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Abstract: People with sickle cell disease (SCD) are at greater risk of severe illness and death from
respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control
and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are
both characterized by thrombo-inflammation mediated by endothelial injury, complement activation,
inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the
coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase
in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells
and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular
adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting
platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute
crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in
SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore,
the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of
anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between
SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases;
and lastly, examine the therapeutic targets and potential treatments for the two diseases.

Keywords: sickle cell disease; COVID-19; SARS-CoV-2; vaso-occlusive crisis; pain; thromboxane;
prostaglandin D2; thrombo-inflammation; acute chest syndrome; ramatroban

1. Introduction

During the current COVID-19 pandemic, over 550 million people have been infected
with the SARS-CoV-2 virus, and more than 6 million people have died. Investigators have
reported clinical outcomes of SCD patients who developed COVID-19 during the current
pandemic [1–6]. Some studies have demonstrated a more effective antiviral response
against SARS-CoV-2 in patients with SCD, leading to a lower incidence of COVID-19
complications [7–9]. However, most studies have reported worse outcomes with COVID-19
in SCD patients compared to the general population. Among 178 persons with SCD in
the United States who were reported to an SCD-coronavirus case registry, 122 (69%) were
hospitalized, and 13 (7%) died [2]. A study based on electronic health record data from a
multisite research network compared outcomes of African Americans with COVID-19 with
or without SCD or heterozygous states of sickle cell trait (SCT) [1]. After 1:1 propensity
score matching (based on age, sex, and other preexisting comorbidities), patients with
COVID-19 and SCD remained at a higher risk of hospitalization (relative risk [RR], 2.0;
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95% CI, 1.5–2.7) and development of pneumonia (RR, 2.4; 95% CI, 1.6–3.4) and pain (RR, 3.4;
95% CI, 2.5–4.8), compared with African Americans without SCD or SCT.

In a prospective study of 3500 pediatric and adult patients with SCD treated at
5 academic centers in the U.S., 66 patients developed COVID-19 [3]. During a follow-
up period of 3 months after diagnosis of SARS-CoV-2 infection, 75% of patients were
hospitalized, and the mortality rate was 10.6%. Vaso-occlusive pain was the most common
presenting symptom. Acute chest syndrome occurred in 60% of hospitalized patients and
all patients with a fatal outcome. Older age and a history of pulmonary hypertension,
congestive heart failure, chronic kidney disease, and stroke were risk factors for mortality.
Laboratory parameters in those who died included higher creatinine, lactate dehydro-
genase, and D-dimer levels. In hospitalized patients, anticoagulant use was twice more
common in patients who survived. Furthermore, all mortality occurred in patients not on
disease-modifying therapy for SCD.

In a genetic association study of 2729 persons with sickle cell trait (SCT) and 129,848 who
were SCT-negative, individuals with SCT had a number of preexisting kidney conditions
that were associated with unfavorable outcomes following COVID-19 [10]. The presence
of SCT was associated with increased risk of mortality and acute kidney failure following
COVID-19, suggesting that SCT is also a prognostic factor for COVID-19 [10].

Thus, SCD has, in fact, emerged as one of the most important comorbidities conferring
a high risk of mortality from COVID 19 that far exceeds the risk associated with chronic
kidney disease, leukemias and lymphomas, heart failure, diabetes, obesity, lung cancer,
acute myocardial infarction, chronic obstructive pulmonary disease, tobacco use, ischemic
heart disease, and hypertension in the most extensive comorbidity analysis of COVID-19
patients to date [11]. Other adverse outcomes may also include SCD-related chronic organ
dysfunction, such as chronic persistent pain, lung, and kidney injury; fragmented care; poor
access to quality care; and interruptions in care as a result of fear of exposure to COVID.

These case reports, case series, and registry-based cohorts provide evidence of a high
risk of severe clinical course in SCD patients with COVID-19 and suggest an interaction
between sickle cell and COVID-19 pathophysiology, while providing critical insights that
may help generate mechanistic hypotheses and design prospective clinical trials.

It has been proposed that SCD is associated with impaired oxygen exchange, which
may be further impeded during the inflammatory phase of COVID-19. However, compli-
cations, such as cerebrovascular events in SCD patients with COVID-19, have not been
reported. Therefore, we postulate that endothelial injury, thrombo-inflammation, microvas-
cular thrombosis, and resulting vaso-occlusive disease in SCD may be amplified by similar
processes initiated by the SARS-CoV-2 virus and vice versa, adding to the risk of morbid-
ity and mortality from any single disease. In this review, we examine the two diseases’
pathobiological processes and tease out the common pathways that may present a ther-
apeutic target, potentially benefiting thousands of SCD patients worldwide during the
COVID-19 pandemic.

2. Pathophysiology of Sickle Cell Disease and COVID-19

SCD affects millions of children and adults globally, including about 100,000 in the
United States [12]. The average life expectancy of an SCD patient at birth is 42–47 years in
the United States [13], compared to about 79 years for the general U.S. population. SCD
has a profound adverse impact on the quality of life. The current therapeutic options for
SCD include hydration, blood transfusions, hydroxyurea, L-glutamine, crizanlizumab,
and voxelotor.

The clinical hallmark of SCD is vaso-occlusive crises (VOCs), also referred to as pain
crises. Cerebral vasculopathy, in its most devastating form, results in arterial thrombosis,
which leads to cerebral infarction and stroke in early childhood [14,15]. SCD remains one
of the most common causes of stroke in children [16]. The risk of stroke is higher during
the first decade and is more significant between ages 2 and 5, when it reaches about 1% per
year [17]. About 10% of SCD patients have a clinically apparent stroke before the age of 20,
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and the risk increases to about 25% by the age of 45 years [17]. Thrombotic vasculopathy in
SCD is accompanied by significant organ dysfunction, morbidity diminished quality of life,
and premature mortality [18,19]. Despite recent therapeutic advances, SCD patients remain
at a high risk of developing VOCs and vascular complications. Thus, it is imperative
to address the scientific gaps in our understanding of the mechanisms underlying the
thrombo-inflammatory state, which is generally characterized by sickle RBC-mediated
endothelial inflammation/dysfunction and coagulation activation leading to vessel injury,
leakage, and vascular thrombosis [15].

The SARS-CoV-2 infection causes COVID-19 disease, which in its severe form can
present with thrombotic microangiopathy, pulmonary thrombosis, pedal acro-ischemia
(“COVID-toes”), arterial clots, strokes, cardiomyopathy, coronary and systemic vasculitis,
bleeding, deep venous thrombosis, pulmonary embolism, and microvascular thrombosis
in renal, cardiac, and brain vasculature [20–25]. Furthermore, necropsies have revealed
inflammatory microvascular thrombi containing neutrophils, platelets, and neutrophil
extracellular traps (NETs) in the pulmonary, hepatic, renal, and cardiac microvasculature
as the hallmark of severe COVID-19 disease and the underlying cause of multi-organ fail-
ure [24,26,27]. Similar thrombo-inflammatory processes mediated by cell-free hemoglobin
have been observed and proposed in SCD, with emphasis on platelet activation [15,28],
a key driver of thrombo-inflammation in COVID-19 [24]. Consistent with the above,
COVID-19 has been associated with increased risk of thrombosis in patients with SCD [29].
Therefore, we propose that the emerging therapies targeting platelet-mediated thrombo-
inflammation in COVID-19 may serve as potential therapies for VOC.

In SCD, VOC often causes acute chest syndrome (ACS), defined as the presence of
fever and/or new respiratory symptoms, accompanied by a new pulmonary infiltrate on
a chest X-ray [30]. This is very similar to acute pneumonia in COVID-19. However, there
are significant differences in the clinical presentation and underlying pathological basis
for thrombo-inflammation in COVID-19 versus SCD. The incidence rate of ACS is highest
at 2 to 4 years of age among children with SCD, with a rate of 25.3 per 100 patient-years,
and decreases to 8.87 per 100 patient-years in adults >20 years of age with HbSS [31].
On the other hand, acute pneumonia and respiratory failure are more common in adults
with COVID-19 [32].

Pulmonary complications associated with COVID-19 or SCD reveal similar underlying
pathobiology and therapeutic targets. Respiratory distress in COVID-19 occurs in part
due to pulmonary platelet microvascular thrombosis [20]. However, the triggering events
of ACS in SCD patients may vary. Although conventional wisdom suggests ACS occurs
secondary to fat embolism in SCD, more recent evidence from CT studies has demonstrated
in situ pulmonary thrombosis in 10–20% of ACS patients [33–40]. Interestingly, in 16%
of 538 SCD patients with ACS, pulmonary infarction or thrombosis were the triggering
events rather than infection or fat embolism [41]. Still, fat embolism due to bone marrow
infarction occurs in about 40% of both children [42] and adults [43–45], and leads to
disseminated pulmonary platelet thrombi with a sharp and significant decline in platelet
count prior to death [46]. It has been proposed that platelet inhibition at steady state or
in the hemodynamically stable acute crisis might be an important therapeutic addition to
prevent the progression of ACS in SCD [46]. A comparative analysis of the pathobiology of
SCD and COVID-19, particularly in the context of endothelial injury, platelet activation,
and multicellular adhesion, may help to identify potential therapies for the thrombo-
inflammation in both diseases.

3. Mechanisms of Multicellular Adhesion and Thrombo-Inflammation in Sickle Cell
Disease and COVID-19

Complications associated with thrombo-inflammation in SCD have uncanny sim-
ilarities to those in COVID-19. In SCD, injury to the red blood cell (RBC) membrane
mediates endothelial damage and inflammation, leading to multi-organ vasculopathy [47].
Hemoglobin S polymerization impairs the deformability of the RBC and causes oxida-
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tive injury and destruction of the RBC [47]. RBC injury exposes phosphatidyl serine and
releases Hb and other intracellular contents [47]. This, in turn, depletes NO, increases
endothelial adherence, releases pro-inflammatory cytokines, and activates coagulation,
causing ischemia, reperfusion injury, and vascular damage [47–51]. Similar inflammatory
processes observed during SARS-CoV-2 infection are evidenced by the elevated expression
of leukocyte adhesion molecules in the pulmonary vasculature [20] and the presence of a
proinflammatory lipid/thromboxane storm [52].

3.1. Endothelial Cell Injury and Activation: Role in Thrombo-Inflammation in SCD and COVID-19

Endothelial cell injury and activation lie at the heart of the prothrombotic state in both
SCD and COVID-19 (Figure 1). Vascular endothelium is activated in SCD, regardless of
the patient’s clinical status, with markedly increased expression of adhesion molecules,
including intercellular adhesion molecule 1 (ICAM-1), vascular-cell adhesion molecule 1
(VCAM-1), E-selectin, and P-selectin [53]. SARS-CoV-2 virus directly infects and dam-
ages the endothelial cells, which initiates a cascade of events, leading to intussusceptive
angiogenesis and microvascular thrombosis [20]. SCD and COVID-19 are characterized
by interactions among activated endothelial cells, platelets, and leukocytes, leading to
thrombo-inflammation and vascular occlusion [54]. Most notably, endothelial inflamma-
tion induces surface expression of adhesion molecules, including P-selectin, and release
of prothrombotic granule contents (von Willebrand factor and FVIII), both effects en-
hancing leukocyte/platelet adhesion [15]. Intravascular release of tissue factor (TF) also
contributes to the polarization toward a prothrombotic state [23,55–57]. Release of cell-free
heme activates converging inflammatory pathways, such as TLR4 signaling [58], forma-
tion of neutrophil extracellular traps (NETs) [24,59], and priming of the inflammasome
(NLRP3) pathway, leading to the release of interleukin-1β (IL-1β) and IL-18 by leuko-
cytes, platelets, and endothelial cells, which contributes to the development of a sterile
thrombo-inflammatory state in SCD [28,51,60,61].

3.2. Platelet Activation: Role in Thrombo-Inflammation in SCD and COVID-19

The pathogenesis of platelet activation in COVID-19 and SCD is multifactorial. COVID-19
and SCD activate platelets by association with the SARS-CoV-2 virus or direct activation with
cell-free hemoglobin. Sickling and vaso-occlusion in SCD lead to hemolysis and subsequent
release of cell-free hemoglobin [15]. Free plasma hemoglobin generates reactive oxygen
species, a potent nitric oxide scavenger [62]. Nitric oxide scavenging promotes platelet
activation and endothelial dysfunction [62]. Under physiological conditions, free heme
is scavenged by the plasma protein hemopexin and is subsequently catabolized by heme
oxygenase-1 into carbon monoxide, biliverdin, and ferrous iron (Fe2+) [63]. Acute or chronic
hemolysis exhausts this scavenging system for heme, leading to an increase in free heme
in the blood [63]. Upon release, reduced heme is rapidly and spontaneously oxidized in
the blood into its ferric (Fe3+) form, hemin, with increased levels observed in hemolytic
diseases [63]. Hemin has been implicated in the pathogenesis of ACS, one of the leading
causes of death in SCD [64]. Hemin activates platelets as a ligand for C-type-lectin-like
receptor 2 (CLEC2) [63]. Hemin-induced aggregation of human platelets is abolished by
pre-incubation of hemin with a recombinant dimeric form of CLEC2 [63]. This indicates
a role for platelet CLEC2 in sickle cell-mediated platelet activation (Figure 2). Cell-free
heme also amplifies inflammation [65] by activating inflammatory pathways, including
TLR signaling [66], gasdermin D-dependent NET formation [59,61], platelet-inflammasome
activation, and generation of IL-1β-carrying platelet extracellular vesicles and priming of
the inflammasome, leading to platelet-neutrophil aggregation and vaso-occlusion [28,51].
Consistent with the above, incubation of human peripheral neutrophils with VOC plasma
produced significantly more NETs compared to non-sickle and steady state plasma [67]. NET
generation in SCD is caused by sterile inflammation [61]. Additionally, during SCD-induced
bone marrow infarction, the bone marrow undergoes stress reticulocytosis. As a result,
it releases immature erythrocyte or reticulocytes [62] with surface expression of adhesion
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molecules, such as CD36 and α4β1 integrin [51,68], which contribute to platelet activation
and thrombo-inflammation.

Biomedicines 2023, 11, 338 5 of 30 
 

 
Figure 1. Putative mechanism of complement-mediated microvascular thrombosis and vaso-occlu-
sive disease in SCD and COVID-19: SARS-CoV-2 infection and sickle cell disease induce comple-
ment activation and formation of membrane attack complex leading to necrosis and pyroptosis of 
endothelial cells, platelets, and monocytes and accumulation of IL-1α. IL-1α stimulates the IL-1 re-
ceptor expressed on endothelial cells leading to thromboxane synthesis. Thromboxane A2 via the TP 
receptor activates platelets leading to platelet activation, platelet neutrophil partnership, neutrophil 
activation, and the release of neutrophil extracellular traps (NETs), thrombo-inflammation, oxida-
tive stress, and subsequent end-organ damage and failure. The current review article is primarily 
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Figure 1. Putative mechanism of complement-mediated microvascular thrombosis and vaso-occlusive
disease in SCD and COVID-19: SARS-CoV-2 infection and sickle cell disease induce complement
activation and formation of membrane attack complex leading to necrosis and pyroptosis of endothe-
lial cells, platelets, and monocytes and accumulation of IL-1α. IL-1α stimulates the IL-1 receptor
expressed on endothelial cells leading to thromboxane synthesis. Thromboxane A2 via the TP re-
ceptor activates platelets leading to platelet activation, platelet neutrophil partnership, neutrophil
activation, and the release of neutrophil extracellular traps (NETs), thrombo-inflammation, oxidative
stress, and subsequent end-organ damage and failure. The current review article is primarily focused
on eicosanoid signaling in platelets; therefore, other receptors and pathways were excluded from
Figure 1 for the reader’s convenience. COX, cyclooxygenase; IL, interleukin; NETs, neutrophil extra-
cellular traps; TP, thromboxane prostanoid receptor; MAC, membrane attack complex; VTE, venous
thromboembolism; TMA, thrombotic microangiopathy; DIC, disseminated intravascular thrombosis;
ARDS, acute respiratory distress syndrome; AKI, acute kidney injury.

SARS-CoV-2 viral hemagglutinins can bind to circulating red blood cells (RBCs)
and induce agglutination and clumping of RBCs [69]. First, SARS-CoV-2 binds to RBCs
in vitro [70] and clinically in COVID-19 patients [69,71]. Second, although fusion and
replication of SARS-CoV-2 occur via ACE2, such hemagglutinating viruses initially attach
to infective targets and clump with blood cells via much more abundantly distributed sialic
acid glycoconjugate binding sites [69]. SARS-CoV-2, in particular, binds to these sialic acid
sites [69]. Third, certain enveloped viruses express an enzyme, hemagglutinin esterase,
that counteracts viral-RBC clumping, but is lacking in the SARS-CoV-2 virus [69]. These
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hemagglutinating properties of SARS-CoV-2 establish a framework for “catch and clump”
induction of microvascular occlusion [69].
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Figure 2. Mechanisms of heme and thromboxane A2-mediated thrombo-inflammation in COVID-19
and sickle cell disease (SCD): Vaso-occlusion due to sickling or direct entry by SARS-CoV-2 virus
leads to endothelial cell activation and damage, and hemolysis. COX-2 expression in endothelial
cells promotes thromboxane A2 synthesis. Thromboxane A2 inhibits nitric oxide (NO) synthesis
and promotes leukocyte adhesion and thrombo-inflammation. Free heme released from red blood
cells is spontaneously oxidized to its ferric form, hemin. Hemin stimulates platelet CLEC2 signaling
and thromboxane A2/TP receptor-dependent Syk phosphorylation leading to platelet activation,
spreading, and degranulation. Platelets release exosomes and microvesicles, which stimulate the
CLEC5A and TLR2 receptors on neutrophils. Subsequently, NLRP3 activation in neutrophils and
monocytes promotes activation and assembly of gasdermin D, leading to the release of neutrophil
extracellular traps and monocyte pyroptosis. NLRP3 inflammasome activation induces the release
of proinflammatory cytokines, including IL-18 and IL-1β, thereby fueling thrombo-inflammation
in COVID-19 and SCD. NO, nitric oxide; COX, cyclooxygenase; IL, interleukin; NETs, neutrophil
extracellular traps; TP, thromboxane prostanoid receptor; CLEC, C-type lectin-like receptor; Syk,
spleen tyrosine kinase; PLC, phospholipase C; PKC, protein kinase C; TLR, toll-like receptor; ADP,
adenosine diphosphate; EGF, epidermal growth factor; PDGF, platelet-derived growth factor; TGF,
transforming growth factor; NLRP3, NLR family pyrin domain containing 3.
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Subsequent hemolysis marked by elevated levels of LDH and thrombotic microan-
giopathy may play a role in platelet activation in COVID-19. Despite only minimal symp-
toms of COVID-19, 13 of the 34 children studied had thrombotic microangiopathy concur-
rent with complement activation marked by increased plasma sC5b-9 levels [72]. Further-
more, in 181 adults hospitalized for COVID-19, an increased percentage of schistocytes
were correlated with decreased platelet count and increased markers of hemolysis, such
as LDH [73]. The percentage of schistocytes was higher in those who died than those
who survived [73]. Thus, thrombotic microangiopathy plays a significant role in platelet
activation and morbidity in COVID-19, potentially through the release of free heme.

D-dimers are a prognostic marker of COVID-19 [74]. D-dimer levels are more likely to
be abnormal in severely and critically ill patients, compared with mild and ordinary cases.
At the same time, D-dimer levels of patients who died are significantly higher than those of
surviving patients [74]. D-dimer levels are also raised in VOC and in most SCD patients
with an abnormal chest X-ray (Table 1) [75] indicative of a prothrombotic state.

Table 1. Comparative analysis of Plasma D-dimer levels in SCD during the steady state and sickle
crisis and in COVID-19 patients.

Subjects Age/Reference
Plasma D-Dimer Levels p-Value Compared

to ControlsControl Disease State

Sickle Cell Disease

Adult [76] HD (n = 35)
79 ± 25 ngh

Steady State SCD
n = 25 (Samples = 28)

566 ± 739 ng/mL
p < 0.001

SCD Painful Crisis
n = 21 (Samples = 40)
1038 ± 1010 ng/mL

p < 0.001

12–37 years [75]

SCD with pain crisis and
normal chest X-ray
(n episodes = 32)

584.2 µg/L
(250–3119 µg/L)

SCD with pain crisis and abnormal
chest X-ray

(n episodes = 13)
2117.0 µg/L

(250–9143 µg/L)

N/A

Unventilated:
62.5 ± 8.4
Ventilated:

53.8 ± 9.3 [77]

Hospitalized COVID-19
patients did not require

artificial ventilation
(n = 18)

650 ± 175 ng/mL

Hospitalized COVID-19 patients
requiring artificial ventilation

(n = 11)
1250 ± 210 ng/mL

p < 0.05

COVID-19 65.57 ± 13 years [78]

COVID-19 patients without
pulmonary embolism

(n = 118)
1310 ng/mL (800–2335)

COVID-19 patients with
pulmonary embolism

(n = 44)
5364 ng/mL (2928–12,275)

p = 0.001

Platelet activation plays a crucial role in both SCD and COVID-19. Platelet-derived
microparticles are a biomarker of vaso-occlusive events in severe cases of SCD, while
erythrocyte-derived microparticles are higher in non-severe disease [79]. Platelet extracellu-
lar vesicles and markers of platelet degranulation, including platelet factor 4 and serotonin
in the blood, are also increased in COVID-19 [80].

In SCD, platelet activation and release of microparticles is likely mediated by heme-
induced platelet CLEC2 receptor or NLRP3 inflammasome activation [28,63]. However, in
COVID-19, heme-induced platelet CLEC2 activation has not been reported, to the best of
our knowledge [81]. On the other hand, SARS-CoV-2 associates with platelets [80] possibly
by binding of SARS-CoV-2 spike receptor binding domain (S-RBD) to dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and liver/lymph node-
specific intracellular adhesions molecule-3-grabbing integrin (L-SIGN) [82]. This is remi-
niscent of dengue virus-induced activation of platelets by binding to a DC-SIGN/CLEC2
hetero-multivalent receptor complex, resulting in CLEC2 activation and platelet degranula-
tion with the release of extracellular vesicles, including exosomes and microvesicles [83].

Upon activation, the CLEC2 receptor undergoes tyrosine phosphorylation mediated
by thromboxane A2 (TxA2) [84]. This leads to downstream phosphorylation of spleen
tyrosine kinase and phospholipase γ2, potentiated by TxA2 [84]. This cooperation between
CLEC2 and TxA2 signaling is critical for platelet activation (Figure 2) [84]. Platelet acti-
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vation leads to the release of exosomes and microvesicles that further activate CLEC5A
and TLR2 receptors on neutrophils and macrophages, thereby inducing NET formation
and proinflammatory cytokine release [83]. Therefore, CLEC2 signaling is a potential
therapeutic target in both SCD and COVID-19 (Figure 2).

3.3. P-Selectin: Role in Thrombo-Inflammation in SCD and COVID-19

Upregulation of P-selectin in endothelial cells and platelets contributes to the cell–
cell interactions involved in vaso-occlusion and sickle cell-related pain crisis [85,86], and
plasma levels of soluble P-selectin are markedly increased in vaso-occlusive SCD [87].
P-selectin is a well-recognized therapeutic target in SCD, and its inhibition by crizanl-
izumab, a humanized monoclonal antibody, significantly lowers rates of sickle cell-related
pain crises [85]. Similarly, plasma levels of soluble P-selectin are markedly increased in
COVID-19 [88]. Platelet P-selectin surface expression is upregulated in COVID-19 and
positively correlates with platelet-monocyte aggregates in infected subjects [23]. In a ran-
domized, placebo, controlled clinical trial amongst 54 hospitalized COVID-19 patients,
crizanlizumab reduced P-selectin levels by 89% while promoting thrombolysis, as sug-
gested by a 77% increase in D-dimers and decreased prothrombin fragments, but there was
no difference in the clinical outcomes (the CRITICAL study) [89].

3.4. Tissue Factor: Role in Thrombo-Inflammation in SCD and COVID-19

TF is a transmembrane protein that functions as a high-affinity receptor for factors
VII and VIIa and is the primary cellular initiator of blood coagulation during endothelial
injury [90,91]. Formation of the TF-factor VIIa (FVIIa) complex leads to the activation of
both FX and FIX, with subsequent thrombin generation, fibrin deposition, and activation
of platelets [92]. Under normal conditions, endothelial cells and blood cells, such as
monocytes, do not express TF [55]. On the other hand, total circulating microparticles
expressing TF, mainly derived from monocytes and endothelial cells, are elevated in sickle
cell crisis, compared to steady state and healthy controls [55]. Interestingly, TF inhibition
in transgenic SCD mice significantly attenuates heme-induced microvascular stasis and
prevents lung vaso-occlusion mediated by arteriolar neutrophil-platelet microemboli [93].
In severe COVID-19, platelet activation and TF expression by monocytes leading to platelet-
monocyte interaction are associated with COVID-19 severity and mortality [23].

3.5. CD40L: Role in Thrombo-Inflammation in SCD and COVID-19

CD40L is a type II transmembrane protein expressed primarily by activated T cells,
activated B cells, and platelets, and under inflammatory conditions, it is also induced
on monocytic cells, natural killer cells, mast cells, and basophils [94,95]. CD40L binds to
CD40 expressed on a variety of cells, including dendritic cells, monocytes, platelet, and
macrophages [95]. CD40L/CD40 interactions are pivotal in different cellular immune
processes [95]. Notably, platelets release CD40L, which contributes to chronic inflammation
in SCD [96]. Elevated levels of circulating CD40L have been associated with acute chest
syndrome (ACS) in SCD [96,97]. Platelets from SARS-CoV-2 patients are also more prone
to release of soluble CD40L upon exposure to thrombin, compared to healthy controls [80].

Activated platelets are also a significant source of thrombospondin-1, another pro-
tein related to the incidence of ACS and vaso-occlusive episodes [98]. However, throm-
bospondin has not been examined in COVID-19, to the best of our knowledge.

3.6. NLRP3 Inflammasome: Role in Thromboinflammation in SCD and COVID-19

Platelets are known to play a role in the detection and regulation of infection [99].
Viruses, such as the dengue virus, lead to platelet activation [99]. Platelets sense pathogens
and host damage through recognition of pathogen-associated molecular patterns or damage-
associated molecular patterns (DAMPs) using receptors [99]. C-type lectin receptors DC-
SIGN and CLEC2 are involved in the binding of different viruses, as well as the recognition
of DAMPs, such as hemin and mitochondrial DNA [99]. Platelets are highly activated
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in COVID-19. They are likely involved in boosting the inflammasome capacity of innate
immune cells, including human macrophages and neutrophils, and IL-1 production by
monocytes [24,100–102]. An unknown platelet-derived soluble factor enhances NLRP3 tran-
scription and inflammasome activation [102]. We postulate that CLEC2-induced platelet
activation leads to the release of exosomes and microvesicles, which stimulate the CLEC5A
and TLR2 receptors on innate immune cells, leading to NLRP3 inflammasome activation
and pyroptosis [83].

SARS-CoV-2 virus also induces inflammasome activation and cell death by pyropto-
sis in human monocytes, hematopoietic stem/progenitor cells, and endothelial progen-
itor cells [103,104]. Pyroptosis was dependent on caspase-1 engagement, before IL-1ß
production and inflammatory cell death [103]. Furthermore, examination of the whole
blood transcriptome in COVID-19 patients has revealed that the dysregulated immune
system in COVID-19 is characterized by highly specific neutrophil activation-associated
signatures [105], with an increase in immature neutrophils with NLRP3 inflammasome
activation [101].

NLRP3 inflammasome is also upregulated in SCD patients under steady state condi-
tions, compared with healthy controls, and is further upregulated when patients experience
an acute pain crisis [106]. Platelet-inflammasome activation led to the generation of IL-1β
and caspase-1-carrying platelet extracellular vesicles that bind to neutrophils and promote
platelet-neutrophil aggregation in lung arterioles of SCD mice in vivo and SCD human
blood in microfluidics in vitro [28]. Inhibition of the inflammasome effector caspase-1
or IL-1β pathway attenuated platelet extracellular vesicle generation, prevented platelet-
neutrophil aggregation, and restored microvascular blood flow [28]. More recent findings
show that sterile inflammation in SCD promotes caspase-11/4-dependent activation (cleav-
age) of pyroptotic effector gasdermin-D (GSDMD) in neutrophils, which leads to generation
of NETs in the liver [61]. These NETs embolize from the liver to the lung to promote P-
selectin-independent lung vaso-occlusion in SCD [61]. Interestingly, GSDMD is highly
expressed on the BALF and blood neutrophils of COVID-19 patients [107]. Image analysis
of lung autopsies of patients who died from COVID-19 revealed the presence of NET struc-
tures associated with activated GSDMD-NT fraction [107]. In cell cultures of neutrophils
from COVID-19 patients, disulfiram, a GSDMD inhibitor, inhibited release of NETs in a
concentration-dependent manner [107]. Therefore, in both SCD and COVID-19, activation
of inflammasome in platelets, monocytes, and neutrophils and GSDMD-dependent NETosis
play a key role in initiating inflammation and tissue injury (Figure 2).

3.7. Nitric Oxide: Role in Thrombo-Inflammation in SCD and COVID-19

Both COVID-19 and SCD are associated with endothelial injury and activation. Follow-
ing endothelial injury, nitric oxide (NO) has been shown to serve many vasoprotective roles,
including inhibition of platelet aggregation and adherence to the site of injury, inhibition of
leukocyte adherence, inhibition of vascular smooth muscle cell proliferation and migration,
and stimulation of endothelial cell growth [51,62,108–110].

In SCD, cell-free plasma hemoglobin resulting from intravascular hemolysis consumes
NO very rapidly [111], dramatically limiting NO bioavailability [112,113]. Inhaled NO has
shown evidence of efficacy in mouse models of SCD, but in a phase II placebo-controlled
trial of inhaled NO gas in SCD patients with VOC, NO did not improve the time to crisis
resolution [114].

NO deficiency has also been observed among COVID-19 patients, and it may cause
vascular smooth muscle contractions [115], reducing the ability to neutralize ROS and
NO-mediated antiviral capability [116–118]. Nitric oxide has been widely proposed as
a potential treatment for COVID-19 [119]. However, inhaled NO gas may be rapidly
sequestered by superoxide, forming peroxynitrite, which is known to cause lung damage
and cell death [120]. It is plausible that NO in SCD [114] and COVID-19 [121] could lack
therapeutic benefit in an environment of oxidative stress or in the absence of sufficient
L-arginine bioavailability [120].
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3.8. TGFβ: Role in Thromboinflammation in SCD and COVID-19

The transforming growth factor (TGF-β) superfamily is composed of a large group
of proteins that are fundamental in regulating various biological processes, such as ex-
tracellular deposition, cell differentiation and growth, tissue homeostasis and repair, and
immune and inflammatory responses [122]. The TGF-β subfamily is a central mediator of
fibrogenesis and a crucial regulator of fibroblast phenotype and function. There are three
known isoforms of TGF-β expressed in mammalian tissue, including TGF-β1, 2, and 3.
TGF-β1 is the most abundant and ubiquitously expressed isoform and is associated with
the development of tissue fibrosis [122–124]. Various animal models support the role of
TGF-β1 in mediating hepatic, renal, pulmonary, and cardiac fibrosis [125–128]. Interest-
ingly, platelets contain 40 to 100 times more TGF-β1 than other cells and rapidly release
TGF-β1 upon activation [129]. This is consistent with the positive correlation between
plasma TGF-β1 and platelet and white blood cell counts in patients with steady state
SCD [130,131]. Interestingly, early, untimely TGF-β responses in SARS-CoV-2 infection
limit the antiviral function of natural killer (NK) cells [132]. Therefore, TGF-β has been
proposed as a therapeutic target in both SCD and COVID-19 [130,132].

3.9. Lipoxygenase: Role in Thrombo-Inflammation in SCD and COVID-19

Activation of the lipoxygenase (LOX) pathway in SCD and COVID-19 promotes
generation of arachidonic acid-derived eicosanoids. In isolated rat lungs, perfusion with
HbSS peptide leads to more LOX metabolite LTC4, compared to HbAA-perfused lungs
(10.40 ± 0.62 vs. 0.92 ± 0.22 ng/g dry lung weight (mean ± SEM; p = 0.0001)) [133].
Cysteinyl leukotrienes have been implicated in the pulmonary manifestations of SCD,
including acute chest syndrome [133]. However, targeting of cysteinyl leukotriene receptor
with montelukast did not improve pain, pulmonary function, or microvascular blood flow
in a phase 2 randomized placebo-controlled trial in 42 adolescent/adult SCD patients [134].

LOX activity is increased in the plasma of COVID-19 patients, with higher activity
in patients who survived [135]. LOX-derived leukotriene production is also significantly
increased in the BALF of COVID-19 patients [136]. Montelukast has been shown to inhibit
in vitro platelet activation induced by plasma from COVID-19 patients [137]. Montelukast
prevented surface expression of tissue factor (TF) and P-selectin, and reduced circulating
monocyte- and granulocyte-platelet aggregates and TF+-circulating microvesicles [137]. In
a prospective randomized controlled study of montelukast in 180 hospitalized COVID-19
patients, patients receiving montelukast had significantly lower LDH, fibrinogen, D-dimer,
CRP, and procalcitonin, compared to standard of care alone [138]. Additionally, treatment
with montelukast significantly reduced the progression to macrophage activation syndrome
and respiratory failure, while significantly reducing the length of hospital stay [138].

4. Thromboxane A2-A Key Mediator of Thrombo-inflammation by Regulation of
Platelet Activation, NO Synthesis, and Expression of P-Selectin, CD40L, Tissue Factor,
and TGF-β

Thromboxane A2 (TxA2), a key mediator of thrombosis, is released by platelets, en-
dothelial cells, macrophages, and neutrophils [139]. TxA2 binds to the thromboxane-
prostanoid (TP) receptor on platelets, thereby stimulating activation and aggregation of
platelets [139]. Cooperation between TxA2/TP receptor and CLEC2 receptor signaling
pathways is critical for CLEC2-induced platelet activation [84].

Thromboxane A2 generation is markedly stimulated in both SCD and COVID-19. In
SCD, TxB2, and 2,3-dinor-TxB2, a terminal metabolite of TxB2, were significantly elevated
in the urine and plasma of steady state SCD patients, compared to healthy HbAA con-
trols (Table 2) [140,141]. Moreover, in isolated rat lungs co-perfused with sickle (HbSS)
erythrocytes and platelet-rich plasma, TxA2 levels increased over 10-fold more than with
normal (HbAA) erythrocytes [142]. In severe COVID-19 patients, bronchoalveolar lavage
fluid presents a picture of an inflammatory lipid storm, with marked increases in fatty
acid levels and a predominance of cyclooxygenase metabolites, notably, thromboxane
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B2 >> PGE2 > PGD2 [52]. Plasma levels of TxB2, a stable metabolite of TxA2, are also
markedly increased in severe COVID-19 patients [23]. Interestingly, proinflammatory
eicosanoids TxB2 and anti-inflammatory eicosanoids 15d-PDJ2 and 12HETE were elevated
in the plasma of 66 COVID-19 survivors [135]. However, only the plasma levels of TxB2,
and not 15d-PDJ2 or 12HETE, were elevated in 22 patients who died from COVID-19 [135].
Considering the marked increase of TxA2 in both SCD and COVID-19, we postulate the
potential role of TxA2 in the pathogenesis of the proinflammatory state that contributes to
the thrombo-inflammation observed in both diseases.

Table 2. Comparative analysis of thromboxane levels in SCD, COVID-19, and asthmatics.

Subjects Source and Analyte
Thromboxane Levels p-Value Compared

to ControlsControl Disease State

Sickle Cell Disease

Plasma
2,3 dinor-TxB2 [140]

(µg/L)
(Mean ± SEM)

HD (n = 12)
2.75 ± 0.83

Steady State SCD (n = 15)
21.53 ± 5.10 p < 0.001

Plasma
TxB2 [140]

(µg/L)
(Mean ± SEM)

HD (n = 12)
<0.005

Steady State SCD (n = 15)
0.543 ± 0.101 p < 0.05

Urinary
TxB2 [140]

(pg/mg creatinine)
(Mean ± SEM)

HD (n = 12)
0.41 ± 0.30

Steady State SCD (n = 15)
0.91 ± 0.13 p < 0.05

Urinary
2,3 dinor-TxB2 [140]
(pg/mg creatinine)

(mean ± SEM)

HD (n = 12)
1.70 ± 0.032

Steady State SCD (n = 15)
2.81 ± 0.13 p < 0.01

Urinary
11-dehydro-TxB2 [141]

(pg/mg creatinine)
(Mean ± SEM)

HD (n = 33)
299 ± 20

Steady State SCD (n = 49)
1227 ± 191 p = 0.0002

Vaso-Occlusive SCD (n = 15)
1836 ± 536 p = 0.0005

COVID-19

BALF TxB2 [52]
(nmol/L)
(Means)

HD (n = 25)
<0.250

Severe COVID-19 (n = 33)
12.0 p < 0.0001

Plasma TxB2 [23]
(ng/mL)
(Median)

HD (n = 11)
4.0

Severe COVID-19 (n = 35)
7.5 p < 0.05

Urinary
11-dehydro-TxB2 [143]

(pg/mg creatinine)
(Median (95% CI))

Without Events (n = 47)
4890 (5049–8290)

With Events (n = 18)
7603 (7541–19,791) p = 0.002

<10 d of hospitalization
(n = 35)

4801 (3817–9196)

≥10 d of hospitalization
(n = 30)

8614 (7990–14,316)
p = 0.02

No death (n = 48)
5360 (5907–10,038)

Death (n = 6)
15,069 (1915–42,007) p = 0.004

No Mechanical
Ventilation (n = 56)
5137 (4498–7512)

Mechanical Ventilation
(n = 9)

20,121 (5364–41,015)
p < 0.001

Atopic Asthmatics
BALF TxB2 [144]

(nmol/L)
(Mean ± SEM)

Before Allergen
Challenge

(n = 8)
0.130 ± 0.021

After Allergen
Challenge

(n = 8)
0.430 ± 0.108

p < 0.05

HD, healthy donor; BALF, bronchoalveolar lavage fluid.
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There is growing evidence that cyclooxygenase enzymes, COX-1 and COX-2, mediate
the thromboxane generation underlying thrombo-inflammation in SCD and COVID-19 [81].
COX-2 is an inducible enzyme, while COX-1 is constitutive. COX-2 expression is stimulated
by inflammation, a cardinal feature of both VOC and COVID-19. Endothelial COX-2
expression was markedly increased in transgenic BERK SCD mice [145]. SARS-CoV-2
infection of iPSC-derived cardiomyocyte cells led to >50-fold increase in COX-2 gene
expression (Dr. S. T. Reddy, UCLA, personal communication, based on analysis of the
supplemental material in reference [146]. In addition to upregulating COX-2 in living
human lung slices, the SARS-CoV-2 virus reduces the prostaglandin-degrading enzyme
15-hydroxyprostaglandin-dehydrogenase [147]. TxA2 generation is COX-2 mediated in
states of high TxA2 generation, such as in inflammation, infection, and obesity [148]. Low-
dose aspirin is unable to inhibit COX-2; hence, aspirin resistance is common in states with
COX-2-dependent TxA2 generation [149]. TxA2 generation by platelets and endothelial
cells stimulates expression of P-selectin, ICAM-1, and VCAM-1 on endothelial cells and
release of tissue factor [150–152].

4.1. Thromboxane A2-Mediated P-Selectin Expression

TxA2 plays a role in the platelet expression of P-selectin. It was demonstrated that
the percentage of P-selectin-positive platelets in TP receptor knockout mice on day 1
was significantly reduced, compared with that in wild-type mice [151]. Therefore, TxA2
blockade may be another effective method to target P-selectin without the need for IV
administration of anti-P-selectin Ab [85].

4.2. Thromboxane A2-Mediated Tissue Factor Expression

TxA2 has been shown to mediate TF expression on endothelial cells and monocytes [152].
TP receptor agonism induced TF expression in endothelial cells. In contrast, a TP receptor
antagonist reduced endothelial expression of TF after TNF-α induction [152,153]. Similarly,
lipopolysaccharide-induced TF expression on human monocytes was abrogated by a TP
receptor antagonist [154].

4.3. Thromboxane A2-Mediated CD40L Expression

Plasma CD40L has been correlated with urinary 11-dehydro-TxB2, a stable metabolite
of TxA2 in diabetic patients [155]. Upon treatment with low dose aspirin (100 mg/day),
plasma CD40L decreased, along with a reduction in urinary 11-dehydro-TxB2 and whole
blood TxB2 production [155]. Patients with higher excretion of 11-dehydro-TxB2 had
increased levels of CD40L [155]. Therefore, targeting TxA2 may reduce the release of
CD40L, potentially preventing ACS and vaso-occlusion in SCD.

4.4. Thromboxane A2-Induced Suppression of NO Synthesis

NO inhibits platelet activation via phosphorylation of the thromboxane prostanoid
(TP) receptor [156]. In both vascular smooth muscle cells and platelets, the vasodilatory
and platelet inhibitory effects of NO are known to be mediated by cGMP, which inhibits
phospholipase C activation, inositol 1,4,5-triphosphate generation, and [Ca2+]i mobiliza-
tion [156]. NO stimulates cGMP production and activates cGMP-dependent protein kinase
or G kinase [156]. TxA2 also directly inhibits nitric oxide synthase [157]. Nitrite accumula-
tion was enhanced by TP receptor antagonists, seratrodast or ramatroban, in a model of
IL-1β-stimulated rat aortic smooth muscle cells [157]. Therefore, TxA2 may play a role in
NO deficiency in SCD, which would be alleviated by TP receptor blockade.

4.5. Thromboxane A2-Induced TGF-β Release

TxA2/TP receptor signaling stimulates activation of the TGF-β pathway [158,159].
Hypertensive PGI2 receptor knockout mice fed a high-salt diet exhibited elevated urinary
TxA2 metabolites and left ventricular TP receptor overexpression, which accompanied
cardiac collagen deposition and profibrotic TGF-β gene expression [160]. Inhibition of TxA2
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biosynthesis with low-dose aspirin mitigated the increase in blood pressure, cardiac fibrosis,
and left ventricular TGF-β gene expression [160]. Moreover, the number of myofibroblasts
and extravasated platelets in the heart were also reduced [160]. This is consistent with
TxA2-induced TGF-β gene expression in myofibroblasts [160].

5. Thromboxane A2 in Post-Capillary Venoconstriction in SCD and COVID-19
5.1. Post-Capillary Pulmonary Venous Constriction

Cardiopulmonary complications are the leading cause of death in patients with SCD,
primarily resulting from diastolic heart failure (HF) and/or pulmonary hypertension
(PH) [161]. From a hemodynamic standpoint, almost half of cases of SCD pulmonary
hypertension reported in the literature have postcapillary or venous pulmonary hyperten-
sion [162]. Interestingly, U-46619, a TxA2 mimetic in a concentration of 1 nM, is sufficient
to reduce the guinea pig pulmonary venous luminal area by 50% [163]. A 50% reduction in
luminal area increases vascular resistance by 4-fold, indicating that sub-nanomolar con-
centrations of thromboxane A2 could produce meaningful increases in pulmonary venous
resistance [163]. This is consistent with the measured effect of selective TP receptor antago-
nism in reducing pulmonary venous resistance and capillary pressure in patients with acute
lung injury [164]. Moreover, TP receptor antagonism prevented right ventricular fibrosis
and arrhythmias in a mouse model of pulmonary arterial hypertension [165]. Therefore,
TxA2 released from platelets and pulmonary venous endothelial cells may cause: first,
pulmonary venous hypertension and, second, left ventricular fibrosis secondary to elevated
TGF-β levels and diastolic dysfunction.

TP receptor antagonism has also been shown to attenuate airway mucus hyperpro-
duction induced by cigarette smoke [166] and reduce tissue edema in mouse models of
acute lung injury [167]. In COVID-19, TP receptor blockade may rapidly reduce pulmonary
capillary pressures, improve ventilation-perfusion matching, promote resolution of edema,
reduce bronchoconstriction and airway mucus hyperproduction, improve lung compliance
and gas exchange, and thereby mitigate respiratory distress and hypoxemia [168].

5.2. Post-Capillary Efferent Arteriole Constriction in Kidney Injury

Glomerular involvement is one of the most prominent renal manifestations observed
in SCD. It is characterized by an early increase in glomerular filtration rate (GFR) associated
with micro- or macroalbuminuria, followed by a gradual decline in GFR and chronic renal
failure [169,170]. This is consistent with underlying vasculopathy in sickle cell nephropa-
thy associated with cortical hyperperfusion, medullary hypoperfusion, and an increased
stress-induced vasoconstrictive response [169]. Renal involvement is usually more severe
in homozygous than heterozygous SCD. It contributes to diminished life expectancy and
16–18% of mortality in patients with SCD [169,171,172]. Acute kidney injury is emerg-
ing as a common and important sequelae of COVID-19, with rates as high as 33–43% in
hospitalized patients [173–176]. In a prospective cohort study of 701 COVID-19 patients,
proteinuria was reported in 43.9% of patients on admission to the hospital [177]. How-
ever, the involvement of hyperfiltration in COVID-19-associated kidney injury remains to
be elicited.

Glomerular hyperfiltration is caused by either a net reduction of afferent (pre-capillary)
arteriolar resistance or a net increase in efferent arteriolar (post-capillary) arteriolar resis-
tance [178]. Thromboxane synthase inhibition or TP receptor antagonism in untreated
streptozotocin-induced diabetic rats was shown to decrease renal blood flow, increase
renal vascular resistance, and ameliorate renal hyperperfusion [179]. This is consistent with
reduced microalbuminuria in diabetic patients treated with a TxA2 synthase inhibitor, likely
due to a vasodilating effect predominantly exerted on the efferent arteriole [180,181]. How-
ever, this contrasts with in vitro findings that treatment of isolated perfused hydronephrotic
rat kidney with TxA2 mimetic leads to preferential constriction of afferent arterioles [182].
Therefore, further studies are needed to clarify the role of TxA2 in post-capillary effer-
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ent arteriole constriction and glomerular involvement associated with vascular diseases,
including SCD and COVID-19.

6. Complement Activation as an Inducer of Thrombo-Inflammation in SCD
and COVID-19

The complement system is a critical innate immune defense against infections and
an important driver of inflammation [183]. Activated complement can produce direct
effector functions by target opsonization with cleaved complement component 3 (C3)
and C4 fragments, promotion of inflammation with C3a and C5a, and direct cell lysis
with the assembly of MAC C5b-9 complex [183]. Plasma concentrations of sC5b-9 are
elevated in steady state SCD patients [184]. Complement deposition is also increased
in cultured human endothelial cells incubated with SCD serum [184]. In SCD, levels of
IL-1α were significantly higher in those with a history of acute splenic sequestration, a
common feature of homozygous SCD, compared with matched normal controls [185].
The effect of complement activation on IL-1α and COX-2/TxA2 axes has been studied by
treating porcine endothelial cells with human plasma containing xenoreactive antibodies
and complement [186]. In this model, there is markedly increased expression of IL-1α,
COX-2, and thromboxane synthase, leading to the generation of TxA2. The role of IL-1α
in mediating the effect of complement activation was confirmed by the addition of an
IL-1 receptor antagonist to the human serum, which prevented the release of PGE2 and
TxA2 [186]. Therefore, complement activation can induce a prothrombotic state via the
expression of IL-1α and COX-2, leading to generation of TxA2 (Figure 1).

Complement activation is also thought to play a critical role in immune-thrombosis
and end-organ damage in COVID-19 [25]. Nucleocapsid protein of SARS-CoV-2 virus binds
to the Mannan-binding, lectin-associated serine protease-2 (MASP-2), the lectin pathway’s
effector enzyme, resulting in complement activation [187,188]. Lung tissue from deceased
COVID-19 patients showed components of the lectin and terminal complement pathways,
specifically MASP-2, complement factor 4d (C4d), and C5b-9 (i.e., the membrane attack
complex) [187,188]. Activation of C4d (classical lectin pathway) and sC5b-9 (membrane
attack complex) are also associated with respiratory failure in hospitalized adults with
COVID-19 [189]. Furthermore, in children with COVID-19, there is evidence of complement
activation with an increase in plasma sC5b-9 levels, even with only minimal symptoms of
COVID-19, and 13 of the 34 children had thrombotic microangiopathy [72]. Most impor-
tantly, IL-1α is also released from necrotic and pyroptotic cells, including pneumocytes and
endothelial cells, the primary site of an attack by SARS-CoV-2 [190].

7. Thromboxane A2 Is Enzymatically Converted into 11-Dehydro-Thromboxane A2, a Full
Agonist of the Prostaglandin D2/DP2 Receptor Leading to Fibrosis and Inflammation

TxA2 is short-lived and rapidly transformed nonenzymatically in an aqueous solution
to TxB2. TxB2 is further metabolized enzymatically to a series of compounds, of which
11-dehydro-TxB2 (11dhTxB2) is the major product found both in plasma and urine [191].
The dehydrogenase catalyzing the formation of 11dhTxB2 was tissue bound, with the
highest activity in the lung [192]. Urinary excretion of 11dhTxB2 was markedly increased in
recently hospitalized patients with COVID-19 and was predictive of plasma D-dimer levels,
renal ischemia, the need for mechanical ventilation, and mortality [143]. Urinary 11dhTxB2
is also significantly elevated in SCD compared to healthy controls [141]. Interestingly,
11-dehydro-TxB2 is a full agonist of the D-prostanoid receptor 2 (DP2) for prostaglandin
D2 (PGD2) [191].

PGD2/DP2 receptor signaling is known to mediate Th2 immune responses that
are classically directed against extracellular non-phagocytosable pathogens, for instance,
helminths [193–195]. The effectors for PGD2/DP2 receptor-mediated Th2 immune response
are eosinophils, basophils, and mastocytes, as well as B cells (humoral immunity), and
these are consistently elevated in COVID-19 [196]. IL-13, a type 2 cytokine released during
PGD2/DP2 receptor signaling, increases hyaluronan accumulation in mouse lungs [197],
and is universally correlated with ARDS, AKI, morality [198], and the need for mechanical
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ventilation in COVID-19 [197]. IL-13 is also known to upregulate monocyte-macrophage-
derived suppressor cells (MDSC), which play a role in immune suppression and lymphope-
nia, a hallmark of severe COVID-19 disease [199–202].

PGD2/DP2 receptor signaling is thought to play a role in fibrosis. PGD2/DP2 receptor
signaling exerts direct pro-apoptotic and pro-fibrotic actions on various cells, including
islet cells, cardiomyocytes, and osteoclasts [203–205]. Moreover, PGD2/DP2 receptor-
mediated IL-13 release is a significant inducer of fibrosis by stimulating the IL-13Rα2
receptor expressed on macrophages to release TGF-β1 [206]. Therefore, elevated levels of
TxA2 in COVID-19 and SCD may be rapidly converted to 11dhTxB2 in the lungs, thereby
leading to DP2 receptor signaling and fibrosis in the lungs and heart.

8. Therapeutic Options for Thrombo-inflammation in COVID-19 and SCD: Past,
Present, and Future

Blood transfusion is the only treatment for SCD-associated vaso-occlusive crises or
thrombotic events, such as acute painful episodes, cerebral infarction, and acute chest
syndrome [207]. Widely varying anticoagulants, including heparin and its analogs, are
used in both arterial and venous thrombosis associated with SCD, but they have proven
ineffective in preventing acute pain episodes [208,209]. As a treatment of acute pain crisis
in SCD, tinzaparin, low molecular weight heparin, was shown to reduce the severity and
crisis duration in a double-blind, randomized, controlled trial [210].

Antiplatelet agents, such as aspirin, prasugrel, and ticagrelor, have also been tested in
SCD (Table 3). In a double-blind crossover study of children with SCD, low-dose aspirin,
an inhibitor of COX-1 action, did not affect the frequency and severity of vaso-occlusive
crises, compared to placebo [211]. Prasugrel and ticagrelor are P2Y12 receptor antagonists
that block platelet stimulation induced by ADP. In a double-blind, randomized, placebo-
controlled trial of prasugrel in children and adolescents with SCD, prasugrel was found
to be safe, but did not reduce the rate of vaso-occlusive crisis or diary-reported events
over a 9–24-month period [212]. Ticagrelor demonstrated no effect on diary-reported
pain in young adults with SCD [213]. However, as discussed above, heme-driven CLEC2-
induced platelet activation is dependent on ADP stimulation of platelet P2Y1 receptor,
but not the P2Y12 receptor [84], while prasugrel only blocks the latter [214]. The failure
of prasugrel and ticagrelor may also indicate that other P2Y12 antagonists may not be
effective in SCD [213,214]. Unfortunately, there are no approved P2Y1 antagonists to
our knowledge. Moreover, other antiplatelet therapies have been tested in clinical trials,
including eptifibatide, a platelet αIIbβ3 receptor blocker, which failed to improve time to
crisis resolution or hospital discharge in SCD patients, though only 13 patients were enrolled
in the study [215]. Meanwhile, targeting IL-1β downstream of inflammasome activation
with canakinumab led to improved thrombo-inflammation and quality of life, including
reduced days of hospitalization and pain [216]. P-selectin antibody (Crizanlizumab) is the
only targeted therapy against thrombo-inflammation in SCD. However, prophylactic P-
selectin inhibition by crizanlizumab led to only a ~50% reduction in hospitalization related
to VOC, suggesting that P-selectin-independent pathways contribute to the remaining
morbidity of VOC [85].

Therapies targeting thrombo-inflammation in patients with COVID-19 are in clinical
trials [217]. In a necropsy study of 68 COVID-19 patients, nearly 70% (48 out of 68) were
treated with anticoagulants, and of those treated with anticoagulants, almost 50% had large
thrombi, and nearly 90% had microvascular thrombi of arterioles and capillaries (42 out
of 48). This demonstrates the lack of efficacy of anticoagulation in severe COVID-19 [218].
Furthermore, prohibitive signal for bleeding risk, in addition to futility, has recently led
to the discontinuation of high-dose heparin arm in REMAP-CAP, ACTIV-4, and ATTACC
studies in severe COVID-19 [218–220]. The momentum seems to be finally shifting to
antiplatelet agents, both for prevention and treatment, even though the efficacy of these or
other agents remains to be demonstrated in preclinical models of COVID-19.
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Table 3. Efficacy trials of antiplatelet therapies in SCD.

Study Design Study Population Intervention Primary Outcome Measure
and Result

Phase IIb
Multicenter,

double-blind,
double-dummy,

randomized,
placebo-controlled,
parallel-group [213]

• Have SCD [homozygous sickle cell
(HbSS) or sickle beta-zero

thalassemia (HbSβ0)]
• Ages 18–30 years (mean 22.2 years old)

• Have ≥4 days of pain during the
4-week single-blind placebo baseline

period prior to randomization
• If on hydroxycarbamide, a stable dose

for 3 months prior to
enrollment required

• If on erythropoietin, drug must have
been prescribed 6 months before and at

a stable dose for ≥3 months prior to
randomization

(n = 194)

• Ticagrelor 10 mg plus matching
placebo for ticagrelor 45 mg

• Ticagrelor 45 mg plus matching
placebo for ticagrelor 10 mg

• Matching placebo for ticagrelor
10 and 45 mg

Duration: 12 weeks

Proportions of days with
diary-reported SCD pain

No significant difference between
placebo and ticagrelor

treatment groups

Phase III
Multinational,

double-blind, randomized,
placebo-controlled,
parallel-group [212]

• Have SCD [homozygous sickle cell
(HbSS) or sickle beta-zero

thalassemia (HbSβ0)]
• Are participants with SCD who have

had ≥2 episodes of vaso-occlusive crisis
(VOC) in the past year

• Have a body weight ≥ 19 kilogram
(kg) and are ≥ 2 and <18 years of age,

inclusive at the time of screening
• If participants are ≥2 and ≤16 years of
age, they must have had a transcranial

Doppler within the last year
(n = 341)

• Prasugrel 0.08–0.12 mg/kg po
once daily
• Placebo

Duration: 9–24 months

Number of Vaso-Occlusive Crisis
(VOC) Events Per Participant Per

Year (Rate of VOC)
Terminated due to lack of efficacy

Phase III
Double-blind crossover

study [211]

• Have sickle hemoglobinopathy
observed regularly

• Ages 2–17 years old
(mean 7.7 years old)

• The hematologic diagnosis was
confirmed by cellulose acetate

electrophoresis at pH 8.6 and citrate
agar electrophoresis at pH 6.4

• At least 50% compliant
(n = 49)

• Low dose aspirin
• Placebo

Frequency and severity of VOC
No significant difference between

placebo and aspirin
treatment groups

Numerous clinical trials have been initiated to investigate the benefits of antiplatelet
therapy in COVID-19. In the NIH ACTIV-4 trial, amongst 657 symptomatic outpatients with
COVID-19, the major adverse cardiovascular or pulmonary outcomes were not significantly
different for patients randomized to low-dose aspirin, apixaban (2.5 mg twice daily),
apixaban (5.0 mg twice daily), or placebo [221]. However, the median time from diagnosis
to randomization and from randomization to initiation of study treatment were 7 days
and 3 days, respectively, suggesting that survival bias may account for a very low event
rate in both placebo and treatment groups. Early administration of aspirin in ambulatory
COVID-19 patients appears to provide significant benefit and correlates with a decrease in
overall mortality [222], but was not effective in reducing progression to invasive mechanical
ventilation or death in hospitalized patients, as reported in the Randomized Evaluation
of COVID-19 thERapY (RECOVERY) trial, the world’s largest clinical trial of treatments
for patients hospitalized with COVID-19 [223,224]. Aspirin irreversibly inhibits both COX
enzymes (COX-1 >> COX-2), preventing prostaglandin production by cells until the new
enzyme is produced [225]. Low doses of aspirin, typically 75 to 81 mg/day, are sufficient to
irreversibly acetylate serine 530 of COX-1, but have little effect on COX-2 [225]. Therefore,
the lack of efficacy of aspirin in hospitalized patients with COVID-19 may be due to
inducible COX-2-mediated TxA2 generation and the failure of aspirin to inhibit the effects of
TxA2 once synthesized. Moreover, the well-known phenomenon of aspirin resistance in the
obese or the elderly has been attributed to increased expression of cytosolic phospholipase
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A2, and COX-2, which leads to increased generation of TxA2 [226]. Marked increase in
TxA2 generation and COX-2 expression in severe COVID-19 raises the specter of aspirin
resistance, especially in the elderly or obese patients, as in the general population [227,228].
Plasma from patients with COVID-19 triggered platelet and neutrophil activation and
NET formation in vitro; the latter was blocked by therapeutic-dose low-molecular-weight
heparin, but not by aspirin [229]. Moreover, the use of aspirin in children with COVID-19
is relatively contraindicated due to the risk of Reye’s syndrome [230].

Furthermore, COX-2 inhibitors are known to increase the risk of cardiovascular events
and, therefore, are not advised in SCD or COVID-19 [231,232]. Blocking COX-1 or COX-2
may result in more challenges than cures because of their broad inhibition of several essen-
tial prostanoids other than TxA2 [233]. Although TxA2 synthase inhibitors suppress TxA2
formation, accumulation of the substrate prostaglandin (PG)H2 stimulates TP receptor on
platelets and the endothelium, thereby inhibiting the antiplatelet action of TxA2 synthase
inhibitors [234]. TP receptor antagonists block the activity of both TxA2 and PGH2 on platelets
and the endothelium [234]. Thus, early administration of well-tolerated TP receptor antag-
onists may limit progression to severe COVID-19 [81] and may also be effective in SCD,
considering the common pathobiology of thrombo-inflammation in the two disease states.

It has been proposed that blocking the deleterious effects of PGD2 and TxA2 with a
dual DP2/TP receptor antagonist, ramatroban, might be beneficial in COVID-19 [136,235].
Ramatroban is a surmountable and potent antagonist of TP receptors. Ramatroban is orally
bioavailable and has been used in Japan for the past 20 years as a treatment for allergic
rhinitis. Ramatroban has been shown to provide rapid relief of symptoms and successfully
treat four patients with severe COVID-19 [168]. This is consistent with the role of TP
receptor antagonism in relieving postcapillary pressures, promoting resolution of edema,
and improving lung compliance and gas exchange [164,168]. Notably, patients treated with
ramatroban did not develop overt long-haul COVID symptoms after recovery from acute
illness, supporting the anti-fibrotic effect of ramatroban, as demonstrated in a mouse model
of silicosis [168,236].

Ramatroban is 100-150 times more potent than aspirin in inhibiting platelet aggregation,
P-selectin expression, and sphingosine-1-phosphate (S1P) release from platelets [237–239].
S1P is chemotactic for monocytes and inhibition of S1P release reduces monocyte infiltra-
tion [239]. Ramatroban also decreases macrophage infiltration by inhibiting endothelial
surface expression of ICAM-1 and VCAM-1, and inhibiting MCP-1 expression on endothelial
cells in response to TNF-α or platelet-activating factor [237]. Additionally, the potentiation
of CLEC2 signaling by TxA2 was abolished by 10 µM ramatroban, while 1 mM aspirin was
only partially effective [84]. In addition to its anti-platelet action, ramatroban also improves
vascular responsiveness [237]. With a plasma half-life of about 2 h, the antiplatelet action of
ramatroban is reversible [237]. This is of advantage in the event of bleeding complications
following anticoagulation in critically ill COVID-19 patients [240], and SCD patients with
venous thromboembolism [241].

9. Conclusions

Thrombo-inflammation is a classic feature of both SCD-associated vaso-occlusive
crisis and severe COVID-19. Thrombo-inflammation leads to microvascular thrombosis
and thrombotic microangiopathy. Both diseases share the pathobiology of endothelial cell
injury and activation, platelet activation, and platelet-leukocyte partnership, culminating in
thrombo-inflammation. COX-2-mediated increase in TxA2 signaling may play an important
role in platelet activation, leading to thrombo-inflammation in both SCD and COVID-19.
The failure of the previous anticoagulant and antiplatelet strategies in both SCD and
COVID-19 underlines the importance of identifying new therapeutic targets, such as TxA2
and/or PGD2, for the resolution of acute crisis in both diseases.
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