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Abstract: This review provides an overview covering mRNA from its use in the COVID-19 pandemic
to cancer immunotherapy, starting from the selection of appropriate antigens, tumor-associated and
tumor-specific antigens, neoantigens, the basics of optimizing the mRNA molecule in terms of stability,
efficacy, and tolerability, choosing the best formulation and the optimal route of administration, to
summarizing current clinical trials of mRNA vaccines in tumor therapy.
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1. Introduction

mRNA—messenger ribonucleic acid—is a single-strand copy of a selected part of
the genetic sequence of a gene, negatively charged with secondary and tertiary structure
formations. It is produced from DNA and—after appropriate modification—leads to
the synthesis of a specific protein by a ribosome. It was first described in 1961 [1]. The
feasibility of in vivo expression following the direct injection of in vitro-transcribed mRNA
was demonstrated in 1990 [2]. The first commercially available mRNA-based vaccines were
Comirnaty (BNT162b2, tozinameran) and Spikevax (mRNA-1273, elasomeran) [3,4]. The
major hurdles that had to be overcome before the successful in vivo use of mRNA as a
vaccine were instability of the molecule, innate immunogenicity, and delivery. The general
structure of mRNA is illustrated in Figure 1.

Figure 1. (A): General structure of mRNA containing the four nucleobases adenine, cystine, guanine,
and uracil, linked to ribose. The resulting nucleosides are connected via phosphate groups. The
starting (5′ cap) position is formed by 7-methylguanosine with a three-phosphate moiety as a linker
to the first nucleotide. At the end of the molecule, multiple adenosine moieties are attached. A codon
comprises three nucleotides, for example, AUG, which is the code for methionine. (B): Functional
structure of mRNA; details of functions are provided in Table 1. 5′ UTR: 5′ untranslated region.
3′ UTR: 3′ untranslated region. Poly(A)tail: multiple adenosine units.
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Table 1. Building blocks of mRNA and their functions. The Kozak sequence is a group of nucleotides
that initiates the protein translation in the ribosome. An example is 5′-GCCGCCRCCAUGG-3′, where
red color indicates that these nucleotides are fixed, AUG is the start codon encoding for methionine,
R stands for A or G, and the function of GCC is not well defined.

Component Nucleotides Function

5′ cap 7-Methyl-G Essential for ribosome recognition, transcription,
protection against ribonucleases

5′ UTR
A, C, G, U; from 3 to
several hundred
nucleotides

Contributes to stability, localization, and
translation efficiency
Normally proprietary knowledge

Start AUG within a Kozak
sequence Codes for methione and initiates translation

Coding A, C, G, U
Regulation of splicing
Decoding (reading) by ribosomes and translation into
the target protein

Stop
UAG: amber
UAA: ochre
UGA: opal

Terminates the translation process

3′ UTR
Contributes to stability, localization, and translation
efficiency, potentially involved in disease
susecptibility

Poly(A) tail A Protects against exonucleases, aids in transport from
nucleus to cytosol and in translation

mRNA is composed of nucleotide building blocks consisting of a selection of four
different nucleobases, adenine, cystine, guanine, and uracil, coupled to ribose which
contains a phosphate group as the linker to the next nucleotide. mRNA transfers the
genetic information for the synthesis of a specific protein from the genes via the DNA to
the protein production facility: the ribosome. The nucleotides constitute the alphabet of
the genetic code. Three consecutive nucleotides, for example, AUG, function as codons.
Accordingly, by using four letters of the alphabet, A, C, G, and U, 64 different codons
are possible. In general, codons define the amino acid which will be recruited next in the
protein synthesis. On top of that, a single codon or groups of codons have specific functions,
for example, the codon AUG codes for the amino acid methionine and operates as the start
codon for the coding part of the mRNA. Table 1 provides an overview of the functionality
of codons.

The task mRNA has to fulfil involves the following steps. It starts with the production
of a single-strand copy of the genetic code laid down in the DNA, which is performed
by RNA polymerase. This process is called transcription and leads to precursor mRNA
(pre-mRNA), which—via splicing procedures—finally becomes mature mRNA. In parallel
to transcription, the 5′ cap is added to the molecule and the poly(A) tail is attached at
the end of the chain. After that, the mRNA is transported from the nucleus of the cell to
the cytosol. Various mechanisms can be utilized for this step involving different proteins,
such as CBP20 and CBP80. Subsequently, ribosomes take over, read the code, and start the
protein synthesis according to the codons provided in the coding section of the mRNA. The
synthesis is terminated as soon as a stop codon is reached. Stop codons are UAG (amber),
UAA (ochre), and UGA (opal). Thereafter, the mRNA is degraded by ribonucleases. mRNA
activates the innate immune response through various RNA sensors such as toll-like
receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and protein kinase R (PKR) [5–8].
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2. Lessons Learned from COVID-19

The unprecedented speed of the global spread of the COVID-19 pandemic caused
by the coronavirus, SARS-CoV2, resulted in an extremely rapid development of mRNA
vaccines [9]. In January 2020, the genetic sequence of SARS-CoV-2 was available; in March
2020, the first Phase I trial (NCT04283461) started with an mRNA vaccine (BNT162b2) and
a rolling submission procedure was initiated, in which data were provided to the author-
ities as soon as they were available. In December 2020, BNT162b2 received a temporary
emergency use authorization in the UK followed by a conditional marketing authorization
(CMA) by the EMA based on data from a global Phase I/II/III study (NCT04368728).

Although SARS viruses are common in humans, vaccines had not been developed since
the course of the infection normally was very mild. The SARS outbreak in early 2000 trig-
gered DNA vaccine development [10] but was stopped very soon as the disease vanished
on its own. Together with research on MERS-COV, the antigen target rapidly emerged [11].
The spike protein is the major surface protein for most coronaviruses. The virus enters the
host cell by endocytosis after binding to angiotensin-converting enzyme 2 [12], followed by
the release of the viral DNA. An antibody developed against the spike protein would then
inhibit cell entry and thereby neutralize the virus [13]. Furthermore, it could be shown in
rhesus monkeys that SARS-CoV-2 infection protects against re-infection [14], mostly via
neutralizing antibodies but not via T cell responses [15]. Intramuscularly injected mRNA
vaccines mostly induce IgG-type antibodies and less IgA antibodies [16], which provide
disease prevention or attenuation but not sterilizing immunity [9]. The preclinical data
necessary for the development of a COVID-19 mRNA vaccine were essentially available
from the previous SARS and MERS experiments and so saved a lot of development time. In
addition to mRNA vaccines, other functional types have been and are in development for
the treatment of COVID-19 including DNA and virus vaccines. The latter range from live
attenuated virus vaccines via inactivated virus vaccines to recombinant protein vaccines.
These types will not be addressed further in this review. For the mRNA-based treatment of
COVID-19, various positions of the mRNA molecule had been modified as listed in Table 2.

Table 2. Possible modifications of the mRNA molecule for use as COVID-19 vaccines with the
spike protein of SARS-CoV-2 as target antigen. Most modifications used for approved vaccines are
proprietary and therefore not publicly available.

Position Modification Effect Reference

5′ cap

• Methylation of the first nucleotide at
position 20 (cap1 structure)

• CleanCap system: 5′ cap + 2′ methylated
adenosine followed by guanosine

• Allows incorporation of cap1 at the 5′ end
of any mRNA and does not limit the
concentration of any of the four
nucleotides

[17–20]

5′ UTR

• Apply 5′ cap in multiple versions
• Incorporate synthetic cap or anti-reverse

cap analogues
• Strong Kozak translation signal
• Avoid the presence of start codon (AUG)

and non-canonical start codons (CUG)
• Use shorter 5′ UTR
• Remove highly stable secondary structures
• Avoid hairpin loops

• Increases stability and translation
resulting in higher efficiency and longer
half-life

• Increases protein synthesis during
fibroblast conversion to induced
pluripotent stem cells

• Improves translation

[21–29]

Start
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Table 2. Cont.

Position Modification Effect Reference

Coding

• Replace a nucleotide with
N1-methyl-pseudouridine (N1mΨ)

• High GC sequence better than a low GC
sequence

• Replace cytidine with 5-methylcytidine
(m5C) or uridine with pseudouridine (Ψ) or
1-methylpseudouridine (m1Ψ)

• To be carefully optimized since it can affect
the rate of translation

• Better base pair stability and mRNA
translation

• 100-fold higher translation
• Reduces innate immune activation
• The rate of translation needs to consider

the formation of the tertiary structure of
the protein

[30–33]

Stop

3′ UTR

• See 5′ UTR (1 + 2)
• Early-on use of alpha globin 3′ UTR
• Tandem repeats of alpha globin 3′ UTR
• Optimal length is mandatory

• Intracellular kinetics heavily depend on
3′ UTR

• Increase in protein synthesis during
fibroblast conversion to induced
pluripotent stem cells

• Critical for mRNA stability
• Too long: shorter half-life; too short: less

efficient translation

See 5′ UTR
[23,25,34–36]

Poly(A) tail Length of the poly(A) tail, ideally > 90 A, shorter
sequence is more efficient Critical role for translation and stability [20,37–40]

mRNA capping determines the stability and maturity of the mRNA molecule [41,42].
A eukaryotic translation initiation factor (eIF4E of the eIF4F complex) couples to the
5′ cap and subsequently initiates the translation process [20]. Targets of modification
include the 5′ cap [43,44], 5′- and 3′-UTRs, the coding region, and the poly(A) tail [25].
Modification of the 5′- and 3′-UTRs improves the translation and increases the half-life
of in vitro transcription mRNA. The 5′-UTR can be rather short containing only three
nucleotides [45] or up to several hundreds. The coding sequence is responsible for the target
protein that is produced in the ribosomes and determines the rate of mRNA translation
and the stability of mRNA in the cytosol [46,47]. The 3′-UTR is vital for the recognition by
proteins in the cytosol and also determines the mRNA stability [25,34]. Again, most details
are proprietary and have not been disclosed. The addition of a suitable-length poly(A)
tail at the 3′ end of mRNA also plays an important role in its successful translation and
stability containing ideally more than 90 nucleotides. In some cases, uridine is replaced by
pseudouridine, denoted as Ψ. The poly(A) tail can be added to in vitro transcription (IVT)
mRNA either through a template vector or by recombinant poly(A) polymerase after the
transcription process has occurred [24,25].

mRNA which encodes the protein of interest, in the case of SARS-CoV-2, the spike
protein, can be administered as such or as self-replicating or self-amplifying mRNA
(saRNA) [48,49]. Antigen expression is proportional to the number of conventional mRNA
transcripts successfully delivered during vaccination [50], which might result in the need
for relatively high vaccine doses. saRNA vaccines are derived from alphaviruses such
as Sindbis and Semliki Forest viruses [51,52]. The viral genome is divided into two open
reading frames (ORFs): the first ORF encodes for the RNA-dependent RNA polymerase
(replicase), and the second ORF encodes the antigen (spike protein) [53,54]. Unlike saRNA,
ordinary mRNA is small due to its simpler structure and is characterized by only one ORF.
According to Bidram [41], there are three types of saRNA available: plasmid-based DNA
saRNA, virus-like particle delivery saRNA, and IVT saRNA [41,55]. Figure 2 provides
an illustration of the saRNA design. Due to self-replication, considerably lower doses of
vaccines are needed. Cancer mRNA vaccines are mostly non-replicating [56,57].
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Figure 2. Structure of saRNA containing an additional replicase section.

Another alternative is trans-amplifying RNA (taRNA) [58]. In this model, the vector
cassette encoding the vaccine antigen originates from the saRNA, from which the replication
was deleted to form a trans-replicon. Replicase activity is provided in taRNA by a second
molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA),
which results in a 10- to 100-fold increase in transcription expression.

mRNA vaccines are different from classic viral vaccines by providing, instead of the
antigen itself, the genetic information for producing the antigen. Now, it is up to the host to
start protein production. This is a huge benefit compared to administering the antigen to the
host. No longer are cell lines required with their potential to produce multiple impurities
and the consequence to establish tedious purification and quality control procedures. This is
the same issue for DNA vaccines. mRNA vaccines have another significant advantage over
DNA vaccines. They have one major hurdle less. DNA needs to enter the cell nucleus [59],
while for mRNA vaccines, it is sufficient to reach the cytosol of the cell, which itself is
already rather cumbersome.

Vaccine mRNA manufacturing is rapid and cheap by using an IVT from a DNA
template with T7 RNA polymerase [60,61]. Since mRNA and appropriate delivery systems
are self-adjuvant, they result in strong and long-lasting adaptive immune responses. This is
not the case for protein or peptide-based vaccines, which need the addition of adjuvants [62].
Another benefit of mRNA vaccines is that mRNA is much less likely integrated into the host
DNA genome than is the case for DNA vaccines [63]. The major reason is that for mRNA
manufacturing bacterial fermentation with all its sequelae of isolation and purification is
not necessary. Following the expression of antigens, the activity of mRNA is short-lived
due to its clearance by RNases, thereby lowering the burden to the host homeostasis.

mRNA is a large hydrophilic, negatively charged molecule with secondary and tertiary
structure formations. The cell membranes are negatively charged as well. Additionally,
ion pumps and ion channels maintain a negative potential (−40 to −80 mV) across the cell
membrane, keeping the cytosol negatively charged by controlling the balance of most of the
essential metal ions (for example, K+, Na+, Ca2+, and Mg2+). Naked mRNA is therefore not
able to pass this barrier [44]. It was, however, hypothesized that uptake of naked mRNA
might occur by endocytosis using cells as mediators. For dendritic cells, this pathway has
been described by various groups [64–66].

Although the mRNA molecule itself is chemically very stable in the dry state, it is
rather unstable in the solution, and, moreover, is rapidly degraded by extracellular and
intracellular exo- and endo-ribonucleases [23,67,68]. As a consequence, and in order to
mask the negative charge, mRNA needs packaging to be able to pass the cell membrane
barrier and to protect itself inside the cell cytosol against degradation before it reaches its
target, the ribosome. On the other hand, the package needs to be such that the ribosome is
still able to detect and then to process the mRNA [69].

Most mRNA vaccines use lipid nanoparticles (LNPs) as the carrier with a particle size
between 1 and 100 nm. LNP formulations are composed of an ionizable or cationic lipid,
a helper phospholipid, cholesterol or a cholesterol derivative, and a polyethylene glycol
(PEG)-modified lipid. The purpose of the ionizable or cationic lipid is an interaction with
the negatively charged mRNA. Examples are DLin-MC3-DMA (MC3) [70] or DOPE [71].
The helper phospholipid, for example, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or
DSPC, stabilizes the bilayer structure of the LNP. The pegylated lipid contributes to the
stability of the LNP and prevents opsonization followed by uptake in the liver [3,71,72].
However, the PEG group in the LNP formulation is considered to be a possible allergen for
anaphylaxis due to approximately 72% of people having some antibodies against PEGs [73].
LNPs are taken up by apolipoprotein or albumin receptor-mediated endocytosis and can
electrostatically attach and fuse with the cell membrane using inverted non-bilayer lipid
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phases [74] or by non-specific pinocytosis [75]. LNPs modified with mannose target DCs
through the mannose receptor CD206 [76]. Once inside the cell, LNPs are routed into
early endosomes, followed by late endosomes, and finally the lysosomes where the mRNA
contents are enzymatically degraded [77,78].

In addition to LNP, other types of formulations such as liposomes [79], ionizable
lipids [80], pH-dependent ionizable materials [81], MC3 [70], polymers [82], dendrimers [83],
cell-penetrating peptides [84], and other materials have been investigated [44,56,85,86].
Table 3 provides a summary of COVID-19 vaccines with their active ingredients and for-
mulations for vaccines approved in the European Union comprising both mRNA and
viral-based vaccines.

The approved SARS-CoV-2 mRNA vaccines use intramuscular (i.m.) administration.
During their development, alternative injection routes have been evaluated, for example,
intradermal application. A general consensus on what is the best route has not yet been
achieved [3]. Although the i.m. administration route induces strong IgG responses that
are thought to protect the lower respiratory tract, unlike natural infection it does not drive
the secretory IgA responses that are thought to protect the upper respiratory tract [9].
Most vaccines will protect only against infection of the lower respiratory tract and might
not induce sterilizing immunity in the upper respiratory tract, which might still enable
transmission of the virus. Live attenuated vaccines or viral vectors that can be applied
intranasally would probably also lead to a strong mucosal immune response as well as
an IgG response. Currently, 68 clinical studies on intranasal administration are listed at
www.clintrials.gov. An overview can be found at [87].

Another important issue of mRNA vaccines, which had to be addressed carefully,
is manufacturing. A major lesson from the COVID-19 pandemic is that synthesis of the
active ingredient is simple because it is cell-free, scalable, and cost effective. Large-scale
production of mRNA vaccines consists of a 1- or 2-step in vitro reaction followed by a
purification platform with multiple steps that can include DNase digestion, precipitation,
chromatography, or tangential flow filtration [88]. A facility dedicated to mRNA production
is able to rapidly manufacture vaccines against multiple targets, with minimal adaptation to
processes and formulation [61]. Expression may be possible for complex proteins including
monoclonal antibodies that are difficult or impossible to generate with conventional expres-
sion systems [89]. The manufacturing process comprises the following steps: generation
of a plasmid DNA with an RNA polymerase promoter, e.g., T7, and the mRNA sequence
of interest, followed by DNA linearization and transcription of the RNA template and by
degradation of the DNA. The 5′ cap and the poly(A) tail can be added either during or
after transcription. Purification of the mRNA is an important aspect that needs careful
attention. For example, various pollutants such as dsRNA in mRNA may activate pattern
recognition receptors. HPLC is a suitable method to remove impurities [90,91]. Alternative
methods have been described by Shivalingam et al. [92]. Whereas current methods use
enzymatic ligation for nucleic acid assembly, their approach is based on the formation of
urea and squaramide artificial backbones from minimally modified, commercially available
3′- and 5′-amino oligonucleotides, which provide a one-pot linkage that can be modified
on demand for use with stable pre-activated precursor oligonucleotides under reagent-free,
mild conditions.

www.clintrials.gov
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Table 3. Active ingredients and formulations of mRNA and viral-based COVID-19 vaccines ap-
proved in the European Union. Data have been retrieved from the European Public Assessment
Report (EPAR). The structural modifications provided in Table 3 do not reflect all changes that
have been introduced into the mRNA molecules; major portions are proprietary and have not been
disclosed publicly.

Product Active Ingredient Formulation Storage

Comirnaty,
tozinameran,
BNT162b2
BioNTech (Mainz,
Germany)

Single-stranded, 5′-capped mRNA,
encoding the spike antigen [glycoprotein
(S)] of SARS-CoV-2 (isolate Wuhan-Hu-1)
containing two consecutive proline
mutations (P2 S); uridine substituted by
N1-methylpseudouridine (1 mΨ)

Multidose concentrate to be diluted
prior to i.m. injection; dispersion of
mRNA in LNPs containing ALC-0315
and ALC-0159 (functional lipids),
DSPC and cholesterol (structural lipids)
in aqueous cryoprotectant buffer.

−90 ◦C to −60 ◦C
−25 ◦C to −15 ◦C
(for 2 weeks)

Spikevax,
elasomeran/
imelasomeran
(Omicron BA.1
variant)
mRNA-1273
Moderna,
(Camebridge, MA,
USA)

Single-stranded, 5′-capped mRNA,
encoding for the full-length SARS-CoV-2
spike protein modified with 2 proline
substitutions within the heptad repeat 1
domain (S-2P); S protein composed of
two subunits (S1 and S2) and stabilized
in the pre-fusion conformation by two
amino acid mutations, K986P and V987P;
open reading frame of 3819 nucleotides;
contains 1 mΨ instead of uridine;
undisclosed modification of the 5′ cap

Multidose dispersion for injection with
mRNA encapsulated in lipid
nanoparticles with the following main
components: SM-102, cholesterol,
DSPC, and PEG2000-DMG

−50 ◦C to −15 ◦C

Vaxzevria
AZD1222
COVID-19 Vaccine
(ChAdOx1-S
[recombinant])
AstraZeneca
(Cambridge, UK)

Single recombinant, replication-deficient
chimpanzee adenovirus (ChAdOx1)
vector expressing the S glycoprotein
spike protein of SARS-CoV-2 with a tPA
leader sequence; no mutations
introduced in the expressed SARS-CoV-2
spike protein; non-encapsulated,
icosahedral particles (virions of 80 to
100 nm diameter) containing a single
copy of the double-stranded
DNA genome

Liquid dosage form for i.m. injection 2 ◦C to 8 ◦C

COVID-19 Vaccine
Ad26.COV2.S
Janssen (Beerse,
Belgium)

Recombinant, replication-incompetent
adenovirus serotype 26 (Ad26) encoding
the SARS-CoV-2 spike (S) protein

Liquid suspension containing
2-hydroxypropyl-β-cyclodextrin for
i.m. injection

−25 ◦C to −15 ◦C

COVID-19 Vaccine
(inactivated,
adjuvanted) Valneva
Valneva Austria
GmbH (Wien,
Austria)

Purified, inactivated, and adjuvanted
whole virus SARS-CoV-2 (Italian strain
(LAZ-INMI1-isl/2020, GISAID Accession
number: EPI_ISL_410545)) vaccine grown
on Vero cell culture

Liquid suspension for i.m. injection
adjuvanted with hydrated aluminium
hydroxide and CpG 1018 and
recombinant human albumin produced
in yeast

2 ◦C to 8 ◦C

Nuvaxovid
NVX-CoV2373
COVID-19 vaccine
(recombinant,
adjuvanted)
Novavax CZ (Jevany,
Czechia)

Protein product of a recombinant SARS-
CoV-2 S-gene (Wuhan-Hu-1) encoding
the 1260 amino acid spike protein (the
full-length 1273 amino acid protein
minus the signal peptide); S gene codon
optimized for expression in Spodoptera
frugiperda (Sf9) insect cells; five amino
acid changes introduced, including three
in the S1/S2 furin cleavage site (RRAR to
QQAQ) and two in the HR1 domain

Aqueous buffered dispersion for i.m.
injection, co-formulated with
Matrix-M1 adjuvant

2 ◦C to 8 ◦C

A comparative evaluation of the efficacy in clinical trials of a total of 19 COVID-19
vaccines including mRNA and viral versions has been performed by Fiolet [93]. High
efficacy was observed for all the vaccines against SARS-CoV-2. BNT162b2, mRNA-1273, and
Sputnik V were superior (>90%) compared to the other vaccines. AZD1222, and CoronaVac
were effective in preventing symptomatic COVID-19 and severe infections against the
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Alpha, Beta, Gamma, or Delta variants. Real-life data revealed effectiveness against the
Alpha and Beta variants and reduced efficacy against Delta. A decline was observed for
BNT162b2 and AZD1222 after six months, indicating a need for booster vaccinations. In
another study on the efficacy of different COVID-19 vaccines, Krammer [9] described the
following ranking of neutralizing antibodies elicited by the vaccine candidates: inactivated
and AdV5 vaccine candidates < ChAdOx1 nCoV-19 ≈ mRNA vaccines < recombinant
protein vaccine candidate [9]. Tolerability was excellent. The inflammatory activity of
mRNA vaccines can result in local and systemic inflammation and more autoimmune
responses. Serious adverse event rates were rare including myocarditis and pericarditis,
cytokine release syndrome, and cerebral venous thrombosis [94,95]. Anaphylaxis was
found in 2.5–4.7 cases per million doses, and myocarditis in 3.5 cases per million doses [63].

The lessons to learn from the COVID-19 pandemic regarding mRNA vaccines are
the following. The pandemic was the strongest driver possible for speeding up the de-
velopment, production, and distribution of vaccines by providing more than necessary
funding options and an immense public pressure to find solutions. Furthermore, mRNA is
the ideal candidate for a vaccine since the target antigen is specific for the virus and—so
far—has been rather stable regarding evading mutations. If the antigen should slip away,
the development of new vaccines is rather straightforward and quick to establish from
modifying the mRNA to manufacturing the final product. A still-unresolved issue is the
storage temperature, which means freezing, in the case of Comirnaty at −90 ◦C to −60 ◦C
and for Spikevax at −50 ◦C to −15 ◦C during storage and transport, which makes distri-
bution rather cumbersome, in particular in hot areas such as Africa. Freeze-drying of the
formulation has been tried as alternative; however, there is a danger of decreasing stability
and losing activity [96]. The addition of cryoprotectants, for example, mannitol or sucrose,
does preserve the stability and might be a way out of the dilemma [97].

3. mRNA-Based Cancer Immunotherapy

The objective of cancer immunotherapy is to manipulate the immune system to ef-
fectively eliminate cancer cells [98–100]. Immunotherapy mainly targets immune cells. It
activates the body’s immune system by inhibiting negative immune regulatory factors and
enhancing the ability of immune cells to recognize tumor cell surface antigens to eliminate
tumor cells [101–103]. Cellular immune responses are mediated by T cells; in particular,
CD8+ T cells can eliminate tumor cells. Humoral immune activity is mediated by antibod-
ies, which induce clearance by phagocytic cells. On the other hand, the suppressive tumor
microenvironment characterized by acidity, hypoxia, and an overexpression of enzymes
results in a low immunogenicity of tumor cells and subsequent immunosuppression [104]
by preventing T cell infiltration into cancers and causing T cell exhaustion [3]. According
to Liu [105], immunosuppressive cells in the microenvironment of tumors include myeloid-
derived suppressor cells (MDSCs) [106], tumor-associated macrophages [107], T regulatory
cells [108], pro-tumor N2 neutrophils, and cancer-associated fibroblasts. Remodeling the
microenvironment, promoting immune cell infiltration, as well as inhibiting tumor angio-
genesis and tumor metastasis are imperative for immunotherapy to be effective [109–111].

The first marketed immunotherapies for cancer were recombinant versions of the
cytokine interferon-α (IFNα), which were approved by the FDA in 1986 for hairy cell
leukemia [112,113]. Other FDA-approved immunotherapy drugs are monoclonal antibod-
ies functioning as checkpoint inhibitors such as ipilimumab (melanoma), pembrolizumab
(various tumors), and nivolumab (various tumors); bispecific antibodies such as blinatu-
momab (ALL), which is directed against CD19 and CD3; cytokines such as Intron A which
is recombinant INF α 2a (hairy cell leukemia, melanoma, follicular lymphoma, and Kaposi
sarcoma); engineered T cell therapies, such as tisagenlecleucel (ALL and NHL), which are
CD19-specific CAR T cells; oncolytic viruses such as talimogene laherparepvec (melanoma),
which is genetically modified HSV type 1 designed to replicate within tumors and produce
GM-CSF; and last but not least, the cancer vaccine Sipuleucel-T (prostate cancer), obtained
from a strain of Mycobacterium tuberculosis [114]. However, the therapeutic effect was far
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from satisfying [115]. Potential reasons are the low specificity of TAAs, immune escape of
cancer cells, and immune suppression in the tumor microenvironment [116]. An overview
of therapies is provided in Figure 3.

Figure 3. Major types of cancer immunotherapy with their benefits in green and their downsides in red.

Cancer immunotherapeutics may be divided into four categories: use of recombinant
viruses, tumor and immune cell (mainly dendritic cells)-constructed immunizations, and
peptide and nucleic acid-based (DNA or RNA) vaccines [41,98] as illustrated in Figure 3.
The term “vaccine” is often used instead of immunotherapeutics. Vaccines can be pro-
phylactic or therapeutic. In the treatment of cancer, both prophylactic and therapeutic
treatments have been used. Examples for prophylaxis are HPV (Gardasil-9) [117] leading to
cervical cancer and HBV (HEPLISAV-B) leading to hepatocellular carcinoma. The topic of
this review is focused on mRNA vaccines for the treatment of cancer. All the other therapies
will not be covered, as they have been addressed in various review articles [63,118–121].

mRNA represents the minimal genetic vector and contains only the elements directly
required for the expression of the encoded protein [56]. mRNA vaccines constitute an
excellent platform for immunotherapy for a number of reasons [122–124]. A major point is
the possibility for the simultaneous injection of more than one antigen, resulting in both
immune and cell-mediated immunity, thereby increasing the likelihood of tumor tissue
eradication [125–127].

Antigen selection is the most difficult task in mRNA-based immunotherapy. In the
COVID-19 case, the opposite was the case. The choice was easy and straightforward, at
least at the beginning when the selected antigen, the spike protein of SARS-CoV-2, was
rather stable and more or less exempt from mutations. This changed as soon as the Delta
and Gamma variants appeared. In cancer immunotherapy, choices for antigens are tumor-
associated antigens (TAAs) [128]. The problem is, however, that these structures are also
shared by healthy tissues—although at lower expression levels [129]—and therefore like-
wise become a target of the mRNA administration leading to autoimmunity and resistance.
The ideal antigen should be highly immunogenic, expressed only in cancer cells and not
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or only at very reduced levels in normal tissue, and it should be essential for cancer cell
survival [130]. Tissue-specific antigens (TSAs), therefore, are preferable but much less avail-
able. Examples are PSA and HER2. However, immunotherapies based on these TSAs were
only of limited success [131]. More preferable options are neoantigens, which originate
from non-synonymous mutations in tumor cells and are absent in normal cells [132–135].
Neoantigens are presented by major histocompatibility complex (MHC) molecules.

Furthermore, mRNA vaccines are not constrained by the patient’s HLA class. mRNA
vaccines are preferable over DNA vaccines for several reasons. DNA has to reach the
nucleus of the tumor cells in contrast to mRNA, for which it is sufficient to reach the cytosol.
For mRNA, there is no danger of splice mutations [64,136]. Modifications addressing
efficacy, half-life, etc. are easier to achieve by either modifying the molecule itself, the route
of administration, or the formulation [69,137–141].

The mRNA modifications described in Section 2 to improve stability and efficacy
apply to cancer vaccines as well. Since uridine-rich sequences activate Toll-like recep-
tors [142], which suppress RNA recognition [32], uridine should be replaced by N1-methyl-
pseudouridine (1 mΨ), 5-methyluridine, or 2-thiouridine [33]. Other possible modifications
include the replacement of cytidine with 5-methylcytidine (m5C) and of adenosine with
N1-methyladenosine or N6-methyladenosine. GC-rich mRNA results in several-fold higher
transcription efficacy [143] without decreasing the half-life [31]. Further improvements
include synthetic analogs of the cap and cap enzymes, which are vital for the stability and
maturity of mRNA [42], regulatory elements in the 5′-UTR and 3′-UTR, and the use of
poly(A) tails that screen mRNA [24,25,27,31,144–146].

Despite all these efforts, the tumor is trying to avoid the effect of the treatment
by various methods. Tumor escape mechanisms down-regulate the tumor cell surface
antigens which means reducing the immunogenicity and thereby the efficacy of the mRNA
vaccine [147]. Another action is the up-regulation of immune checkpoint expression on cell
surfaces, for example, PD-L1, which inhibits T lymphocyte activity and induces immune
evasion [148]. Furthermore, immunosuppressive cells, MDSCs, and Tregs can be recruited
into the tumor microenvironment and cytokines can be secreted which inhibit the immune
response [149].

The route of administration of mRNA-based vaccines plays an important role [150].
In addition to intramuscular injection, subcutaneous, intradermal, intranodal [151], and
intratumoral routes have been used [152]. Adjuvants such as protamine, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and interleukin 2 (IL2) cause strong
activation of the innate immune system, which leads to a potent adaptive immune re-
sponse [153].

mRNA vaccines are not immunogenic, so that multiple administrations are possi-
ble [154–156]. However, as already mentioned above, there is one caveat. Formulations
containing pegylated moieties might still run into the problem of pre-existing antibod-
ies [71,156]. This issue had first been detected in animal models leading to modifications of
the formulations [157–159] and verification in animals and in patients [160].

According to Barbier [3], the following objectives should be taken into account in
the development of an mRNA cancer vaccine. A strong cytotoxic CD8+ T cell response
is needed to eradicate cancer cells. The antigens should be selected such that they are
able to induce highly tumor-specific immune responses. Potential targets are TAAs, TSAs,
and neoantigens.
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The major obstacle to this objective is the high variability of antigens across different
individuals [161] or even within the same patient. The heterogeneity of tumors—not only
between patients but also within the same patient when looking at the time axis—is one of
the highest hurdles to treatment success. Most likely, there are not two identical tumors
in the whole patient population of a cancer type. This issue is illustrated in Figure 4. A
possible way out of this dilemma is the selection of more than one antigen within the
mRNA vaccine.

Figure 4. Development of cancer heterogeneity and formation of neoantigens. Treatment with a
drug (A, B, C, D, or E) can result in cure, partial remission, or primary resistance that can progress
to metastases and/or to mutation resulting in new cancer entities presenting neoantigens. Primary

tumor:
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Neoantigens should be the major target whenever possible [135,162]. During carcino-
genesis, malignant cells acquire somatic mutations that lead to the production of protein
sequences not expressed by normal cells [132,163]. These proteins are called neoantigens.
They may be either common across various patients or specific for each patient, which then
can be used to develop personalized treatment [164–166]. To that end, the tumor is biopsied,
and the neoantigens are analyzed by sequencing, encoded in mRNA, and injected into
the patient [3,167–169]. Common or shared neoantigens include, for example, BRAF and
NRAS mutations, which are observed in approx. 50% and 15–25% of melanoma patients,
respectively [170,171]. The advantage of this approach is manifold. First, it is an individual
treatment, which is a major point taking into consideration the heterogeneity of tumors.
Second, mRNA cannot only encode one whole neoantigen but also as many as there are
found in the individual patient [3]. Sahin et al. [172] reported that the first injectable mRNA
cancer vaccine encoding neoantigens for advanced melanoma patients through intranodal
injection achieved potent T cell responses against multiple neoantigens in all patients after
vaccination. However, although personalized cancer vaccines based on neoantigens have
shown encouraging results, a large number of predicted neoantigens tend to trigger very
few actual anti-tumor responses [173]. Table 4 provides a selection of neoantigens.
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Table 4. Selected neoantigens for use in mRNA vaccinations.

Tumor Type Neoantigen Reference

Bladder cancer AP2S1, P3H4, and RAC3 [174]

Melanoma PTPRC, SIGLEC10, CARD11, LILRB1,
and ADAMDEC1 [175]

Colorectal, NSCLC, and
pancreatic cancers KRAS [176]

Esophageal squamous cell
carcinoma (ESCC) NLRC5, FCRL4, TMEM229B, and LCP2 [177]

Soft tissue sarcoma HLTF, ITGA10, PLCG1, and TTC3 [178]

Glioblastoma ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM,
LILRB2, MPZL2, SAA2, and LSP1 [179]

Glioma NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, NR5A2,
ABCB4, ZNF90, ERCC6L, and ZNF813 [180]

Malignant mesothelioma FAM134B, ALDH3A2, SAV1, RORC, and FN1 [181]

Stomach adenocarcinoma ADAMTS18, COL10A1, PPEF1, and STRA6 [182]

Mesothelioma AUNIP, FANCI, LASP1, PSMD8, and XPO5 [183]

Dosing of mRNA can be achieved by titrating up or down, depending on the need,
weight, and disease state of the patient. The duration of action is intrinsically limited by
mRNA degradation, reducing the likelihood of irreversible side effects, and enabling the
treatment of acute indications [184,185].

Formulations for use in cancer treatment are similar to those described for COVID-
19 administration. However, as opposed to the delivery systems of mRNA vaccines for
pathogen infections, therapeutic mRNA vaccines for cancer treatments are required to
generate both robust CD8+ and CD4+ T cell responses [186]. The activation of type I in-
terferon (IFN) proved important in developing a cytotoxic T cell response [187]. Early
on, naked mRNA dissolved in Ringer’s solution at a concentration of 1.0 mg mL−1 was
injected into separate inguinal lymph nodes in thirteen melanoma patients [172]. However,
since naked mRNA cannot enter cell membranes freely but only by cell-mediated endocytic
pathways [56,64–66], preferred formulations not only for the treatment of COVID-19 but
also for cancer therapy are LNPs which can substantially affect intracellular delivery effi-
ciency, determine cell specificity of delivery, and modulate immunogenicity [3]. Ionizable
lipid components of LNPs play a key role in multiple aspects of mRNA delivery, including
particle formation, cellular uptake, and endosomal escape [44,57,188]. Their self-adjuvant
activity, resulting in the stimulation of specific parts of the immune system, is an important
aspect of mRNA LNPs. Examples are the stimulator of IFN-γ (STING) pathway and the
TLR–RIG-I-like receptor (RLR)-independent mediator of innate immune responses [3,189].
Other formulations that have been developed are hybrid lipopolymer shell mRNA nanopar-
ticles or lipoplexes [190]; nanocapsules with flexible polysaccharide shells and hollow cores,
termed a sugar-capsule composed of mannan carrying mRNA [191]; and a nanoparticle
platform, called mRNA Galsomes [192]. Reviews on formulations are available from vari-
ous groups [193–196]. Large-scale production has been established extremely rapidly [88].
Table 5 provides a selection of mRNA vaccines in development.
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Table 5. Selection of mRNAs in development for cancer treatment. FixVac: Non-mutated antigens
shared among patients with a specific cancer type, applicable for almost all types of tumor anti-
gens. iNeST: Targeting 20 neoantigens unique to each patient, applicable for almost all types of
tumor antigens.

Name mRNA Indications Admin. Reference

BNT111
FixVac

4 TAAs: tyrosinase,
NY-ESO-1, MAGE A3, TPTE

Advanced melanoma
Phase I: Lipo-MERIT trial
± checkpoint inhibitor PD1
Phase II: + cemiplimab

Intravenous (i.v.)
liposomal RNA
(RNA-LPX)

[197]
NCT02410733
NCT04526899

BNT112
FixVac

5 prostate cancer-specific
antigens: kallikrein-2,
kallikrein-3, acid
phosphatase prostate,
HOXB13, NK3 homeobox 1

Prostate cancer
Phase I/II + cemiplimab
PRO-MERIT trial

i.v.
RNA-LPX [198] NCT04382898

BNT113
FixVac HPV16-E6 and -E7

HPV16+ head and neck
cancer; AHEAD-MERIT
Phase II + pembrolizumab
HARE-40
Phase I/II

i.v.
RNA-LPX

NCT04534205
NCT03418480

BNT115
W_ova1 Vaccine
FixVac

3 ovarian cancer TAAs
Ovarian cancer
Phase I +
carboplatin/paclitaxel

i.v. NCT04163094

BNT116
FixVac

6 mRNAs each of which
encodes for a different TAA

NSCLC
Phase I/II + cemiplimab
Phase I + cemiplimab or
docetaxel, LuCa-MERIT-1

i.v.
Liposomes

NCT05557591
NCT05142189

BNT121
IVAC MUTANOME Personalized vaccine Metastatic melanoma

Phase I ± RBL001/RBL002 Intranodal [3,172] NCT02035956

BNT122
(RO7198457 autogene
cevumeran) iNeST

20 patient-specific antigens Multiple solid tumors
Phase I i.v. [199] NCT03289962

Melanoma
Phase II + pembrolizumab i.v. NCT03815058

NSCLC (adjuvant)
Phase II + atezolizumab i.v. NCT04267237

CRC
Phase II i.v. NCT04486378

Pancreatic cancer
Phase I + atezolizumab +
mFOLFIRINOX

i.v. NCT04161755

BNT114 + BNT122
Personalized

IVAC_W_bre1_uID and
IVAC_W_bre1_uID/
IVAC_M_uID

Triple Negative Breast
Cancer
TNBC-MERIT

i.v. NCT02316457

SAR441000 (BNT131) IL-12sc, IL-15sushi, GM-CSF,
IFNα

Solid tumors
Phase I ± cemiplimab Intratumoral NCT03871348

BNT141 Encoded antibodies
Multiple solid tumors
Phase I/II ± nab-paclitaxel
and gemcitabine

i.v. NCT04683939

BNT142 Encoded antibodies
Multiple solid CLDN6+

tumors
Phase I/II

i.v. NCT05262530

BNT151 Encoded cytokines:
optimized IL-2

Multiple solid tumors
(optimized IL-2)
Phase I/II

i.v. NCT04455620
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Table 5. Cont.

Name mRNA Indications Admin. Reference

BNT152 Encoded cytokines: IL-2, IL-7
Multiple solid tumors
Phase I/II i.v. NCT04455620

NCT04710043

BNT153 Encoded cytokines: IL-2, IL-7 Multiple solid tumors
Phase I i.v. NCT04710043

mRNA-2416 OX40L Advanced malignancies
Phase I/II ± durvalumab Intratumoral LNP [3] NCT03323398

mRNA-2752 OX40L, IL-23, IL-36γ Advanced malignancies
Phase I/II ± durvalumab

Intratumoral
LNP [200] NCT03739931

mRNA-4157
(V941)

Up to 34 neoantigens,
personalized

High-risk melanoma, solid
tumors
KEYNOTE-603
Phase I + pembrolizumab
KEYNOTE-942
Phase II + pembrolizumab

i.m.
LNP

[201–204]
NCT03313778
NCT03897881

mRNA-4650
NCI-4650

Up to 20 antigens + up to 15
HLA class I candidate
neoantigens

Gastric or rectal cancer
Phase I
Melanoma
Phase I/II

i.m. [204,205]
NCT03480152

mRNA-5671
Merck V941

4 KRAS mutations (G12D,
G13D, G12C, and G12V),
personalized

CRC, NSCLC, pancreatic
adenocarcinoma
Phase I ± pembrolizumab

i.m. [204]
NCT03948763

ECI-006 5 TAAs + 3 DC-activating
antigens

Melanoma
Phase I ± standard
anti-PD-1

Intranodal TriMix [204] NCT03394937

TriMix
3 mRNA encoding CD70,
CD40L, and a constitutively
active form of TLR4

Breast cancer
Phase I Intratumoral NCT03788083

TriMixDC-MEL IPI MAGE-A3, MAGE-C2,
tyrosinase, and gp100

Melanoma
Phase II + ipilimumab Intratumoral [206] NCT01302496

TriMix-DC
Melanoma
Phase I
Phase I/II

i.v. and
intradermal

[207]
NCT01066390

TriMix-DC + TLR-DC
Melanoma
Phase I
Phase I/II

i.v. (mRNA)
intranodal (DCs)

[207]
NCT01530698

TriMix:
DC + mRNA (CD70,
CD40) +
TLR4

Tyrosinase, gp100,
MAGE-A3,
or MAGE-C2

Breast cancer
Phase II + ipilimumab Intratumoral [206,207]

NCT01302496

TriMixDC-MEL:
Autologous
monocyte-derived
mRNA
co-electroporated
DCs + mRNA

CD40L, CD70, caTLR4 Melanoma
Phase I i.v. [208]
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Table 5. Cont.

Name mRNA Indications Admin. Reference

CV8102 TLR7/8, RIG-1 Skin cancer
Phase I

Intradermal
Protamine [209] NCT03291002

TL
Hepatocellular carcinoma
Phase I + IMA970A +
cyclophosphamide

Intradermal
Protamine NCT03203005

CV9103
RNActive®

4 antigens for prostate
cancer: PSA, PSMA, PSCA,
STEAP

Prostate cancer
Phase I/II
Phase I/II

Intradermal
[210,211]
NCT00906243
NCT00831467

CV9104
Mixture of 6 mRNAs,
each encoding 1
antigen

PSA, PSCA, PSMA, STEAP1,
PAP, MUC1

Prostate cancer
Phase I/II
Phase II

Intradermal or
needle-free
injection device
(Tropis®, London,
UK)
Protamine

[210,212]
NCT01817738
NCT02140138

CV9201 5 mRNAs: NY-ESO-1, MAGE
C1, MAGE C2, survivin, TBG

NSCLC
Phase I/II Intradermal [213] NCT00923312

NCT03164772

CV9202
BI 1361849

6 mRNAs encoding 6
different antigens: NY-ESO-1,
MAGE C1, MAGE C2, TPBG,
survivin, MUC1

NSCLC
Phase I + local radiation
Phase I/II ± durvalumab
and tremelimumab

Intradermal
[214–216]
NCT01915524
NCT03164772

MEDI1191 IL-12

Advanced solid tumors,
prostate, breast cancer,
NSCLC
Phase I + durvalumab

Intratumoral LNP [204,217]
NCT03946800

Naked mRNA
Melan-A, MAGE-A1,
MAGE-A3, survivin, GP100,
and tyrosinase

Melanoma
Phase I/II + GM-CSF
Phase I/II + GM-CSF

Intradermal
GM-CSF as
adjuvant

[218]
NCT00204516
NCT00204607

Naked mRNA
MUC1, CEA, Her-2/neu,
telomerase, survivin,
MAGE-A1

Renal cell cancer
Phase I + durvalumab

Intradermal
GM-CSF as
adjuvant

[219]

SW1115C3 Cancer TSAs, personalized Solid tumors
Phase I Subcutaneous [209] NCT05198752

Tumor mRNA + pp65
flLAMP

Glioma, glioblastoma
Phase I

i.v.
RNA-LP (DOTAP
liposome)

NCT04573140

As can be seen from Table 5, the range of indications is rather broad reaching from head
and neck, breast, lung, pancreas, prostate, gastric, and rectal cancer to melanoma. BNT111
encoding the antigens, tyrosinase, NY-ESO-1, MAGE A3, and TPTE, is currently being
investigated in melanoma. A Phase I trial (Lipo-MERIT) using liposomal mRNA, injected
intravenously, in combination with or without the checkpoint inhibitor PD1, showed in an
interim analysis induction of strong CD4 and CD8 T cell immunity against the vaccine anti-
gens [197]. A Phase II trial with BNT111 ± cemiplimab is ongoing. Preliminary data from
a Phase I/II trial of liposomal BNT112 encoding the five prostate cancer-specific antigens,
kallikrein-2, kallikrein-3, acid phosphatase prostate, HOXB13, and NK3 homeobox 1, as
monotherapy or in combination with cemiplimab, in metastatic castration resistant prostate
cancer (mCRPC) showed that all five antigens were immunogenic and responses to each
antigen were observed in at least two patients [198]. BNT121 was studied in melanoma.
Thirteen metastatic patients received repeat administrations in inguinal lymph nodes show-
ing clear immunological responses and some evidence of clinical activity [3]. Data from
a Phase I trial in solid tumors with nine i.v. injections of BNT122 (RO7198457) encoding
twenty patient-specific antigens have been reported by Braiteh [199]. BNT122 induced
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the pulsatile release of pro-inflammatory cytokines with each dose, consistent with the
innate immune agonist activity of the RNA. Neoantigen-specific T cell responses were
observed in peripheral blood in 14/16 patients (87%). Overall, 1 out of 26 patients had
a complete response and 11 had a stable disease. mRNA-2416 is encoding the immune
checkpoint modulator, OX40L, and is administered intratumorally. In a first trial with
41 patients with different malignancies, the compound did not meet the response criteria
for solid tumors. A Phase II study in ovarian cancer in combination with durvalumab
(NCT03323398) is ongoing [3]. mRNA-2752 encoding OX40L, IL-23, and IL-36γ was in-
vestigated in colorectal cancer (NCT03739931). However, in 17 patients there were no
responses [198]. mRNA-4157 is a personalized mRNA encoding up to 34 neoantigens. In a
Phase II solid tumor study, either as monotherapy (N = 16) or in combination with pem-
brolizumab (N = 63), multiple disease-free patients were observed during the study [199].
The safety and immunogenicity of mRNA-4650 encoding-defined neoantigens, mutations
in driver genes, and HLA-I–predicted epitopes were determined in patients with metastatic
gastrointestinal cancer (NCT03480152). CD8+ and CD4+ neoantigen-specific T cells elicited
by the vaccine could be detected. However, since in 3 of 4 patients, no clinical response
was observed, Phase II was not initiated [205]. TriMix, a mixture of monocyte-derived
dendritic cells electroporated with mRNA encoding CD70, CD40 ligand, and constitu-
tively active TLR4, as well as the tumor-associated antigens tyrosinase, gp100, MAGE-A3,
or MAGE-C2 were administered together with ipilimumab in patients with advanced
melanoma [206]. Enzyme-linked immunospot assay responses detected after in vitro T cell
stimulation were shown in 12/15 patients. Vaccination in combination with ipilimumab
resulted in robust CD8+ T cell responses in a meaningful portion of late-stage melanoma
patients, and obviously in patients with a clinical response. TriMixDC-MEL, autologous
monocyte-derived mRNA co-electroporated dendritic cells with mRNA encoding CD40L,
CD70, and caTLR4, was administered i.v. to 21 late-stage melanoma patients. The control
group without treatment comprised 20 patients. One year after randomization, 71% of
patients in the study arm were alive and free of disease compared to 35% in the control
arm [208]. The median time to non-salvageable recurrence was superior in the TriMixDC-
MEL arm (median 8 months (range 1–6) vs. not reached. CV9103 (RNActive®) is based
on four prostate-specific antigens, PSA, PSMA, PSCA, and STEAP and was administered
intradermally in a Phase I trial in prostate cancer patients [210]. In a subsequent Phase II
study, antigen-specific T cells were detected in around 80% of prostate carcinoma patients
independent of their HLA background. A majority of immune responders, around 58%,
reacted against multiple antigens, and the responses were detected against all antigens
independent of their cellular localization. Individual patients were showing prolonged
stabilization of PSA levels after initial rises. One patient had a greater than 85% drop
in his PSA level [211]. CV9104 is a mixture of six mRNAs, each encoding one antigen,
PSA, PSCA, PSMA, STEAP1, PAP, or MUC1. No significant difference in OS was found
between the vaccine and control arm. There were also no significant differences in the rPFS
endpoints and time to symptom progression [212]. CV9201 is an RNActive®-based cancer
immunotherapy encoding five NSCLC antigens, NY-ESO-1, MAGE C1, MAGE C2, survivin,
and TBG. In Phase IIa, antigen-specific immune responses against≥1 antigen were detected
in 63% of evaluable patients after treatment. The frequency of activated IgD CD38 B cells
increased >2-fold. In total, 31% of evaluable patients in Phase IIa had a stable disease
and 69% had a progressive disease [213]. MEDI1191, which is encoding IL-12, showed in
a Phase I study in combination with durvalumab two partial responses in patients who
had received prior immunotherapy and also had PD-L1-negative tumors [217]. The direct
injection in 15 melanoma patients of naked mRNA encoding various antigens has been
described by Weide et al. [218]. An increase in the anti-tumor humoral immune response
was seen in some patients. However, a demonstration of the clinical effectiveness of the
direct injection of copy mRNA for anti-tumor immunotherapy was not shown. Another
Phase I trial in 30 renal cell cancer patients using naked mRNA coding for MUC1, CEA,
Her-2/neu, telomerase, survivin, and MAGE-A1 has been published by Rittig et al. [219].
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The induction of CD4+ and CD8+ T cell responses was shown for several TAAs. In sum-
mary, the clinical efficacy of mRNA vaccines looks like a mixed bag of different outcomes
ranging from no effect to a rather good response, which means that the route to sufficient
efficacy still is rather steep but, nevertheless, nourishes high hopes for the future.

4. Conclusions

The tremendous success and unbelievable speed in developing and bringing to the
market COVID-19 mRNA vaccines has raised high expectations for duplicating this per-
formance in other indications, in particular in cancer therapy. mRNA vaccines are easy to
design and can rapidly be modified if there is a need for change, exhibiting an extremely
broad versatility of building blocks, structural elements, and formulations of the synthetic
mRNA including the targeting of defined cells, duration of expression, and immunological
effects. Dosing can be adjusted according to the individual needs of the patients, and there
is the possibility to individualize treatment by adjusting the selection of antigen(s) to the
specific tumor type of each patient. However, the hurdles in cancer immunotherapy are
much higher than in fighting coronaviruses. In particular, the following issues need to be
addressed: neoantigen use, LNP modifications, combination treatments, immune escape of
cancer, and the therapeutic vs. prophylactic use of mRNA vaccines.

If available, neoantigen-specific vaccines, which are currently considered a top priority
in cancer immunotherapy, result in a potential killing of all cells exhibiting the neoantigen
epitope but leave any other cancer cells unharmed (which might then start or continue mul-
tiplying). As a consequence, the cancer genotype and phenotype changes, and the tumor
will continue growing [220]. Targeting multiple neoantigens within a single vaccine and/or
combining the vaccine with non-mRNA tumor therapies should be targeted to reduce
immune evasion and effectively eliminate tumors. Similarly, the general mechanisms for
the immune escape of cancer, which are much more complex than those for breakthrough
infections of pathogens [221], need to be addressed. Combinations of mRNA vaccines with
agents that can reverse immunosuppression such as immune agonists or cytokines and
compounds that block immune checkpoints have been shown to be more potent than a
single administration of vaccine therapy [41,64,214,222,223]. However, not all patients are
responsive to these treatments [224]. Nevertheless, this approach, and the combination of
one or more non-mRNA agents fighting immune escape with multitarget mRNAs, should
be continued even more extensively in the future.

LNPs are state-of-the-art for mRNA vaccines. However, they bear several pitfalls.
Since they are particles, they can be taken up by macrophages of the liver or the spleen—
irrespective of their administration route—thereby reducing the activity at the intended
site of action, the tumor, and/or leading to side effects at off-target accumulation sites. The
side effects might include toxicity and/or immunogenicity [150,225] and inflammation
exacerbation [226]. The effects depend on various factors including the constituents of
the vaccine carrier and the antigen. For example, cationic/ionizable lipids can induce
inflammation by activating TLR pathways and lead to cell toxicity. On the other hand, this
inflammatory effect is a useful contributor to the adjuvant activity of the LNP. Accordingly,
the positive adjuvant activity and the negative inflammatory action need to be carefully
balanced by selecting an appropriate cationic/ionizable lipid [227]. Other strategies have
been described including the effort to make the particles invisible to macrophages by
modifying their surface with, for example, PEG derivatives. The caveat for this solution has
been illustrated above: the potential immunogenicity of PEG compounds [160]. Yet another
possibility has been published by Dirisala [228], regarding the in situ stealth coating of liver
sinusoids using linear or two-armed PEG–conjugated oligo(L-lysine). Another approach
could be the reduction in the size of the particles. Small particles are no longer taken up
by the liver or the spleen; they keep circulating in the blood, and therefore prolong the
activity, as has been described for blood-pool contrast agents [229]. In summary, the mRNA
vaccine carrier for cancer immunotherapy, in particular LNPs, needs further consideration
to optimize activity and tolerability.
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A further issue that needs to be addressed is the observation that vaccine treatment
may not successfully reach the tumor site, in particular solid tumors [175]. Probably, cancer
vaccine treatments are more suitable for patients with an undisturbed immune system, a
relatively small tumor load, and a greater risk of recurrence.

The focus in cancer immunotherapy should also be directed towards prophylactic
vaccination, which has already been very successful in HPV and HBV leading to cervical
cancer and hepatocellular carcinoma. An extension to other tumor types seems mandatory.
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Abbreviations
1 mΨ N1-methyl-pseudouridine
ADAMDEC1 ADAM like decysin 1
ADAMTSL4 ADAMTS Like 4
ADAMTS18 ADAM metallopeptidase with thrombospondin type 1 motif 18
ALC-0159 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide
ALC-0315 ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate)
ALDH3A2 aldehyde dehydrogenase 3 family member A2
ALL acute lymphocytic leukemia
AP2S1 AP-2 complex subunit sigma
AUNIP aurora kinase A and ninein interacting protein
BRAF B-RAF, B rapidly accelerated fibrosarcoma
caTLR4 constitutively activated TLR4
CARD11 caspase recruitment domain family member 11
CEA carcinoembryonic antigen
CLL chronic lymphocytic leukemia
CMA conditional marketing authorization
COL10A1 collagen type X alpha 1 chain
COL6A1 collagen type VI alpha 1 chain
COVID-19 coronavirus disease 2019
CpG 1018 synthetic oligomer cytosine phospho-guanine
CPI checkpoint inhibitor
CRC colorectal cancer
CTSL cathepsin L
CYTH4 cytohesin 4
DC dendritic cell
DLin-MC3-DMA dilinoleylmethyl-4-dimethylaminobutyrate
DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
dsRNA double-stranded RNA
DOPE 1,2-dioleoyl-sn-glycerol-3phosphoethanolamine
eIF4E eukaryotic translation initiation factor 4E
EGFLAM EGF-like, fibronectin type III and laminin G domains
ESCC esophageal squameous cell carcinoma
FAM134B family with sequence similarity 134, member B
FANCI FA complementation group I
FCRL4 Fc receptor-like 4
flLAMP full-length (fl) lysosomal-associated membrane protein (LAMP)
FN1 fibronectin 1
GM-CSF granulocyte-macrophage colony-stimulating factor
Her-2/neu human epidermal growth factor receptor 2
HLTF helicase-like transcription factor
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HBV Hepatitis B
HOXB13 homeobox B13
HPLC high-pressure liquid chromatography
HPV human papillomavirus
IFN interferon
ITGA10 integrin subunit alpha 10
IVT in vitro transcription
KRAS Kirsten rat sarcoma virus
LASP1 LIM And SH3 protein 1
LCP2 lymphocyte cytosolic protein 2
LILRB1 leukocyte immunoglobulin-like receptor B1
LSP1 lymphocyte-specific protein 1
MAGE-A1 melanoma-associated antigen family A1
MAGE-A3 melanoma antigen family A3
MAGE-C1 melanoma antigen family C1
MAGE-C2 melanoma antigen family C2
MERS Middle East respiratory syndrome
MERS-CoV Middle East respiratory syndrome-related coronavirus
MHC major histocompatibility complex
MPZL2 Myelin protein zero like 2
mRNA messenger ribonucleic acid
MDSC myeloid-derived suppressor cell
MUC1 mucin 1
NHL non-Hodgkin lymphoma
NLRC5 NOD (nucleotide-binding oligomerization)-like receptor family CARD

domain containing 5
NRAS neuroblastoma RAS
NSCLC non-small cell lung cancer
NY-ESO-1 New York esophageal squamous cell carcinoma 1
ORF open reading frame
OX40L OX40 ligand
P3H4 prolyl 3-hydroxylase family member 4
PAP phosphatidate phosphatase
PEG polyethylene glycol
PEG2000-DMG 1,2-Dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000
PKR protein kinase R
PLCG1 phospholipase C gamma 1
Poly(A) multiple adenosine units
PPEF1 protein phosphatase with EF- protein phosphatase with EF-hand domain 1
PPR pentatricopeptide repeat
PSA prostate-specific antigen
PSCA prostate stem cell antigen
PSMA prostate-specific membrane antigen
PSMD8 proteasome 26S subunit, non-ATPase 8
PTPRC protein tyrosine phosphatase receptor type C
RAC3 Rac family small GTPase 3
RBD receptor-binding domain
RIG-I retinoic acid-inducible gene I
RORC RAR-related orphan receptor C
SAA2 serum amyloid A2
saRNA self-amplifying RNA
SARS severe acute respiratory syndrome
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SAV1 salvador family WW domain containing protein 1
SCLC small cell lung cancer
SIGLEC10 sialic acid binding Ig like lectin 10
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SM-102 (heptadecan-9-yl 8-{(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]
amino}octanoate)

STEAP1 six transmembrane epithelial antigen of the prostate 1
STRA6 signaling receptor and transporter of retinol STRA6
taRNA trans-amplifying RNA
TAA tumor-associated antigen
TPBG trophoblast glycoprotein
TLR toll-like receptor
TLR4 toll like receptor 4
TLR7 toll like receptor 7
TMEM229B transmembrane protein 229B
TPTE transmembrane phosphatase with tensin homology
TSA tumor-specific antigen
TTC3 tetratricopeptide repeat domain 3
XPO5 exportin 5
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