F.; Shonka, N.; Aizenberg, M.R.; Adapa, P.; Jaffar Kazmi, S.A. Post-operative perfusion and diffusion
MR imaging and tumor progression in high-grade gliomas. PLoS ONE 2019, 14, e0213905. [CrossRef] [PubMed]

22. Van Santwijk, L.; Kouwenberg, V.; Meijer, F.; Smits, M.; Henssen, D. A systematic review and meta-analysis on the differentiation
of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 2022, 13, 102.
[CrossRef] [PubMed]

23. Stumpo, V.; Guida, L.; Bellomo, J.; Van Niftrik, C.H.B.; Sebök, M.; Berhouma, M.; Bink, A.; Weller, M.; Kulcsar, Z.; Regli, L.; et al.
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and
Future Directions. Cancers 2022, 14, 1342. [CrossRef] [PubMed]

24. Smits, M. MRI biomarkers in neuro-oncology. Nat. Rev. Neurol. 2021, 17, 486–500. [CrossRef] [PubMed]
25. Guida, L.; Stumpo, V.; Bellomo, J.; van Niftrik, C.H.B.; Sebök, M.; Berhouma, M.; Bink, A.; Weller, M.; Kulcsar, Z.; Regli, L.; et al.

Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers 2022, 14,
1432. [CrossRef]

26. Schmainda, K.M.; Prah, M.A.; Rand, S.D.; Liu, Y.; Logan, B.; Muzi, M.; Rane, S.D.; Da, X.; Yen, Y.F.; Kalpathy-Cramer, J.; et al.
Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging
Network Collaborative Project. AJNR Am. J. Neuroradiol. 2018, 39, 1008–1016. [CrossRef]

27. Cuccarini, V.; Erbetta, A.; Farinotti, M.; Cuppini, L.; Ghielmetti, F.; Pollo, B.; Di Meco, F.; Grisoli, M.; Filippini, G.; Finocchiaro,
G.; et al. Advanced MRI may complement histological diagnosis of lower grade gliomas and help in predicting survival. J.
Neuro-Oncol. 2016, 126, 279–288. [CrossRef]

http://doi.org/10.1097/00006123-199901000-00056
http://doi.org/10.1088/0031-9155/55/22/002
http://doi.org/10.3174/ajnr.A7462
http://doi.org/10.2214/AJR.20.25246
http://doi.org/10.1007/s00401-007-0293-7
http://doi.org/10.3174/ajnr.A2862
http://doi.org/10.1007/s007010100014
http://doi.org/10.3171/jns.1987.67.6.0852
http://doi.org/10.1258/AR.2011.100510
http://doi.org/10.1158/1078-0432.CCR-17-0560
http://doi.org/10.1016/j.crad.2021.06.015
http://doi.org/10.1093/neuonc/nor200
http://doi.org/10.1212/WNL.0b013e318204a3af
http://doi.org/10.1016/S1470-2045(08)70125-6
http://doi.org/10.1102/1470-7330.2009.9002
http://doi.org/10.1177/1971400915611916
http://doi.org/10.1016/j.ejrad.2019.01.008
http://doi.org/10.1371/journal.pone.0213905
http://www.ncbi.nlm.nih.gov/pubmed/30883579
http://doi.org/10.1186/s13244-022-01230-7
http://www.ncbi.nlm.nih.gov/pubmed/35670981
http://doi.org/10.3390/cancers14051342
http://www.ncbi.nlm.nih.gov/pubmed/35267650
http://doi.org/10.1038/s41582-021-00510-y
http://www.ncbi.nlm.nih.gov/pubmed/34149051
http://doi.org/10.3390/cancers14061432
http://doi.org/10.3174/ajnr.A5675
http://doi.org/10.1007/s11060-015-1960-5


Biomedicines 2023, 11, 364 24 of 29

28. Kudo, K.; Uwano, I.; Hirai, T.; Murakami, R.; Nakamura, H.; Fujima, N.; Yamashita, F.; Goodwin, J.; Higuchi, S.; Sasaki, M.
Comparison of Different Post-Processing Algorithms for Dynamic Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas.
Magn. Reson. Med. Sci. 2017, 16, 129–136. [CrossRef]

29. Jain, R.; Poisson, L.M.; Gutman, D.; Scarpace, L.; Hwang, S.N.; Holder, C.A.; Wintermark, M.; Rao, A.; Colen, R.R.; Kirby, J.;
et al. Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the
Nonenhancing Component of the Tumor. Radiology 2014, 272, 484–493. [CrossRef]

30. Law, M.; Young, R.J.; Babb, J.S.; Peccerelli, N.; Chheang, S.; Gruber, M.L.; Miller, D.C.; Golfinos, J.G.; Zagzag, D.; Johnson, G.
Gliomas: Predicting Time to Progression or Survival with Cerebral Blood Volume Measurements at Dynamic Susceptibility-
weighted Contrast-enhanced Perfusion MR Imaging. Radiology 2008, 247, 490–498. [CrossRef]

31. Burth, S.; Kickingereder, P.; Eidel, O.; Tichy, D.; Bonekamp, D.; Weberling, L.; Wick, A.; Löw, S.; Hertenstein, A.; Nowosielski, M.;
et al. Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed
glioblastoma. Neuro-Oncology 2016, 18, 1673–1679. [CrossRef]

32. Hilario, A.; Hernandez-Lain, A.; Sepulveda, J.M.; Lagares, A.; Perez-Nuñez, A.; Ramos, A. Perfusion MRI grading diffuse gliomas:
Impact of permeability parameters on molecular biomarkers and survival. Neurocirugía 2019, 30, 11–18. [CrossRef]

33. Lu, J.; Li, X.; Li, H. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter
methylation status in glioblastomas. Magn. Reson. Imaging 2021, 83, 189–195. [CrossRef]

34. Park, Y.W.; Ahn, S.S.; Park, C.J.; Han, K.; Kim, E.H.; Kang, S.G.; Chang, J.H.; Kim, S.H.; Lee, S.K. Diffusion and perfusion MRI
may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur. Radiol. 2020,
30, 6475–6484. [CrossRef]

35. Tsakiris, C.; Siempis, T.; Alexiou, G.A.; Zikou, A.; Sioka, C.; Voulgaris, S.; Argyropoulou, M.I. Differentiation Between True
Tumor Progression of Glioblastoma and Pseudoprogression Using Diffusion-Weighted Imaging and Perfusion-Weighted Imaging
Systematic Review and Meta-analysis. World Neurosurg. 2020, 144, e100–e109. [CrossRef]

36. Prager, A.J.; Martinez, N.; Beal, K.; Omuro, A.; Zhang, Z.; Young, R.J. Diffusion and Perfusion MRI to Differentiate Treatment-
Related Changes Including Pseudoprogression from Recurrent Tumors in High-Grade Gliomas with Histopathologic Evidence.
AJNR Am. J. Neuroradiol. 2015, 36, 877–885. [CrossRef]

37. Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 2018, 48, 571–589.
[CrossRef]

38. Ye, J.; Bhagat, S.K.; Li, H.; Luo, X.; Wang, B.; Liu, L.; Yang, G. Differentiation between recurrent gliomas and radiation necrosis
using arterial spin labeling perfusion imaging. Exp. Ther. Med. 2016, 11, 2432–2436. [CrossRef]

39. Gaudino, S.; Marziali, G.; Giordano, C.; Gigli, R.; Varcasia, G.; Magnani, F.; Chiesa, S.; Balducci, M.; Costantini, A.M.; Della Pepa,
G.M.; et al. Regorafenib in Glioblastoma Recurrence: How to Deal with MR Imaging Treatments Changes. Front. Radiol. 2022, 1,
790456. [CrossRef]

40. Farid, N.; Almeida-Freitas, D.B.; White, N.S.; McDonald, C.R.; Kuperman, J.M.; Almutairi, A.A.; Muller, K.A.; VandenBerg, S.R.;
Kesari, S.; Dale, A.M. Combining diffusion and perfusion differentiates tumor from bevacizumab-related imaging abnormality
(bria). J. Neuro-Oncol. 2014, 120, 539–546. [CrossRef]

41. Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions:
Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401–407. [CrossRef] [PubMed]

42. Gihr, G.; Horvath-Rizea, D.; Hekeler, E.; Ganslandt, O.; Henkes, H.; Hoffmann, K.T.; Scherlach, C.; Schob, S. Diffusion weighted
imaging in high-grade gliomas: A histogram-based analysis of apparent diffusion coefficient profile. PLoS ONE 2021, 16, e0249878.
[CrossRef] [PubMed]

43. Ellingson, B.M.; Malkin, M.G.; Rand, S.D.; Connelly, J.M.; Quinsey, C.; LaViolette, P.S.; Bedekar, D.P.; Schmainda, K.M. Validation
of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J. Magn. Reson. Imaging 2010, 31, 538–548.
[CrossRef] [PubMed]

44. Gihr, G.; Horvath-Rizea, D.; Kohlhof-Meinecke, P.; Ganslandt, O.; Henkes, H.; Härtig, W.; Donitza, A.; Skalej, M.; Schob, S.
Diffusion Weighted Imaging in Gliomas: A Histogram-Based Approach for Tumor Characterization. Cancers 2022, 14, 3393.
[CrossRef] [PubMed]

45. Kang, X.W.; Xi, Y.B.; Liu, T.T.; Wang, N.; Zhu, Y.Q.; Wang, X.R.; Guo, F. Grading of Glioma: Combined diagnostic value of amide
proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging. BMC Med. Imaging 2020, 20,
50. [CrossRef]

46. Yin, Y.; Tong, D.; Liu, X.Y.; Yuan, T.T.; Yan, Y.Z.; Ma, Y.; Zhao, R. Correlation of apparent diffusion coefficient with Ki-67 in the
diagnosis of gliomas. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2012, 34, 503–508.

47. Poussaint, T.Y.; Vajapeyam, S.; Ricci, K.I.; Panigrahy, A.; Kocak, M.; Kun, L.E.; Boyett, J.M.; Pollack, I.F.; Fouladi, M. Apparent
diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: A report from the Pediatric
Brain Tumor Consortium. Neuro-Oncology 2016, 18, 725–734. [CrossRef]

48. Castillo, M.; Smith, J.K.; Kwock, L.; Wilber, K. Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas.
AJNR Am. J. Neuroradiol. 2001, 22, 60–64.

49. Thust, S.C.; Hassanein, S.; Bisdas, S.; Rees, J.H.; Hyare, H.; Maynard, J.A.; Brandner, S.; Tur, C.; Jäger, H.R.; Yousry, T.A.; et al.
Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: Volumetric
segmentation versus two-dimensional region of interest analysis. Eur. Radiol. 2018, 28, 3779–3788. [CrossRef]

http://doi.org/10.2463/mrms.mp.2016-0036
http://doi.org/10.1148/radiol.14131691
http://doi.org/10.1148/radiol.2472070898
http://doi.org/10.1093/neuonc/now122
http://doi.org/10.1016/j.neucir.2018.06.004
http://doi.org/10.1016/j.mri.2021.09.005
http://doi.org/10.1007/s00330-020-07090-3
http://doi.org/10.1016/j.wneu.2020.07.218
http://doi.org/10.3174/ajnr.A4218
http://doi.org/10.1002/jmri.26171
http://doi.org/10.3892/etm.2016.3225
http://doi.org/10.3389/fradi.2021.790456
http://doi.org/10.1007/s11060-014-1583-2
http://doi.org/10.1148/radiology.161.2.3763909
http://www.ncbi.nlm.nih.gov/pubmed/3763909
http://doi.org/10.1371/journal.pone.0249878
http://www.ncbi.nlm.nih.gov/pubmed/33857203
http://doi.org/10.1002/jmri.22068
http://www.ncbi.nlm.nih.gov/pubmed/20187195
http://doi.org/10.3390/cancers14143393
http://www.ncbi.nlm.nih.gov/pubmed/35884457
http://doi.org/10.1186/s12880-020-00450-x
http://doi.org/10.1093/neuonc/nov256
http://doi.org/10.1007/s00330-018-5351-0


Biomedicines 2023, 11, 364 25 of 29

50. Hong, E.K.; Choi, S.H.; Shin, D.J.; Jo, S.W.; Yoo, R.E.; Kang, K.M.; Yun, T.J.; Kim, J.H.; Sohn, C.H.; Park, S.H.; et al. Radiogenomics
correlation between MR imaging features and major genetic profiles in glioblastoma. Eur. Radiol. 2018, 28, 4350–4361. [CrossRef]

51. Cui, Y.; Ma, L.; Chen, X.; Zhang, Z.; Jiang, H.; Lin, S. Lower apparent diffusion coefficients indicate distinct prognosis in low-grade
and high-grade glioma. J. Neuro-Oncol. 2014, 119, 377–385. [CrossRef]

52. Rundle-Thiele, D.; Day, B.; Stringer, B.; Fay, M.; Martin, J.; Jeffree, R.L.; Thomas, P.; Bell, C.; Salvado, O.; Gal, Y.; et al. Using the
apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: Importance of analytical
method. J. Med. Radiat. Sci. 2015, 62, 92–98. [CrossRef]

53. Sunwoo, L.; Choi, S.H.; Park, C.K.; Kim, J.W.; Yi, K.S.; Lee, W.J.; Yoon, T.J.; Song, S.W.; Kim, J.E.; Kim, J.Y.; et al. Correlation of
apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed
with MS-MLPA in patients with glioblastoma multiforme. J. Magn. Reson. Imaging 2013, 37, 351–358. [CrossRef]

54. Young, R.J.; Gupta, A.; Shah, A.D.; Graber, J.J.; Schweitzer, A.D.; Prager, A.; Shi, W.; Zhang, Z.; Huse, J.; Omuro, A.M. Potential
role of preoperative conventional MRI including diffusion measurements in assessing epidermal growth factor receptor gene
amplification status in patients with glioblastoma. AJNR Am. J. Neuroradiol. 2013, 34, 2271–2277. [CrossRef]

55. Hein, P.A.; Eskey, C.J.; Dunn, J.F.; Hug, E.B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: Tumor
recurrence versus radiation injury. AJNR Am. J. Neuroradiol. 2004, 25, 201–209.

56. Lee, W.J.; Choi, S.H.; Park, C.K.; Yi, K.S.; Kim, T.M.; Lee, S.H.; Kim, J.H.; Sohn, C.H.; Park, S.H.; Kim, I.H. Diffusion-weighted
MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with
temozolomide in patients with newly diagnosed high-grade gliomas. Acad. Radiol. 2012, 19, 1353–1361. [CrossRef]

57. Qin, D.; Yang, G.; Jing, H.; Tan, Y.; Zhao, B.; Zhang, H. Tumor Progression and Treatment-Related Changes: Radiological
Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers 2022, 14, 3771. [CrossRef]

58. Le Bihan, D.; Poupon, C.; Amadon, A.; Lethimonnier, F. Artifacts and pitfalls in diffusion MRI. J. Magn. Reson. Imaging 2006, 24,
478–488. [CrossRef]

59. Suzuki, Y.; Nakamura, Y.; Yamada, K.; Kurabe, S.; Okamoto, K.; Aoki, H.; Kitaura, H.; Kakita, A.; Fujii, Y.; Huber, V.J.; et al.
Aquaporin Positron Emission Tomography Differentiates Between Grade III and IV Human Astrocytoma. Neurosurgery 2018, 82,
842–846. [CrossRef]

60. Leclercq, D.; Delmaire, C.; de Champfleur, N.M.; Chiras, J.; Lehéricy, S. Diffusion tractography: Methods, validation and
applications in patients with neurosurgical lesions. Neurosurg. Clin. N. Am. 2011, 22, 253–268. [CrossRef]

61. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—A technical review. NMR Biomed. 2002, 15, 435–455.
[CrossRef] [PubMed]

62. Jones, T.L.; Byrnes, T.J.; Yang, G.; Howe, F.A.; Bell, B.A.; Barrick, T.R. Brain tumor classification using the diffusion tensor image
segmentation (D-SEG) technique. Neuro-Oncology 2015, 17, 466–476. [CrossRef] [PubMed]

63. Vassal, F.; Schneider, F.; Nuti, C. Intraoperative use of diffusion tensor imaging-based tractography for resection of gliomas
located near the pyramidal tract: Comparison with subcortical stimulation mapping and contribution to surgical outcomes. Br. J.
Neurosurg. 2013, 27, 668–675. [CrossRef] [PubMed]

64. Sollmann, N.; Kelm, A.; Ille, S.; Schröder, A.; Zimmer, C.; Ringel, F.; Meyer, B.; Krieg, S.M. Setup presentation and clinical
outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and
tractography. Neurosurg. Focus 2018, 44, E2. [CrossRef]

65. Essayed, W.I.; Zhang, F.; Unadkat, P.; Cosgrove, G.R.; Golby, A.J.; O’Donnell, L.J. White matter tractography for neurosurgical
planning: A topography-based review of the current state of the art. Neuroimage Clin. 2017, 15, 659–672. [CrossRef]

66. Farshidfar, Z.; Faeghi, F.; Mohseni, M.; Seddighi, A.; Kharrazi, H.H.; Abdolmohammadi, J. Diffusion tensor tractography in the
presurgical assessment of cerebral gliomas. Neuroradiol. J. 2014, 27, 75–84. [CrossRef]

67. Meyer, E.J.; Gaggl, W.; Gilloon, B.; Swan, B.; Greenstein, M.; Voss, J.; Hussain, N.; Holdsworth, R.L.; Nair, V.A.; Meyerand, M.E.;
et al. The Impact of Intracranial Tumor Proximity to White Matter Tracts on Morbidity and Mortality: A Retrospective Diffusion
Tensor Imaging Study. Neurosurgery 2017, 80, 193–200. [CrossRef]

68. Caverzasi, E.; Hervey-Jumper, S.L.; Jordan, K.M.; Lobach, I.V.; Li, J.; Panara, V.; Racine, C.A.; Sankaranarayanan, V.; Amirbekian,
B.; Papinutto, N.; et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI
q-ball fiber tractography in patients with gliomas. J. Neurosurg. 2016, 125, 33–45. [CrossRef]

69. Zhu, F.P.; Wu, J.S.; Song, Y.Y.; Yao, C.J.; Zhuang, D.X.; Xu, G.; Tang, W.J.; Qin, Z.Y.; Mao, Y.; Zhou, L.F. Clinical application of motor
pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral
glioma surgery: A prospective cohort study. Neurosurgery 2012, 71, 1170–1183. [CrossRef]

70. D’Andrea, G.; Familiari, P.; Di Lauro, A.; Angelini, A.; Sessa, G. Safe Resection of Gliomas of the Dominant Angular Gyrus
Availing of Preoperative FMRI and Intraoperative DTI: Preliminary Series and Surgical Technique. World Neurosurg. 2016, 87,
627–639. [CrossRef]

71. Ostrý, S.; Belšan, T.; Otáhal, J.; Beneš, V.; Netuka, D. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical
corticospinal tract mapping? Neurosurgery 2013, 73, 797–807. [CrossRef]

72. Altabella, L.; Broggi, S.; Mangili, P.; Conte, G.M.; Pieri, V.; Iadanza, A.; Del Vecchio, A.; Anzalone, N.; di Muzio, N.; Calandrino, R.;
et al. Integration of Diffusion Magnetic Resonance Tractography into tomotherapy radiation treatment planning for high-grade
gliomas. Phys. Med. 2018, 55, 127–134. [CrossRef]

http://doi.org/10.1007/s00330-018-5400-8
http://doi.org/10.1007/s11060-014-1490-6
http://doi.org/10.1002/jmrs.103
http://doi.org/10.1002/jmri.23838
http://doi.org/10.3174/ajnr.A3604
http://doi.org/10.1016/j.acra.2012.06.011
http://doi.org/10.3390/cancers14153771
http://doi.org/10.1002/jmri.20683
http://doi.org/10.1093/neuros/nyx314
http://doi.org/10.1016/j.nec.2010.11.004
http://doi.org/10.1002/nbm.782
http://www.ncbi.nlm.nih.gov/pubmed/12489094
http://doi.org/10.1093/neuonc/nou159
http://www.ncbi.nlm.nih.gov/pubmed/25121771
http://doi.org/10.3109/02688697.2013.771730
http://www.ncbi.nlm.nih.gov/pubmed/23458557
http://doi.org/10.3171/2018.3.FOCUS1838
http://doi.org/10.1016/j.nicl.2017.06.011
http://doi.org/10.15274/NRJ-2014-10008
http://doi.org/10.1093/neuros/nyw040
http://doi.org/10.3171/2015.6.JNS142203
http://doi.org/10.1227/NEU.0b013e318271bc61
http://doi.org/10.1016/j.wneu.2015.10.076
http://doi.org/10.1227/NEU.0000000000000087
http://doi.org/10.1016/j.ejmp.2018.10.004


Biomedicines 2023, 11, 364 26 of 29

73. Xu, J.L.; Li, Y.L.; Lian, J.M.; Dou, S.W.; Yan, F.S.; Wu, H.; Shi, D.P. Distinction between postoperative recurrent glioma and
radiation injury using MR diffusion tensor imaging. Neuroradiology 2010, 52, 1193–1199. [CrossRef]

74. Shah, R.; Vattoth, S.; Jacob, R.; Manzil, F.F.; O’Malley, J.P.; Borghei, P.; Patel, B.N.; Curé, J.K. Radiation necrosis in the brain:
Imaging features and differentiation from tumor recurrence. Radiographics 2012, 32, 1343–1359. [CrossRef]

75. Sinha, S.; Bastin, M.E.; Whittle, I.R.; Wardlaw, J.M. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am. J.
Neuroradiol. 2002, 23, 520–527.

76. Stadlbauer, A.; Ganslandt, O.; Buslei, R.; Hammen, T.; Gruber, S.; Moser, E.; Buchfelder, M.; Salomonowitz, E.; Nimsky, C.
Gliomas: Histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR
imaging. Radiology 2006, 240, 803–810. [CrossRef]

77. Wang, S.; Kim, S.J.; Poptani, H.; Woo, J.H.; Mohan, S.; Jin, R.; Voluck, M.R.; O’Rourke, D.M.; Wolf, R.L.; Melhem, E.R.; et al.
Diagnostic utility of diffusion tensor imaging in differentiating glioblastomas from brain metastases. AJNR Am. J. Neuroradiol.
2014, 35, 928–934. [CrossRef]

78. White, M.L.; Zhang, Y.; Yu, F.; Jaffar Kazmi, S.A. Diffusion tensor MR imaging of cerebral gliomas: Evaluating fractional
anisotropy characteristics. AJNR Am. J. Neuroradiol. 2011, 32, 374–381. [CrossRef]

79. Chen, Y.; Shi, Y.; Song, Z. Differences in the architecture of low-grade and high-grade gliomas evaluated using fiber density index
and fractional anisotropy. J. Clin. Neurosci. 2010, 17, 824–829. [CrossRef]

80. Ormond, D.R.; D’Souza, S.; Thompson, J.A. Global and Targeted Pathway Impact of Gliomas on White Matter Integrity Based on
Lobar Localization. Cureus 2017, 9, e1660. [CrossRef]

81. Pavlisa, G.; Rados, M.; Pavlisa, G.; Pavic, L.; Potocki, K.; Mayer, D. The differences of water diffusion between brain tissue
infiltrated by tumor and peritumoral vasogenic edema. Clin. Imaging 2009, 33, 96–101. [CrossRef] [PubMed]

82. Li, Y.; Zhang, W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma. Neurosurg. Rev. 2020, 43,
881–891. [CrossRef] [PubMed]

83. Costabile, J.D.; Alaswad, E.; D’Souza, S.; Thompson, J.A.; Ormond, D.R. Current Applications of Diffusion Tensor Imaging and
Tractography in Intracranial Tumor Resection. Front. Oncol. 2019, 9, 426. [CrossRef] [PubMed]

84. Nimsky, C.; Ganslandt, O.; Merhof, D.; Sorensen, A.G.; Fahlbusch, R. Intraoperative visualization of the pyramidal tract by
diffusion-tensor-imaging-based fiber tracking. Neuroimage 2006, 30, 1219–1229. [CrossRef]

85. Maesawa, S.; Fujii, M.; Nakahara, N.; Watanabe, T.; Wakabayashi, T.; Yoshida, J. Intraoperative tractography and motor evoked
potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg. 2010, 74, 153–161. [CrossRef]

86. Fahlbusch, R.; Ganslandt, O.; Nimsky, C. Intraoperative imaging with open magnetic resonance imaging and neuronavigation.
Childs Nerv. Syst. 2000, 16, 829–831. [CrossRef]

87. Potgieser, A.R.; Wagemakers, M.; van Hulzen, A.L.; de Jong, B.M.; Hoving, E.W.; Groen, R.J. The role of diffusion tensor imaging
in brain tumor surgery: A review of the literature. Clin. Neurol. Neurosurg. 2014, 124, 51–58. [CrossRef]

88. Nimsky, C.; Ganslandt, O.; Hastreiter, P.; Wang, R.; Benner, T.; Sorensen, A.G.; Fahlbusch, R. Preoperative and intraoperative
diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 2005, 56, 130–138. [CrossRef]

89. Marongiu, A.; D’Andrea, G.; Raco, A. 1.5-T Field Intraoperative Magnetic Resonance Imaging Improves Extent of Resection and
Survival in Glioblastoma Removal. World Neurosurg. 2017, 98, 578–586. [CrossRef]

90. Nimsky, C. Fiber tracking—A reliable tool for neurosurgery? World Neurosurg. 2010, 74, 105–106. [CrossRef]
91. Igaki, H.; Sakumi, A.; Mukasa, A.; Saito, K.; Kunimatsu, A.; Masutani, Y.; Hanakita, S.; Ino, K.; Haga, A.; Nakagawa, K.; et al.

Corticospinal tract-sparing intensity-modulated radiotherapy treatment planning. Rep. Pract. Oncol. Radiother. 2014, 19, 310–316.
[CrossRef]

92. Wang, M.; Ma, H.; Wang, X.; Guo, Y.; Xia, X.; Xia, H.; Guo, Y.; Huang, X.; He, H.; Jia, X.; et al. Integration of BOLD-fMRI and DTI
into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts. Radiat.
Oncol. 2015, 10, 64. [CrossRef]

93. Yahya, N.; Manan, H.A. Utilisation of Diffusion Tensor Imaging in Intracranial Radiotherapy and Radiosurgery Planning for
White Matter Dose Optimization: A Systematic Review. World Neurosurg. 2019, 130, e188–e198. [CrossRef]

94. Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in
patients with brain tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [CrossRef]

95. Peiffer, A.M.; Leyrer, C.M.; Greene-Schloesser, D.M.; Shing, E.; Kearns, W.T.; Hinson, W.H.; Tatter, S.B.; Ip, E.H.; Rapp, S.R.;
Robbins, M.E.; et al. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 2013,
80, 747–753. [CrossRef]

96. Koga, T.; Shin, M.; Maruyama, K.; Kamada, K.; Ota, T.; Itoh, D.; Kunii, N.; Ino, K.; Aoki, S.; Masutani, Y.; et al. Integration of
corticospinal tractography reduces motor complications after radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 129–133.
[CrossRef]

97. Wang, S.; Martinez-Lage, M.; Sakai, Y.; Chawla, S.; Kim, S.G.; Alonso-Basanta, M.; Lustig, R.A.; Brem, S.; Mohan, S.; Wolf, R.L.;
et al. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging
and Dynamic Susceptibility Contrast MRI. AJNR Am. J. Neuroradiol. 2016, 37, 28–36. [CrossRef]

98. Currie, S.; Hadjivassiliou, M.; Craven, I.J.; Wilkinson, I.D.; Griffiths, P.D.; Hoggard, N. Magnetic resonance spectroscopy of the
brain. Postgrad. Med. J. 2013, 89, 94–106. [CrossRef]

http://doi.org/10.1007/s00234-010-0731-4
http://doi.org/10.1148/rg.325125002
http://doi.org/10.1148/radiol.2403050937
http://doi.org/10.3174/ajnr.A3871
http://doi.org/10.3174/ajnr.A2267
http://doi.org/10.1016/j.jocn.2009.11.022
http://doi.org/10.7759/cureus.1660
http://doi.org/10.1016/j.clinimag.2008.06.035
http://www.ncbi.nlm.nih.gov/pubmed/19237051
http://doi.org/10.1007/s10143-018-1050-1
http://www.ncbi.nlm.nih.gov/pubmed/30417213
http://doi.org/10.3389/fonc.2019.00426
http://www.ncbi.nlm.nih.gov/pubmed/31192130
http://doi.org/10.1016/j.neuroimage.2005.11.001
http://doi.org/10.1016/j.wneu.2010.03.022
http://doi.org/10.1007/s003810000344
http://doi.org/10.1016/j.clineuro.2014.06.009
http://doi.org/10.1227/01.NEU.0000144842.18771.30
http://doi.org/10.1016/j.wneu.2016.11.013
http://doi.org/10.1016/j.wneu.2010.05.014
http://doi.org/10.1016/j.rpor.2014.01.002
http://doi.org/10.1186/s13014-015-0364-1
http://doi.org/10.1016/j.wneu.2019.06.027
http://doi.org/10.1038/nrneurol.2016.185
http://doi.org/10.1212/WNL.0b013e318283bb0a
http://doi.org/10.1016/j.ijrobp.2011.05.036
http://doi.org/10.3174/ajnr.A4474
http://doi.org/10.1136/postgradmedj-2011-130471


Biomedicines 2023, 11, 364 27 of 29

99. Tognarelli, J.M.; Dawood, M.; Shariff, M.I.; Grover, V.P.; Crossey, M.M.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J. Magnetic
Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 320–328. [CrossRef]

100. Horská, A.; Barker, P.B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin. N. Am. 2010, 20,
293–310. [CrossRef]

101. Tartaglione, T.; Visconti, E.; Botto, E.; Di Lella, G.M. Tecniche e metodiche in neuroradiologia. In Neuroradiologia, 1st ed.; Colosimo,
C., Ed.; Edra: Milan, Italy, 2013; pp. 14–16.

102. Zhu, H.; Barker, P.B. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol. Biol. 2011, 711, 203–226. [PubMed]
103. Weinberg, B.D.; Kuruva, M.; Shim, H.; Mullins, M.E. Clinical Applications of Magnetic Resonance Spectroscopy in Brain Tumors:

From Diagnosis to Treatment. Radiol. Clin. N. Am. 2021, 59, 349–362. [CrossRef] [PubMed]
104. Al-Okaili, R.N.; Krejza, J.; Wang, S.; Woo, J.H.; Melhem, E.R. Advanced MR imaging techniques in the diagnosis of intraaxial

brain tumors in adults. Radiographics 2006, 26, 173–189. [CrossRef] [PubMed]
105. Hnilicova, P.; Richterova, R.; Zelenak, K.; Kolarovszki, B.; Majercikova, Z.; Hatok, J. Noninvasive study of brain tumours

metabolism using phosphorus-31 magnetic resonance spectroscopy. Bratisl. Lek. Listy 2020, 121, 488–492. [CrossRef]
106. Grams, A.E.; Mangesius, S.; Steiger, R.; Radovic, I.; Rietzler, A.; Walchhofer, L.M.; Galijašević, M.; Mangesius, J.; Nowosielski, M.;
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