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Abstract: Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of
studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism
must take into consideration the environmental effects on the patient in the generation of phenotypes.
Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid
deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric
analysis of changes in cognitive scores and PET features to test for there being multiple AD phe-
notypes. We used a computational method to identify phenotypes in a retrospective cohort study
(532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological
assessments, to develop a novel computational phenotyping method that uses Partial Volume Correc-
tion (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is
based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor
Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven
phenotyping is valid, (2) the different techniques involved in the pipelines produce different re-
sults, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three
phenotypes and permits us to analyze them under epigenetic conditions.

Keywords: PET; Partial Volume Correction (PVC); manifold learning; artificial intelligence; data-driven
AD phenotyping

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated
with cognitive decline and is the most common form of dementia [1]. In a social context
of progressive aging in Western countries, and estimations of the population affected
by AD being above tens of millions worldwide, expected to quadruple over the next
coming decades, it becomes a serious and major public health concern due to its increasing
prevalence, chronicity, caregiver burden, and the high personal and financial costs of care [2].
Moreover, there are currently no treatments for AD that have been proven effective [3], and
consequently, there is an urgent need to develop new strategies for the management of this
new pandemic [1]. On the other hand, in recent years, several trials have demonstrated
the efficacy of new treatments for AD in a well-selected subset of patients [4]. In such
a scenario, precise phenotyping for identifying such patients plays a crucial role. This
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points directly to the AD phenotyping problem that could provide robust mechanisms for
the identification of potential patients who could take advantage of those new treatments.
Recent advances in methodologies for data characterization have introduced the data-
driven phenotyping of AD and related dementias [4]. Such a computational approach
is automated and non-biased, high-throughput, and can handle vast amounts of noisy
healthcare data [5–7]. Phenotyping has been widely used in genetic studies, but in recent
years, the concept has been extended to wider sources of data [8].

During the last decades, an increasing number of studies have confirmed epigenetic
changes in AD, and although it is not clear whether these epigenetic changes are the cause
or result of AD, they pave the way for new medical research worldwide [9]. Consequently,
a robust phenotyping mechanism must take into consideration the environmental effects
on the patient during the process. At the same time, extensive evidence has been produced
that indicates that the pathological signs of AD may be amyloid plaques and neurofibrillary
tangles [10], even if the underlying disease mechanism remains unknown. Imaging the
brain for AD characterization has been applied extensively. The most employed technique
for imaging the amyloid plaques is based on a combination of Positron Emission Tomog-
raphy (PET) and Magnetic Resonance Imaging (MRI) [10]. These point directly to the
purpose of this work: to set up a methodological pipeline to obtain AD phenotypes using
hyperparameter optimization for the different components involved in the pipelines for
the PET imaging of amyloid-β (Aβ) plaques using Partial Volume Correction (PVC) and
manifold learning.

Tracers such as [11C] PiB, [18F-AV45] Florbetapir, and [18F] AV-4517 are used to quan-
tify in vivo fibrillar Aβ decomposition, one of the main indicators of AD pathology [10].
The low spatial resolution of PET images reduces the indicator efficiency [11]. This res-
olution ranges from 5 to 6 mm [12] and it is quantified as Full Width at Half Maximum
(FWHM). Due to this low resolution, the intensity of a particular voxel also reflects the
tracer concentration of the surrounding area, not only the analyzed tissue area, compli-
cating, even more, the quantification of Aβ plaque decomposition. In order to overcome
the mentioned inconveniences of PET, due to low resolution and noise, the PET study
must be merged with an MRI as a source of information that provides the anatomical
information that is missed. Raw PET image-based quantification provides an inaccurate
representation of Aβ deposition without adequate Partial Volume Correction (PVC), but
there is no consensus regarding the correction processing pipeline to use [13]. In addition
to PET studies, MRI has also been extensively employed to assess AD. Even if MRI usage
is limited by factors such as imaging hardware, scanning time, and costs, this imaging
modality plays an important role in clinical and brain exploration [14]. Previous works
have discussed its role in cognitive impairment assessment from different approaches,
such as using functional MRI, acquiring high-resolution MRI images clinically using super-
resolution [15], or how brain MRI to PET synthesis can improve AD diagnosis. In this
paper, T1-weighted Magnetic Resonance Imaging (MRI—T1W) studies are employed to
build a brain atlas for each patient.

At the same time, during the last decades, the scientific community has witnessed
the emergence of artificial intelligence as an invaluable technique and tool to support
research [16]. Within this broad field, manifold learning has emerged as a disciple that
permits one to reduce the magnitude of data. Manifold learning can be thought of as an
attempt to generalize linear frameworks such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) to be sensitive to non-linear structures in data [17].
Many machine learning methods rely on the implicit assumption that data has some
inherent structure. Manifold learning assumes that the observed data are found in a low-
dimensional manifold embedded in a higher-dimensional space [17]. This assumption
states that the shape of the concerned data is relatively simple.

During the last years, a lot of epidemiological research [18] has been suggesting
that the simultaneous interactions of different lifestyle habits and environmental factors
with Apolipoprotein E (APOE) alleles affect the risk of AD development. In the list of
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suggested epigenetic conditions repeated in the studies, the practice of physical exercise,
nutritional habits, with a special focus on fat intake and ketogenic diets, coffee consumption,
alcohol intake, education level, traumatic brain injury, cigarette smoking, and exposure to
sunlight and pesticides have been gaining increasing attention. Even if the current level of
evidence shows that younger APOE4 carriers in early stages would derive more benefit
from preventive lifestyle interventions than older APOE4 noncarriers in later stages of
dementia who may show the most pronounced effects, it is not robust. The current weak
evidence or inconsistency could be caused by some confounding factors, such as sample
sizes, the methodology used, and the demographic characteristics of the participants,
including age and gender, potential related exposures, and comorbidities.

In this paper, a new methodology to identify AD phenotypes by selecting the best
phenotyping pipeline (a combination of PVC techniques for feature selection on PET
images and manifold learning for dimensionality reduction) under several epidemiological
conditions, is presented. Section 2 presents the required background for the work, namely
PVC methods, the dataset, the manifold learning approaches, the k-means clustering
algorithm, and the set of software packages. Section 3 presents the proposed methodology.
The results of applying the methodology to a cohort of patients derived from the OASIS-3
dataset are provided in Section 4. The discussion and conclusion are provided in the
final section.

2. Background

This section covers the fundamental background descriptions required for the imple-
mentation of the proposed methodology, namely the dataset employed in the analysis, the
fundamentals of PVC methods, the fundamentals of the manifold techniques and clustering
techniques employed in this work, and the set of software packages that permits us to run
the experiments presented in the results.

2.1. Dataset (OASIS-3)

In this work, the Open Access Series of Imaging Studies 3 (OASIS-3) [19] was used. It
includes MRI, PET, and clinical data from 1378 subjects ranging from 42 to 95 years old. It
was developed by Washington University Knight Alzheimer Disease Research Center over
30 years. There are several kinds of subjects: cognitively normal adults (755) and subjects
with cognitive issues (662). MRI and PET images are used to analyze the chronological
evolution over several tissue types and to improve aging models and cognitive impairment.
There are 2157 PET images, available with the post-processed files generated using the PET
Unified Pipeline (PUP), and 2842 MRIs available in OASIS-3. Two radiopharmaceuticals
were used to investigate Aβ deposits in the brain [19]: Pittsburgh Compound B ([11C] PIB
or PIB) and Florbetapir [18F] (18F-AV-45 or AV45).

Clinical and cognitive assessments were completed in accordance with the National
Alzheimer Coordinating Center Uniform Dataset (UDS) allowing for their combination
with multiple AD open data projects. UDS assessments include family history of AD,
medical history, physical examination, and neurological evaluation [20,21].

2.2. Partial Volume Correction (PVC) Methods

PET imaging suffers from deteriorating factors, such as low spatial resolution, poor
signal-to-noise, and count-dependent bias. This imaging technique is relatively blurry
compared to other imaging techniques, such as CT and MRI. Due to these factors, when the
radioactivity within a region is measured, it results in distortion in the quantification of Aβ

plaques. This distortion in the quantification of small-volume concentrations occurs due to
a phenomenon known as the Partial Volume Effect (PVE). PVE causes the intensity of a
particular voxel to reflect the concentration of the tracer of the tissue within that voxel and
also of the surrounding area. The correction of this phenomenon is important because it
can be a noise factor in between-subject or longitudinal clinical studies. Different correction
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techniques have been developed to mitigate the PVE, but none of them were optimal in all
imaging scenarios [10].

Since the first attempts, back in the seventies of last century, to solve the inherent
drawbacks of PET, a wide range of PVC techniques have been proposed for the correction of
PVE in PET, with a special peak in the nineties of the last century. Figure 1 shows a historical
schema of the development of these techniques over the years. In this work, two of these
algorithms are used: the Müller-Gärtner (MG) method [22] and the Geometric Transfer
Matrix (GTM) method, also called the Regional Spread Function (RSF) [23]. Meltzer’s
method uses Partial Volume Correction with Two-Components (PVC2C), which defines
two categories of tissue (brain and non-brain); but it corrects the PVE in non-brain tissue
only. The MG PVC uses three components: gray matter, white matter, and cerebrospinal
fluid. This method compensates for the effects caused by PVE in gray matter. The RSF
method corrects the PVE between all brain regions and recovers the true activity for
multiple regions [23]. It is based on a PVC algorithm that uses volumetric anatomical data
from an MRI. The whole-body concentration of the injected radioactivity and the estimated
regional Standard Uptake Value Ratio (SUVR) allow us to investigate the impact of PVC on
the PET image quality of Aβ plaques [24]. There is still an open discussion of which is the
best approach or not applying PVC corrections at all [10,13].
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Figure 1. Historic chronogram of the presentation of several Partial Volume Correction (PVC)
methods throughout the last decades of the last century.

2.3. Dimensionality Reduction and Manifold Learning

Dimensionality reduction methods consist of mapping a dataset to a lower-dimensional
subspace, obtained from the original space. Such methods allow us to express the data
using fewer parameters, at a lower cost, which makes them very useful in machine learn-
ing [25]. Reducing high-dimensional datasets to two or three dimensions makes them
much easier to analyze and visualize, as the data can be plotted and show the structure
of the data in a more intuitive way. Another way to understand manifold learning is as a
generalization of linear frameworks, such as PCA or LDA, but sensitive to non-linear data.

Although there are supervised manifold learning techniques, the most common prob-
lem is unsupervised, as it exploits the information in the data without any given labels.

There are several computational approaches and algorithms available for manifold
learning. Some of the most popular implementations employed by the research community
are described in the next subsections.

2.3.1. t-Stochastic Neighbor Embedding (t-SNE)

t-SNE is a dimension reduction technique used for the exploitation of large dimen-
sional data that has been developed in 2008 by Hinton and Maaten [26]. As in the case
of linear methods, the purpose is to determine one space with a lower dimension while
keeping the same distance between the points. The technique is a variation of Stochastic
Neighbor Embedding [27], based on creating a probability distribution that represents the
similarities between neighbors in a high-dimensional space and in a lower-dimensional
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space. By similarity, it converts the distances into probabilities. It is divided into three
main steps:

First step: calculate the similarities of points in the initial high-dimensional space.
For each point xi, a Gaussian distribution around this point is produced. Then measure,
for each point xj (i different from j), the density under this previously defined Gaussian
distribution. Finally, normalize each of the points. Thus, a list of observed conditional
probabilities is obtained as:

pij =

exp
(
−||xi−xj||2

2σ2

)
∑k 6=l exp

(
−||xk−xl ||2

2σ2

) (1)

Standard deviation s is defined by a value called perplexity that corresponds to the
number of neighbors around each point. This value is set previously and allows for
estimating the standard deviation of the Gaussian distributions defined for each point xi.
The greater the perplexity, the greater the variation.

Second step: distribute the points randomly in the low-dimensional space. The rest is
similar to the first step, calculating the similarities of the points in the newly created space,
but using a t-Student distribution and not a Gaussian one. In the same way, it is possible to
obtain a list of probabilities as:

qij =
(1 +

∣∣∣∣yi − yj
∣∣∣∣2)−1

∑k 6=l (1 + ||yk − yl ||2)
−1 (2)

Third step: in order to faithfully represent the points in the low-dimensional space,
the similarity measures in both spaces should ideally match. So, we need to compare
the similarities of the points in both spaces using the Kullback–Leibler (KL) distance. KL
distance will be minimized by gradient descent to obtain the optimal point yi in a space of
lower dimensions. This is equivalent to minimizing the difference between the probability
distributions between the original space and the low-dimensional space.

2.3.2. Isometric Mapping Embedding (ISOMAP)

Multidimensional Scaling (MDS) is the classical technique used to exploit the local lin-
earity of manifolds and create a mapping that preserves local neighborhoods at each point
of the underlying manifold. The input data used in manifold learning are sampled from a
low-dimensional manifold that is embedded within a higher-dimensional vector space.

ISOMAP [28] is based on the Floyd–Warshall algorithm and MDS. It takes a matrix of
pair-wise distances between points, assuming only neighboring points know the distances.
Then, it computes the pair-wise distances between the remaining points by using the
Floyd–Warshall algorithm, estimating the matrix of pair-wise geodesic distances between
all the points. Afterward, ISOMAP reduces the dimension of the points’ positions using
classic MDS.

2.3.3. Uniform Manifold Approximation and Project Embedding (UMAP)

UMAP is a novel algorithm for dimension reduction that can be used for visualization
and general non-linear dimension reduction [29]. UMAP first builds a high-dimensional
representation of the data after deriving a lower-dimensional graph and optimizing the
similarity in their structures. To determine connectedness, the algorithm extends a radius
from each point and, when those radii overlap, UMAP connects the points. Setting the
value of the radius is a critical decision, as too-low values would lead to small, isolated
clusters, whereas high values would connect everything. To overcome this issue, UMAP
chooses the radius locally, based on the distance between each point and its nth nearest
neighbors [24].
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2.4. Clustering Technique, k-Means

k-means is an unsupervised classification (clustering) algorithm that groups objects
into k groups based on their common mean values [30]. The grouping is performed by
minimizing the sum of distances between each object and the centroid of its group or cluster,
using very often the quadratic distance for this purpose. Computationally, the algorithm
sets the position of the centroid of each group, taking as the new centroid the position of
the average of the objects belonging to said group. This means solving an optimization
problem, being the function to optimize the sum of the squared distances of each object to
the centroid of its cluster. Objects are represented as vectors on a D-dimensional hyperspace
(x1, x2, . . . , xn) and the k-means algorithm identifies k groups where the sum of distances
of the objects is minimized, within each group S = {S1, S2, . . . , Sk}, to its centroid. The
problem can be formulated as follows:

min
S E(µi) =

min
S

k

∑
i=1

∑
xjεSi

∣∣∣∣xj − µi
∣∣∣∣2 (3)

where S is the dataset, whose elements are the objects xj represented by vectors of features

and the operator
∣∣∣∣xj − µi

∣∣∣∣2 the Euclidean distance, minimizing the sum of the square
of the distances between each data point and its centroid within a cluster. The algorithm
provides k-clusters each with a centroid µi.

k-means also provides a way to measure the internal cohesion within clusters and the
external separation between clusters. Those measurements are based on an intra-cluster
variance and an inter-cluster variance. The inter-cluster WCSS (Within Clusters Sum of
Squares) accounts for the total variations within a cluster.

WCSS =
k

∑
i=1

∑
xjεSi

∣∣∣∣xj − µi
∣∣∣∣2 (4)

µi is the centroid of each cluster; in other words, the minimum value found in the
minimization process of Equation (3).

An inter-cluster, the sum of squares between (SSB), could be used to quantify external
separation. It is defined as the sum of the squared distance between the global average
point and each centroid. The bigger the value, the better the clustering:

SSB =
k

∑
i=1
||µi − ga||2 (5)

where ga is the global average coordinates of the whole dataset. Both Equations (4) and (5)
allow us to analyze the variability in terms of k values, elbow curves, and silhouette plots,
which display a measure of how close each point in one cluster is to points in the neighbor-
ing clusters, assessing visually the number of clusters.

2.5. Software Packages and Tools

To process the images, as described in Section 2.2, and obtain the derived features
employed on the method described in this paper, a set of software packages are required;
namely, PET images were preprocessed using the PET Unified Pipeline [31]. Single MRI—
T1W images were processed through the software Freesurfer v7.2.0 [32], a package that
permits one to provide volumetric MRI data and segmentations maps. These maps are used
to determine cortical volumes or Regions of Interest (ROIs) for PET imaging. The Python
3.9 library employed for producing the graphs was Matplotlib [33] and for producing the
manifold and k-means codes was Scikit-learn [34].
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3. Method

This paper presents a new methodology for the identification of AD phenotypes
by analyzing the PET images of AD patients under epigenetic conditions. The method
is based on the integration of two main parts, in a single phenotyping pipeline (PPi),
and its optimization. Pipelines include a combination of several PVC approaches for
extracting SUVR features from PET images and several manifold learning approaches for
dimensionality reduction. The overall schema of the method is provided in Figure 2, which
presents those main blocks.
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Figure 2. General schema for the method presented in this paper. Two different imaging modalities
Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are employed to
extract the set of 166 Regions of Interest (ROIs). The ROIs are dimensionality-reduced by different
methods (colored in green, blue, and purple lines in the schema), which will permit them to be
clustered in the final stage to extract the phenotypes.

The first part deals with the obtention of different PET-corrected studies. In our case,
we propose to use three different methods, namely RSF, PVC2C, and noPVC (not applying
PVC), all described in Section 2.2, and the extraction of regional features from the corrected
images using the MRI-derived Desikan–Killiany atlas. This part is carefully described in
Section 3.1. After PVC, PET images are processed to extract the set of features (SUVR values
for each Region of Interest (ROI)), producing information that will be provided to the
next block of manifold learning in the second part of the pipeline. That part will produce
a nonlinear reduction in dimensionality, using three different state-of-the-art methods,
namely t-SNE, UMAP, and ISOMAP (all described above, in Section 2.3). This process
will be better described in Section 3.2. Finally, all the results generated by the different
phenotyping pipelines will be gathered on a common evaluation table by using the k-means
algorithm, which permits us to merge the outputs in a unified way, and consequently
compare the results from the mix of different combined approaches, providing the best set
of clusters, identified as phenotypes.

To simplify the method explanation, PPi-s are named PP1 (combining PVC2C and
UMAP), PP2 (combining RSF and UMAP), PP3 (combining noPVC and UMAP), PP4
(combining PVC2C and t-SNE), PP5 (combining RSF and t-SNE), PP6 (combining noPVC
and t-SNE), PP7 (combining PVC2C and ISOMAP); PP8 (combining RSF and ISOMAP),
and PP9 (combining noPVC and ISOMAP).
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3.1. Obtention of Imaging Derived Features after PVC

This part of the method deals with the obtention of the different SUVR values, obtained
for all ROIs in the images by applying several PVC methods. The imaging pipeline has
a double path, one for processing the PET studies and another for the MRI studies. The
MRI path is devoted to obtaining the ROI to compute the SUVR values on the PET after
PVC correction. For this purpose, the Desikan–Killiany atlas [35] was employed, Figure 3
shows the different stages of the MRI process [32]. The atlas color labels [35] are shown in
Figure 3c,d.
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Figure 3. Coronal image of a patient from the study. (a) T1-weighted Magnetic Resonance Imaging
(MRI—T1W). (b) MRI output after processing stages: Motion Correction and Conform, Intensity
Normalization, Remove Neck and Skull Strip. (c) MRI output after applying Talairach transform
computation and Cortical Parcellation Desikan-Killiany, an atlas that will permit us to obtain the
values of Standard Uptake Value Ratio (SUVR) on the same patient from the PET image. (d) Three-
dimensional reconstruction of the atlas from (c) using the color map of Desikan-Killiany atlas.

In the other imaging path, PET images are corrected to achieve a common spatial
resolution of 8 mm to minimize inter-scanner differences [36]. Even if the methodology
is general and several methods could be considered, this work employs three of them.
The first method is the PVC2C approach [37,38], which is the most widely represented
in the amyloid imaging literature. The second method is based on the calculation of the
RSF [23,39], which has also been widely applied in PET image analysis. The third approach
is based on not applying PVC to the PET study, as in the literature there is no consensus
regarding whether PVC is necessary or not for quantitative PET analysis [10,13]. Figure 4
shows the differences that PVC methods introduce in the PET image studies.
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Figure 4. PET images of the same patient as Figure 3. (a) PET image before applying Partial Volume
Correction (PVC). In axial, sagittal, and coronal planes and 3D reconstruction, clockwise. (b) Result
of applying Partial Volume Correction with Two-Components (PVC2C) to the PET study in (a),
displaying the same planes in the same order.
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The vector–gradient algorithm [40] is used for symmetrical PET-MR registration. This
method consists of an average transformation for PET > MR, and the inverse of MR > PET
was used as the final transformation matrix. The Freesurfer software provides regional
PET segmentation using wmparc.mgz for the definition of the regions. Figure 5 shows the
result of the analyzed region. This method generates two reports: regional measurements
and SUVR images.
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Figure 5. MRI-PET image registration after PVC of the same patient from Figures 3 and 4, which will
permit us to obtain the values of SUVR for the same patient, where different colors identify different
MRI brain regions.

The output of this stage is an array of 166 SUVR values. This array of values can be
obtained for each patient study and for each correction method. This huge amount of data
requires an approach to reduce the dimensionality and make it affordable to manage.

3.2. Obtention of Manifold Derived Clusters

The second stage of the pipeline is devoted to reducing the dataset dimensions and
merging it into the optimal set of clusters. It has two main parts. The first part of the
process deals with dimension reduction using the manifold methods. Those methods, as
explained above in Section 2.3, use an implicit parameter (D), which is the final dimension
of the dataset in the manifold. D has usually a very low value, and is much lower than the
original dimension; in this work, the value of D will be determined heuristically, selecting
the lowest value that permits us to construct the pipelines while maximizing the silhouette
coefficient. The whole dataset of images is processed using each pipeline. After reducing
the dimensionality of data, in the second part of this stage, data will be clustered to identify
the phenotypes using k-means. k-means uses an implicit variable of the number of clusters
to be identified (k in Equation (3)). After obtaining the clusters for each PPi, the metrics
above-mentioned of the intra- and extra-cluster separability, as well as the p-values between
clusters, are obtained. Data in this new format will permit us to identify the best number
of clusters, using the elbow method and silhouette analysis. The elbow method [41] is the
most popular for finding the optimal number of clusters; this method uses WCSS and SSB
scores, which account for the total variations within a cluster using Equations (4) and (5).

4. Results

In order to evaluate the results that produce each PPi on the Alzheimer’s level in
PET studies under epigenetic conditions, several experiments have been conducted. To
assess statistically the evaluation, the OASIS-3 dataset (described in Section 2.1) was
employed. A cohort of patients from OASIS-3 has been selected to fulfill the requirements
of this work. A sub-dataset was extracted by selecting the cases with complete structural
MRI—T1W, Aβ-PET scans, and clinical variables, which accounts for a total of 532 patients.
The radiotracer injected for the PET image was the 18F-AV-45 for Aβ tracing. Statistics of
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the final cohort are provided in Table 1. The difference between the total number of cases
and the sum of determinations of the variables is due to the unknown determinations of
some patients. Statistical values are obtained only for the known values and no imputation
methods are employed.

Table 1. Description of the OASIS-3 cohort of 532 sub-datasets included in this work.

Basic Demographics Parameter Statistical Description

Gender
Female 301
Male 216

APOE
Low risk 316

Moderate risk 166
High risk 21

CDR

0 423
0.5 67
1 6
2 2

TOBAC
Yes 194
No 244

Hand
Left 37
right 470

Ambidextrous 10

Education years Mean ± std 16.077 ± 2.511
APOE genotype: for E2/E2, E2/E3, E3/E3—low risk; for E2/E4, E3/E4—medium risk; for E4/E4—high risk.
CDR: Dementia status was assessed for the UDS using the Clinical Dementia Rating17 (CDR) Scale, with CDR
0 indicating normal cognitive function; CDR 0.5: very mild impairment, questionable dementia; CDR 1: mild
cognitive impairment; CDR 2: moderate dementia; CDR 3: severe cognitive impairment [21]. TOBAC: UDS
question, cigarette-smoking history—has the subject smoked more than 100 cigarettes in his/her life?

4.1. Hyperparameter Selection

The first set of experiments was conducted to identify the values of the hyperparameter
that affects all pipelines (PPi), namely the final dimension of manifold (D) and the number of
clusters in k-means (k). Concerning D, several analyses have been conducted to heuristically
identify the optimal value. Using the PP5 and k = 3, the processing pipeline was applied for
several D values, computing the averaged silhouette coefficients. As for D = 3, the average
silhouette score is 0.3217. The result is worse than the average silhouette score of 0.563
obtained for D = 2, and the purpose of this stage is to reduce as much as possible while
keeping the information to solve the problem (high values of D make data unmanageable).
In the remainder of this work, pipelines were implemented considering D = 2. Concerning
the determination of k, the nine PPi have been clustered using several values of k (in the
range of 1–20). This permits us to produce the value of WCSS using Equation (4) and SSB
using Equation (5) for each possible value of k (elbow analysis). Figure 6 presents the results
of applying the silhouette analysis of the data for D = 2.

In this work, k-means was implemented using the classical Lloyd algorithm, using
the following parameters: 10 as the number of times to run with different centroid seeds,
200 as the maximum number of iterations for a single run, and a value equal to 0.0001 for
the relative tolerance with regards to the Frobenius norm of the difference in the cluster
centers of two consecutive iterations to declare convergence. Figure 7 presents the curves
for such analysis, where it can be seen that k = 3 is the optimal value of this parameter
because the average silhouette score decreases as k increases. Such a value is the largest
when k = 1.

To study the inter-cluster distances, we used silhouette analysis. Figure 6 presents
the results of such an analysis for PP5, showing how close each cluster is to its neighbors
and allowing a visual evaluation of parameters such as the number of clusters. In Figure 7,
we can observe an elbow shape, where the graph has a sudden change to an asymptotic
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behavior on the X-axis. The k value in the elbow is the optimal k value, i.e., the optimal
number of clusters, k = 3 in this case.
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Figure 7. Values of score versus the number of clusters, using k-means for the elbow method. (a) In-
creasing elbow curves for the nine phenotyping pipeline (PPi) using SSB Equation (5). (b) Decreasing
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4.2. Aβ—PET Phenotypes Identification

The second set of experiments was conducted to evaluate the effects that each PPi
produces on the emerging phenotypes. Using the image studies of those patients, as
described above in Section 3.1, the features derived from the nine PPi (RSF, PVC2C, and
noPVC) have been applied to the whole set of 532 PET studies from 487 patients. Figure 4
shows the output for the three approaches of PVC for one of the patients included in
the study. In this work, we propose using 166 ROIs, as explained above. Different PVC
methods provide different values of SUVR. Figure 8 presents the results of applying the
methods employed in this work, RSF (in red), PVC2C (in blue), and noPVC (in purple), to
the dataset above described for the 166 ROIs. In this figure, it is clear that the approaches
have different results for all the ROIs. Consequently, choosing a correction method will
have consequences for the derived phenotypes.
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The results of applying the PVC methods provide a triple matrix file, with 166 rows and
532 columns, for the SUVR values on the 166 regions of each patient. This high-dimensional
set will enter the manifold learning block using the pipeline described in Section 3.2, giving
a result of the reduction in a two-dimensional (k = 2) set of variables that will be grouped
into three clusters using k-means (k = 3), as explained in the previous section. After
the dataset is processed using all pipelines (PPi), the next step is to identify the clusters
in the data and consequently the phenotypes, named Phenotype1 (phen1), Phenotype2
(phen2) and Phenotype3 (phen3), using the methodology described in Section 3.2. In this
way, metrics based on mathematical measurements can be easily obtained. The metrics
employed for measuring the clinical variables of the phenotypes in this work were p-values
of the different clusters that emerged (phen1 vs. phen2, phen2 vs. phen3, and phen1 vs.
phen3), as well as the inter- and intra-cluster variance, as explained in Section 2.4, using
Equations (4) and (5). All these data are provided in Table 2 for the nine PPi.

The results of this process are presented graphically in Figure 9, which presents the
emerging clusters (now understood as phenotypes) of several manifold methods applied
to the three PVC methods. In those nine scatter plots (a to i), the abscissa is the first
component of the manifold reduction, and the ordinate is the second component of the
manifold decomposition. In those images, the axis is different for each pipeline, because
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the results take values on different ranges for each method. According to the clustering
results and the optimized cluster number, three clusters were identified.

Table 2. Values of cognitive impairment obtained for each cluster in terms of the MMSE.

MMSE p-Value

PPi Cluster1 Cluster2 Cluster3 WCSS SSB Cluster
1 vs. 2

Cluster
1 vs. 3

Cluster
2 vs. 3

PP1 29.04 ± 0.89 28.27 ± 1.72 29.15 ± 0.86 26.364 18.430 0.021 0.118 0.000
PP2 29.05 ± 0.88 28.39 ± 1.45 29.13 ± 0.87 27.187 19.568 0.021 0.121 0.013
PP3 29.05 ± 0.81 28.39 ± 1.45 29.12 ± 0.84 27.337 18.112 0.074 0.143 0.011
PP4 28.91 ± 1.10 28.89 ± 1.16 28.96 ± 1.11 26.223 18.278 0.047 0.113 0.002
PP5 28.97 ± 0.81 28.28 ± 1.40 29.31 ± 0.59 26.029 19.341 0.012 0.093 0.000
PP6 28.87 ± 1.11 28.42 ± 1.40 29.29 ± 0.64 27.822 18.511 0.016 0.091 0.000
PP7 28.91 ± 1.75 28.90 ± 1.77 28.98 ± 1.38 31.796 15.180 0.129 0.106 0.043
PP8 28.91 ± 1.67 28.92 ± 1.61 28.98 ± 1.64 32.027 15.013 0.091 0.176 0.066
PP9 29.12 ± 1.24 28.39 ± 2.45 29.05 ± 1.31 33.011 14.372 0.089 0.192 0.073

Once the three clusters are identified for all PPi, the values of cognitive impairment
were calculated by computing the mean value and the standard deviation of patients’
Mini-Mental State Examination (MMSE) included in each cluster, allowing the phenotype
identification and characterization. The MMSE measures general cognitive status, ranging
from 0 (severe impairment) to 30 (no impairment), based on a 30-point questionnaire
that is used extensively in clinical and research settings [19]. The results for each PPi
are provided in Table 2. Furthermore, this table also provides the p-value of the inter-
phenotype comparisons, using the one-way analysis of variance (ANOVA) test, as well as
the intra-cluster and inter-cluster measurements, using Equations (4) and (5).

In this way, the method permits us to identify the clearest phenotypes as the best-
separated clusters. From those results, we can deduce that the best results are from
line5, generated by PP5 (based on the t-SNE and RSF methods), providing values of
WCSS = 26.029 and SSB = 19.341 and intra-cluster p-values of 0.012, 0.093, and 0.000,
respectively, providing the total lowest values on average. More detailed results of pipeline
five are provided in Table 3. Table 3 provides the statistical values using the clinical
variables for the three phenotypes that have emerged in the previous step that identify PP5.

Analyzing the results in the table, considering gender, phen1 is well balanced, while
in phen2 and phen3 the number of females is almost double that of men. Concerning age,
the phenotypes are clearly separate: phen3 is the youngest at about 62.1 years old, phen1 is
in the middle with a mean of 67.3 years, and phen2 is clearly different and the oldest group
at 73.5 years; all values are means. Concerning cognitive impairment, the MMSE shows
lower values correlated with age, moving from a nominal value of 29.3 in phen3, ranging
to 28.280 in phen2, the oldest phenotype.

4.3. Epigenetic Analysis

In order to explore the way in which the proposed methodology can be employed
to analyze how environmental conditions affect the emerging phenotypes, the above-
identified phenotyping pipeline PP5 has been applied, repeating the analysis process
with different environmental variables—such as the number of education years; TOBAC,
measuring the binary smoking condition as cigarette smoking history with respect to
the subject smoking more than 100 cigarettes in his/her life; DEPOTHR, measuring the
occurrence of depression or other episodes during the previous 2 years; and alcohol abuse,
as clinically significant impairment over a 12-month period manifesting in work, driving,
legal, or social spheres—confronted with APOE. Results are provided in Table 4.

Education year is presented as the mean and standard deviation; TOBAC is presented
as a binary condition. DEPOTHR: Depression or other episodes prior to 2 years. APOE
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genotype—low risk: E2/E2, E2/E3, E3/E3; medium risk: E2/E4, E3/E4; high risk: E4/E4.
Substance abuse: alcohol.
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Figure 9. Graphical display of the 27 possible phenotypes that have emerged from the methodology
proposed in this work, applied to the OASIS-3 dataset using 9 PPis and cross-correlated hyperpa-
rameters. The upper 3 graphs in a horizontal line (a–c) were obtained using UMAP; the three in the
middle (d–f) were produced using t-SNE; and the three at the bottom (g–i) were produced using
ISOMAP. The column on the left is for RSF, the column in the middle is for PVC2C, and the column
on the right is for the noPVC correction. Cluster 1 is in red, cluster 2 is in green, and cluster 3 is in
blue in all plots.

The figures in the table reveal that the environmental effect is very different on the
phenotypes. Particularly, we can see that three phenotypes are characterized differently
than in the previous subsection, which indicates that including epigenetic conditions in
the analysis provides different results, as should be supposed. The level of education, in
terms of the number of education years, is similar, with mean values ranging from 15.898
to 16.247, phen3 being the group with the highest level of education and lowest variability
within the group. The smoking condition is very different, where in phen2 there is a higher
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proportion of smokers (more smokers than nonsmokers) at 58/38, and in phen1 and phen3
the proportion is 73/88 and 73/107, respectively. The psychiatric condition is affected
differently; remarkably, phen3 is the group that has a smaller number of cases, 5 in 183,
doubling the ratio with the other groups. Concerning alcohol consumption, the first remark
is on the low value of cases; in this cohort study only a few cases are present—14 subjects
in total—and, consequently, conclusions are difficult to extract.

Table 3. Comparison of demographics and relevant clinical variables among the three Aβ-PET
phenotypes that emerged from PP5.

Clinical Variable Parameter Phenotype1 Phenotype2 Phenotype3

Gender
Female 96 70 136
Male 98 48 70

Age Mean ± std 67.30 ± 8.40 73.52 ± 5.83 62.12 ± 8.90

MMSE Mean ± std 28.97 ± 0.81 28.28 ± 1.40 29.31 ± 0.59

Diabetes
Yes 16 93 12
No 149 5 169

CDR

0 158 77 188
0.5 26 24 17
1 2 3 1
2 0 2 0

Gender is provided as the number of males and females. Age and MMSE are shown as the mean and standard
deviation. Diabetes is shown as a binary condition. CDR: Clinical Dementia Rating is shown as 0: no dementia;
0.5: questionable dementia; 1: mild cognitive impairment; 2: moderate cognitive impairment; and 3: severe
cognitive impairment.

Table 4. Compilation of the total number of subjects in relation to some relevant epigenetic variables
among the three Aβ-PET phenotypes determined for PP5.

Clinical Variable Parameter Phenotype1 Phenotipe2 Phenotype3

Education_years mean ± std 16.010 ± 2.400 15.898 ± 2.553 16.247 ± 1.589

TOBAC
Yes 73 58 73
No 88 38 107

DEPOTHR
Yes 24 19 5
No 103 67 178

APOE
Low risk 134 60 122

Medium risk 48 47 71
High risk 5 11 5

Alcohol
Yes 3 7 4
No 58 62 80

Upon obtaining the results, the “violin” plots can be employed to visually explore the
different phenotypes. The results are presented in Figure 10. It is important to remark that,
in this study, except for numerical values, all results are categorical and do not permit us to
extract useful insights. The results of this analysis allow us to identify the best choice for
the set of combinations proposed in the methodology.

From Figure 10, it is possible to conclude that phen2 presents higher values (mean) for
age and years of smoking, while phen3 is the one with the lowest values for these parame-
ters. Regarding the MMSE and the years of study, phen3 has higher values, while phen2
presents the lowest values. Phen1 presents intermediate values compared with phen2 and
phen3. Therefore, phen3 could be associated with cognitively healthy people, phen1 with
people with questionable dementia, and phen3 with mild or higher cognitive impairment.
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5. Discussion and Conclusions

The objective of this study was to develop and validate a phenotyping method to
test the hypothesis that there are identifiable AD phenotypes that are based on hidden
patterns of the SUVR values of the PET studies of cognitive functions and epigenetic condi-
tions. The presented phenotyping method uses pipelines of PVC and manifold methods.
The proposed methodology uses both neuroradiological features from imaging and neu-
ropsychological features from cognitive tests in an epigenetic environment. We compared
the interpretability and discriminability of the phenotyping method. We compared the
interpretability and discriminability of the phenotyping method using k-means.

Using this method, we derived three phenotypes. The method also identifies the
hyperparameters (D and k) that play an important role in the results. This work presents
the results of OASIS3 patients using nine PPis in a cross-validation matrix of three PVC
methods and three manifold methods. The method could be easily extended to a larger
number of PVC techniques and manifold methods without losing generality.
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The results presented in this work show that PVC methods produce a different set
of derived features (as shown in Figure 8), and consequently, the selection of the method
will play an important role in any other derived usage of the data. Once the features
are extracted from the dataset, there are several manifold approaches that allow us to
reduce the dimensionality of the data and consequently manage the information in a more
suitable way. The proposed methodology allows us to determine which combination of
components of the processing pipeline is the best for each approach to the epidemiologic
analysis using a mathematical formulation based on intra- and extra-cluster variabilities
(Equations (4) and (5)). The method involves several parameters, beyond the manifold
algorithm, that must be selected as the number of the final dimension (D) and the number
of clusters to be identified in the cluster reassembling (k). A procedure that permits us to
identify those parameters was presented (elbow and silhouette analysis). The experiments
conducted in this work permit us to identify those values for the dataset. Particularly D = 2
and k = 3 are the optimal parameters for analyzing PET images under epigenetic conditions.

The methodology proposed in this paper was employed to compare the methods
PVC2C, RSF, and noPVC, and the output of the processed data was employed to feed
the manifold pipeline to compare the effects of the manifold method on the aggregability
of patients under different clusters. This allows us to measure the separability of the
clusters using p-values between the outputs for each output variable involved in the
analysis (in this work, the following variables have been employed: age, years of study,
drinking, smoking, psychiatric events, and APOE), including epigenetic and non-epigenetic
conditions. The proposed methodology allows us to identify the best set of phenotyping
pipeline components involved in the analysis. Using the patients described in this work,
the best results appear (PP5) using RSF as a PVC method and t-SNE as a manifold method,
with an inter-phenotype separability (WCSS = 26.029), an extra-phenotype separability
(SSB = 19.341), and a set of p-values of 0.012, 0.093, and 0.000 for phenotypes one and
two, two and three, and one and three, respectively. The three phenotypes are mainly
characterized considering gender: phen1 is well-balanced, while in phen2 and phen3 the
number of females is almost double that of men. Concerning age, the phenotypes are
clearly separate: phen3 is the youngest at about 62.1 years old, phen1 is in the middle with
a mean of 67.3 years, and phen3 is clearly different and the oldest group at 73.5 years; all
values are means. Concerning cognitive impairment, the values of MMSE, which shows
lower values correlated with age, move from a nominal value of 29.3 in phen3 to 28.280 in
phen2, the oldest phenotype.

Using this method, the derived phenotypes also characterize the epigenetic variables
using violin plots to visualize the outcomes, and, consequently, how patients could decline
in cognitively distinguishable ways. Phen2 could be associated with cognitively healthy
people, phen1 with people with questionable dementia, and phen3 with mild or higher
cognitive impairment.

The inclusion of other databases, either public (such as the Alzheimer’s Disease Neu-
roimaging Initiative, ADNI) or private (from any research group that could provide it),
could be a way to provide more robust results and strengthen the validity of the proposed
method. It is important to take into consideration the need for having simultaneously both
types of imaging studies (PET and MRI) and the clinical variables employed in the studio.
This is an additional analysis that lies out of the scope of this paper and is a clear new
future work line. The methodology could also be extended by including longitudinal data
on the pipelines, to permit the characterization of the longitudinal progression of AD by
understanding the neurodegeneration patterns. Another future line of research to explore
is to evaluate how the proposed methodology could be extended and made more general
by including additional evaluation metrics in the analysis to further demonstrate the effec-
tiveness of the method (including measures of accuracy, precision, recall, F1 score, mean
squared error, or the coefficient of determination). Presenting a diverse range of evaluation
metrics could provide a more comprehensive assessment of the method’s performance. The
main issue to solve is that the above-mentioned metrics involved in measuring artificial
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intelligence classifiers are not eligible as they require a gold standard value in order to
build the confusion matrix elements (TP, TN, FP, and FN). In this methodology, there is no
a priori true phenotype. This, again, lies out of the scope of this paper.
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