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Abstract: Ischemic heart disease (IHD) is one of the main focuses in today’s healthcare due to
its implications and complications, and it is predicted to be increasing in prevalence due to the
ageing population. Although the conventional pharmacological and interventional methods for the
treatment of IHD presents with success in the clinical setting, the long-term complications of cardiac
insufficiency are on a continual incline as a result of post-infarction remodeling of the cardiac tissue.
The migration and involvement of stem cells to the cardiac muscle, followed by differentiation into
cardiac myocytes, has been proven to be the natural process, though at a slow rate. SDF-1α is a novel
candidate to mobilize stem cells homing to the ischemic heart. Endogenous SDF-1α levels are elevated
after myocardial infarction, but their presence gradually decreases after approximately seven days.
Additional administration of SDF-1α-releasing microspheres could be a tool for the extension of the
time the stem cells are in the cardiac tissue after myocardial infarction. This, in turn, could constitute
a novel therapy for more efficient regeneration of the heart muscle after injury. Through this practical
study, it has been shown that the controlled release of SDF-1α from biodegradable microspheres into
the pericardial sac fourteen days after myocardial infarction increases the concentration of exogenous
SDF-1α, which persists in the tissue much longer than the level of endogenous SDF-1α. In addition,
administration of SDF-1α-releasing microspheres increased the expression of the factors potentially
involved in the involvement and retention of myocardial stem cells, which constitutes vascular
endothelial growth factor A (VEGFA), stem cell factor (SCF), and vascular cell adhesion molecules
(VCAMs) at the site of damaged tissue. This exhibits the possibility of combating the basic limitations
of cell therapy, including ineffective stem cell implantation and the ability to induce the migration of
endogenous stem cells to the ischemic cardiac tissue and promote heart repair.

Keywords: SDF-1α; bone marrow mesenchymal stromal cells (bmMSCs); biodegradable polymeric
microspheres; myocardial infarction

1. Introduction

Cardiovascular diseases (CVD) development due to atherosclerosis constitutes a main
cause of death in the world. Ischemic heart disease (IHD), together with its complications,
such as myocardial infarction (MI) and heart failure (HF), are at the forefront of CVDs and
present a serious problem from a social and economic point of view. Moreover, the risk of
these diseases increases with age; thus, light of the demographic projections, an increase in
the number of CVD patients is to be expected due to the ageing population [1–3].

Biomedicines 2023, 11, 343. https://doi.org/10.3390/biomedicines11020343 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11020343
https://doi.org/10.3390/biomedicines11020343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-8235-5627
https://orcid.org/0000-0003-1119-4253
https://orcid.org/0000-0003-2625-5434
https://orcid.org/0000-0001-6094-4677
https://orcid.org/0000-0002-8943-9508
https://doi.org/10.3390/biomedicines11020343
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11020343?type=check_update&version=2


Biomedicines 2023, 11, 343 2 of 11

The current methods for treating ischemic heart disease include the modification of
risk factors, pharmacotherapy, and interventional treatment. Technological progress has
also contributed to the significant reduction of mortality rates in patients with myocar-
dial infarction. On the other hand, in the long term, the incidence of heart failure as a
result of post-infarction myocardial remodeling (CM) is steadily increasing [4]. Modern
medicine faces an enormous challenge, which requires innovative solutions adapted to the
new requirements.

There is increasing evidence that one naturally occurring process is the mobilization
of stem cells to the heart and differentiation into cardiac myocytes. However, it is a slow
progression for the significant recovery of left ventricular function following myocardial
infarction [5,6]. Therefore, one of the most promising strategies to aid faster and more
efficient recovery in the treatment of cardiovascular diseases is stem cell therapy. Although
it is a safe therapy, there are associated limitations, mainly concerning the low efficacy of
stem cell homing in the myocardium [7,8]. Previously, direct injection of stem cells into the
ischemic heart specimens failed to improve cardiac function, because the microenvironment
of the ischemic myocardium did not promote exogenous cell survival, differentiation, and
integration into the recipient heart [9]. As a result, in recent years, emphasis has been
placed on optimizing cell therapy by mobilizing endogenous stem cells into the ischemic
heart, as well as on the method of administration and duration of the treatment.

Chemokine SDF-1 (stromal cell-derived factor 1) is a novel candidate to mobilize stem
cell homing to the ischemic heart [10,11]. It is known that, after MI, intravenously delivered
stem cells localize at the peri infarction area, suggesting the presence of local chemotactic
factors, including SDF-1 [12]. Although the levels of endogenous SDF-1 are elevated after
MI, their presence decreases gradually after 4–7 days. From a practical point of view, it is
advisable to take steps to obtain high concentrations of SDF-1 in the heart [12,13].

Herein, we show that the controlled release of SDF-1α from biodegradable micro-
spheres into the pericardial sac increases the recruitment of stem cells to the heart after MI,
and also increases stem cell homing (Figure 1).
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Figure 1. Study design. Fourteen days after myocardial infarction, SDF-1α released from micro-
spheres were transferred to the pericardium sac. The effect of SDF-1α was investigated using ELISA
test, measuring the level of endogenous and exogenous concentrations of SDF-1α over a long-term
period, and RT-qPCR, examining the gene expression profile in the infarct tissue.

2. Methods
2.1. Animal Studies

This part of the project was performed at the Center for Cardiovascular Research and
Development of American Heart of Poland. All procedures were approved by the Animal
Ethics Committee (Contract No. 64/2018, 19/2021). All animals received standard care in
accordance with the Animal Welfare Act and the “Guide for the Care and Use of Laboratory
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Animals”. A total of 33 domestic swine (Sus scrofa domesticus), with an average weight of
40 kg, were incorporated in this study.

2.2. Animal Experimental Design

The detailed protocol of a closed thoracic model of myocardial infarction/reperfusion
was previously published by our group [14–16]. After the appropriate depth of anesthesia
was achieved under sterile conditions, a percutaneous vascular sheath (6F) was placed in
the femoral artery for arterial access. Using standard percutaneous coronary intervention
techniques, a 6F JR3.5 guide catheter was inserted into the left coronary artery, and initial
cine angiography was recorded with manual injections of radiographic contrast agent.
A simulated myocardial infarction in a pig consisted of a balloon blocking the left anterior
descending artery for 60 min, which resulted in transmural necrosis in the area it supplies
(a recognized model of myocardial infarction) [17]. The procedure was completed 30 min
after the blood flow was restored, then a control coronary angiography was performed
to confirm the patency of the artery. In the test group, microspheres (MS) were delivered
to the pericardial sac 14 days after the myocardial infarction. Control animal subjects did
not receive SDF-1α-released microspheres. The animals were sacrificed 24 h, 72 h, 7 days,
and 14 days after MI and 24 h, 72 h, 7 days, 14 days, 3 weeks, 9 weeks, and 15 weeks after
microspheres delivery. The procedure was performed by qualified personnel under general
anesthesia by intravenous injection of a commercial euthanasia solution (Figure 2).
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Figure 2. The scheme of the experiment. In the study group (*), SDF-1α-released microspheres were
delivered to the pericardial sac 14 days after the myocardial infarction. Control animals did not
receive microspheres after MI. The animals were euthanized 24 h, 72 h, 7 days, 14 days, 3 weeks,
9 weeks, and 15 weeks after microspheres delivery.

Subsequently, analysis of the SDF-1α concentration in the damaged tissue was carried
out using ELISA, and gene expression was analyzes using RT-qPCR. The study procedure
flowchart is presented in Table 1.
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Table 1. Study procedures’ flowchart.
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2.3. Microspheres with SDF-1α

The microspheres (MS) were prepared from poly(L-lactide/glycolide/trimethylene
carbonate) (PLA/GA/TMC) according to the previously reported procedure [18]. For a
short period of time, the water/oil/water (w/o/w) emulsion method was used to produce
the microspheres. SDF-1α was mixed with bovine serum albumin (BSA) (1:9 w/w) and
dissolved in deionized H2O (3.5% w/v). The polymer was dissolved in dichloromethane
(12.5% w/v). The w/o phase was sonicated for 15 s (Hielscher UP200Ht, Teltow, Germany)
and added dropwise to 5% polyvinyl alcohol (PVA) (Kinematica, Polytron PT 2500 E,
Malters, Switzerland) at 13,000 rpm. The resulting emulsion was stirred (100 rpm) overnight
for solvent evaporation, and the MS were collected by centrifugation (Eppendorf 5810R,
Darmstadt, Germany). The obtained MS were then freeze-dried (Christ, Alpha 1-2 LD plus,
Osterode am Harz, Germany) and stored at 4 ◦C

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Tissues were harvested and stored at −80 ◦C. At the indicated time points they were
thawed on ice and rinsed with cold Dulbecco’s Phosphate Buffered Saline (DPBS) (PAN
Biotech, Aidenbach, Germany). The tissues were then cut into small pieces, weighed, and
submersed in an appropriate amount of RIPA Buffer (Abcam, Boston, MA, USA) containing
a protease inhibitor (Roche, Basel, Switzerland). Subsequently, they were blended at
high speed until completely homogenized using a homogenizer (Unidrive × 1000D CAT,
Ballrechten-Dottingen, Germany). Thereafter, the homogenates were centrifuged twice at
12,000 rpm in 10 min, and the supernatants were collected. The concentration of exogenous
and endogenous SDF-1α was measured using an ELISA kit (Abclonal, Woburn, MA, USA).

2.5. RNA Isolation and Quantitative RT-PCR

Total RNA was isolated using the RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. cDNA was synthesized from 1 µg
RNA with the Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific, Karlsruhe,
Germany) according to the manufacturer’s instructions. Relative expression levels were
measured in triplicate in a Roche Light Cycler 480 using Power SYBR Green PCR Master
Mix (Applied Biosystems, Darmstadt, Germany), 300 mM primers (Table S1), and 1/15
cDNA stock. Relative expression levels were calculated and normalized to those of GAPDH,
applying the Pfaffl method [19].
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2.6. Statistical Analysis

Statistical analyses of the data were performed with Microsoft Excel software. Normal-
ized relative expression levels were used to calculate the mean and the SD of all experiments
(represented by columns and error bars in the figures).

3. Results
3.1. Intrapericardial Administration of Microspheres Increases the Concentration of SDF-1α in
the Myocardium

In our previously conducted work, we presented that the microspheres we obtained
were capable of the controlled and sustained release of SDF-1 in vitro. Moreover, the
SDF-1α factor released from the microspheres was able to stimulate the migration of
bmMSCs [18].

In the present study, we wanted to evaluate the long-term biological effect of SDF-1α
released from bioresorbable microspheres into the pericardial sac. Therefore, two weeks
after recovery from MI, animals were subjected to intra-pericardial delivery of SDF-1α-
releasing microspheres, and quantification of endogenous porcine SDF-1α and exogenous
(released from the microspheres) levels of SDF-1α were performed at appropriate post-
infarction time points.

The analysis showed that the endogenous levels of SDF-1α increases after the my-
ocardial infarction, reaching the highest level on the third day after the MI. Its level then
gradually decreases (Figure 3A). In turn, the concentration of exogenous SDF-1α remained
at a very high level, even for 15 weeks after the intrapericardial administration of SDF-1α-
releasing microspheres (Figure 3B).
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Figure 3. Concentration of endogenous (A) and exogenous (B) SDF-1α in infarct tissue. Concentra-
tions were measured by ELISA 1, 3, 7, 14, 15, 17, 21, 28, 35, 77, and 119 days after the myocardial
infarction. In addition, 14 days after MI, SDF-1α-released microspheres were transferred to the
pericardium sac. The bars represent the means ± SD (n = 3).

In conclusion, pharmacokinetic studies confirmed the presence of SDF-1α in the
myocardium after intrapericardial administration of microspheres by ELISA. Moreover,
the concentration of exogenous SDF-1α persisted in the tissue much longer than the level
of endogenous SDF-1α.

3.2. SDF-1α-Releasing Microspheres Affect Gene Expression in the Heart after MI

The following task was the analysis of the expression of the genes responsible for
migration and for the stem cells involved at the site of the damaged tissue of the heart
muscle in response to SDF-1α. The infarct tissues of animals that received SDF-1α-releasing
microspheres into the pericardial sac 14 days after the MI (study group) was compared
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with those that did not receive SDF-1α-releasing microspheres (control group) (Figure 4).
In the control group, the levels of SDF-1α and C-X-C chemokine receptor type 4 (CXCR-4)
doubled after 72h and then began to decline, as seen on day 14 after MI. Additionally, the
levels of VEGFA and VCAM increased slightly, and after two weeks their decrease was
observed. In contrast, an increase in stem cell factor (SCF) expression was not observed. In
turn, in the study group, by administering SDF-1α-releasing microspheres, a prolonged
effect on the expression of the analyzed genes was observed. SDF-1α, CXCR-4, VCAM,
VEGF, and SCF were significantly elevated, which was observed even 15 weeks after the MI.
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and VCAM (vascular cell adhesion molecule) after myocardial infarction (MI). The study group
represents animals that, two weeks after the myocardial infarction, received into the pericardial
sac, microspheres releasing SDF-1α. The control group represents animals that did not receive
microspheres. Gene expression was evaluated at different time points: for the control group, 24 h,
72 h, and 14 days after MI, and for the study group, 24 h, 72 h, 14 days, 3 weeks, 9 weeks, and
15 weeks after delivery of SDF-1α-releasing microspheres. Values are mean ± SD (n = 3).

The results obtained indicate that by the additional administration of SDF-1α-releasing
microspheres, the time of stem cell homing in tissue after myocardial infarction can be
effectively extended. This, in turn, could constitute a novel therapy for more efficient
regeneration of the heart muscle after injury.

4. Discussion

Myocardial infarction is a pathological process characterized by necrosis of the cardiac
tissue as a result of persistent ischemia [20]. In recent years, the view on the mechanism
of action of stem cell therapy in the treatment of this disease has evolved [21]. It has not
yet been confirmed that the human myocardium regenerates, but the observed effects are
believed to be related primarily to the paracrine effect leading to the formation of new
vessels (angiogenesis), recruitment of resident cardiac stem cells, and inhibition of car-
diomyocyte apoptosis. One of the key elements determining the myocardial repair response
associated with stem cell therapy are endogenous chemotactic mechanisms occurring in the
cardiac muscle, which are stimulated in response to ischemia, and condition temporary or



Biomedicines 2023, 11, 343 7 of 11

permanent homing by exogenous stem cells in damaged tissue. Such mechanisms include
increased expression of cytokines, chemokines, and growth factors at the site of tissue
damage, and the presence of receptors for these factors on the stem cells homing on the
bone marrow and circulating in the blood [11,22,23].

Among the signaling axes (factor/receptor) involved in the process of mobilization
and migration of the stem cells, the most important ones have been noted to be SDF-1-
CXCR4 [24], hepatocyte growth factor (HGF)-c-Met [25], SCF-C-kit [26], and VEGF-VEGF
receptor (VEGFR) [27], which are particularly important in the regeneration of endothelial
cells. SDF-lα occurs in high concentrations in the bone marrow, where it is produced by
stromal cells such as osteoblasts, endothelial cells, and reticular cells. The SDF-1/CXCR4
axis stimulates migration and nesting of the cells in bone marrow niches and conditions
the mobilization of the stem cells to the peripheral blood [28].

As one of the first investigations undertaken, the team confirmed the presence of
CXCR4+, C-kit+, and C-met+ cells circulating in the blood of patients who suffered from
myocardial infarction. Importantly, the cells with a receptor for SDF-lα show the increased
expression of genes typical of cardiomyocytes and endothelial cells [29]. Furthermore, as
shown in the study on the myocardial infarction mouse model, the cells migrating to the
SDF-lα gradient show a notably increased activity of early transcription factors for cardiac
cells, which suggests their essential role in repair processes [11]. The findings of experi-
mental studies and biopsies of the human myocardium provide convincing information
to confirm the increased production of SDF-lα within a few hours after ischemia in the
peri-infarct zone, which were reported to promote the nesting of the heart tissue committed
stem cells [30]. This mechanism possibly conditions the gathering of cells primarily in
the peri-infarct zone after the intracoronary administration [31]. As established, directly
after infarction, bone marrow cells show a low chemotactic response, which increases
significantly only 4–7 days after infarction. At that time, the expression of SDF-1 in the
myocardium is reduced, as compared to the value just after infarction. This leads to the
maximum chemotactic response of the CXCR4+ cells to the gradient of SDF-1 concentra-
tions occurring naturally much later in relation to the peak expression of SDF-1 [12]. This is
confirmed by our results, where it can be observed that the endogenous level of SDF-1α
in the infarcted tissue reaches the highest level on the 3rd day after the MI, and then its
level gradually decreases (Figure 3A). However, the intensified migration of the stem cells
according to the SDF-1 gradient is one of the prognostic factors behind effective stem cell
therapy (REPAIR-AMI) [18,32]. As revealed in experimental studies, the concentrations of
SDF-1 in the blood are much lower than in the bone marrow, which conditions the retention
of such cells. In such concentrations, circulating SDF-1 does not induce any significant
migration of the stem cells. Obtaining concentrations higher than physiological ones leads
to a significant increase in migration, which indicates that the local concentration of SDF1
in the heart should be very high.

Currently, several methods of increasing SDF-1 concentrations in tissues are being in-
vestigated as potential therapeutic methods. However, there are some limitations, including
the rapid diffusion of SDF-1 and its inactivation by proteases, especially in recent ischemia.

This can be counteracted by modifying the structure of SDF-1, which makes the
chemokine less susceptible to the action of proteolytic enzymes (S4V) [33], or the sustained
release of a biocompatible carrier (fibrin-polyethylene glycol carriers) that releases SDF-1
for 28 days (mouse model of myocardial infarction) [34]. A recently investigated method
of increasing the concentration of SDF-1 is the administration of genetically modified
mesenchymal stem cells (MSC) from the bone marrow overexpressing SDF-1 [35]. However,
this kind of modifications may pose a safety risk as it may result in a sustained increase in
SDF-1α expression with unknown consequences.

The key issue is to develop methods for the safe and efficient transfer of SDF-1 that
will ensure the sustained release of this factor into the heart muscle at concentrations
necessary to maintain a chemotactic gradient sufficient to recruit circulating stem cells.
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Previous studies suggest that it is likely to be achieved by a controlled release system from
microspheres after intra-pericardial administration [36].

In our latest research, we developed biodegradable microspheres loaded with SDF-1α,
which was a novel approach. The microspheres obtained from poly(L-lactide/glycolide/
trimethylene carbonate) were characterized by a regular spherical shape and smooth
surface and provided prolonged release of SDF-1α (only 40% of SDF-1α was released
within 21 days) [18]. This trait allows them to attract cells, which is also valuable for
protein functionality on further steps. This is important because the results of the release of
SDF-1α in vitro, published so far, mostly indicated a much faster elution from the delivery
systems [37–40]. Another advantageous feature of the microspheres presented in this study
is the high encapsulation efficiency of the SDF-1α (67%), which resulted in a much higher
concentration of the chemokine in the microspheres (1.4% w/w) [18], compared to the
microparticles reported thus far [41].

Moreover, we were the first to be able to significantly extend the presence of SDF-1α
in infarcted tissue. To demonstrate this, we injected intrapericardial microspheres 14 days
after MI, where levels of endogenous SDF-1α are known to be already low. Our results
showed high levels of SDF-1α up to 15 weeks after the myocardial infarction (Figure 3B).

Further, our recent in vitro studies [18] as well as in vivo mouse model studies [42],
confirmed that SDF-1α is required for stem cell recruitment to the heart after MI, and that
forced overexpression of SDF-1α can enhance stem cell migration and recovery after infarction.

The expression of VCAM and ICAM genes, which are important in the recruitment of
stem cells, is known to be increased after myocardial infarction [42–45]. This is also con-
firmed by our results, where we observed an increase in the VCAM and ICAM expression
on the 3rd day after MI (Figure 4). We have also proven that by releasing SDF-1α from
microspheres, this effect can be significantly prolonged, and the level of expression of the
genes responsible for the activation of stem cells can be increased (Figure 4).

Overall, our study reveals that adequate delivery of SDF-1α is sufficient to induce the
homing of endogenous stem cells to the damaged heart and promote heart repair. Our
experiment showed that cytokines released in the pericardium penetrate the heart muscle
and the infarct zone, stimulating genes there that can accelerate the regeneration of the heart
muscle damaged by acute ischemia. Due to microspheres having such biodegradability,
biocompatibility, and lack of toxicity for treated cells, they are desired candidates as delivery
tools. Our designed microspheres did not reveal immunogenicity, which is important in
term of their further use in clinical trials. Moreover, to the best of our knowledge, this is
the first microparticulate delivery system of SDF-1α analyzed in vivo on a large animal
model (pigs). Most of the studies conducted so far on polymeric carriers of SDF-1α have
been conducted on mice [46,47] or rats [48,49]. It is particularly important that our work
on the SDF-1α cytokine and its results can serve as a model for analogous testing of
other cytokines and stem cells triggered by these cytokines. This therapy presents the
opportunity to overcome limitations such as the low efficacy of nesting of the stem cells in
the myocardium.

5. Conclusions

The main limitations of stem cell therapy in order to impact heart regeneration are
short-term and ineffective stem cell implantation. We believe that the use of a novel
treatment methods based on the additional intrapericardial release of a chemotactic factor
essential for heart regeneration allows one to overcome this obstacle. Validation of this
method in a large animal model will allow us not only to implement endocardial therapy
in ischemic cardiomyopathy in the future, but will also provide a platform for the delivery
of drugs and biological substances to the pericardium for the treatment of other diseases,
namely bacterial and autoimmune pericarditis or neoplastic diseases, to an extent.

Further research is needed that includes the identification of factors that affect the
efficiency of SDF-1α-released microspheres and their delivery to the pericardial sac, and
their influence on the nesting of stem cells at the target destination.
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Jelonek, M.; et al. Intracoronary adiponectin at reperfusion reduces infarct size in a porcine myocardial infarction model. Int. J.
Mol. Med. 2011, 27, 775–781. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biomedicines11020343/s1
https://www.mdpi.com/article/10.3390/biomedicines11020343/s1
http://doi.org/10.7759/cureus.9349
http://www.ncbi.nlm.nih.gov/pubmed/32742886
http://doi.org/10.1016/j.repc.2021.02.011
http://www.ncbi.nlm.nih.gov/pubmed/34857118
http://doi.org/10.1002/ehf2.13144
http://www.ncbi.nlm.nih.gov/pubmed/33319509
http://doi.org/10.1161/01.CIR.101.25.2981
http://www.ncbi.nlm.nih.gov/pubmed/10869273
http://doi.org/10.3978/j.issn.2072-1439.2013.08.71
http://www.ncbi.nlm.nih.gov/pubmed/24255783
http://doi.org/10.1161/CIRCRESAHA.117.312586
http://www.ncbi.nlm.nih.gov/pubmed/29650632
http://doi.org/10.1016/j.yjmcc.2008.01.004
http://doi.org/10.4252/wjsc.v13.i4.236
http://doi.org/10.1146/annurev.pathol.2.010506.092038
http://www.ncbi.nlm.nih.gov/pubmed/18039102
http://doi.org/10.1016/j.pharmthera.2010.09.011
http://doi.org/10.1161/01.RES.0000150856.47324.5b
http://www.ncbi.nlm.nih.gov/pubmed/15550692
http://doi.org/10.1016/S0140-6736(03)14232-8
http://doi.org/10.1023/A:1012808525370
http://doi.org/10.1007/s00395-015-0475-8
http://doi.org/10.3892/ijmm.2011.643
http://www.ncbi.nlm.nih.gov/pubmed/21399860


Biomedicines 2023, 11, 343 10 of 11
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