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Abstract: (1) Background: Diabetic cardiomyopathy (DCM) is a unique form of cardiomyopathy
that develops as a consequence of diabetes and significantly contributes to heart failure in patients.
Esaxerenone, a selective non-steroidal mineralocorticoid receptor antagonist, has demonstrated
potential in reducing the incidence of cardiovascular and renal events in individuals with chronic
kidney and diabetes disease. However, the exact protective effects of esaxerenone in the context
of DCM are still unclear. (2) Methods: The DCM model was successfully induced in mice by
administering streptozotocin (55 mg/kg per day) for five consecutive days. After being fed a normal
diet for 16 weeks, echocardiography was performed to confirm the successful establishment of the
DCM model. Subsequent sequencing and gene expression analysis revealed significant differences in
gene expression in the DCM group. These differentially expressed genes were identified as potential
targets for DCM. By utilizing the Swiss Target Prediction platform, we employed predictive analysis
to identify the potential targets of esaxerenone. A protein–protein-interaction (PPI) network was
constructed using the common targets of esaxerenone and DCM. Enrichment analysis was conducted
using Metascape. (3) Results: Compared to the control, the diabetic group exhibited impaired
cardiac function and myocardial fibrosis. There was a total of 36 common targets, with 5 key targets.
Enrichment analysis revealed that the chemokine and PI3K-Akt signaling pathway was considered
a crucial pathway. A target-pathway network was established, from which seven key targets were
identified. All key targets exhibited good binding characteristics when interacting with esaxerenone.
(4) Conclusion: The findings of this study suggest that esaxerenone exhibits a favorable therapeutic
effect on DCM, primarily by modulating the chemokine and PI3K-Akt signaling pathway.

Keywords: diabetic cardiomyopathy; esaxerenone; pharmacological mechanism; therapy;
network pharmacology

1. Introduction

According to statistics, diabetes patients have a significantly elevated risk of devel-
oping cardiovascular disease in comparison to the general population. Among diabetes
patients, 65% eventually die from cardiovascular disease. Diabetic cardiomyopathy, charac-
terized by myocardial fibrosis, poses a threat to patients with diabetes [1,2]. However, there
is currently no effective treatment for diabetic cardiomyopathy (DCM), making it crucial
to study its pathogenesis and identify key targets for the prevention and delay of disease
progression.

The mineralocorticoid receptor (MR) is a nuclear receptor activated by steroid hor-
mones. A substantial amount of clinical evidence suggests that blocking MRs is an impor-
tant therapeutic option for heart failure and chronic heart diseases, including complications
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associated with diabetes [3]. Although there are currently two steroidal MR antagonists,
spironolactone and eplerenone, available in clinical practice, their use has not been accepted
due to the side effects they can cause. Spironolactone can lead to menstrual irregularities,
while eplerenone can cause hyperkalemia. As a result, their clinical use is not yet widely
adopted [4].

Esaxerenone, which is a new non-steroidal MR antagonist, improves endothelial dys-
function caused by diabetes by promoting eNOS phosphorylation in the DCM group [5,6].
Several clinical studies have reported that esaxerenone has significant antihypertensive and
cardiorenal protective effects compared with spironolactone and eplerenone [7,8]. Phar-
macological studies have shown that due to its inverted side-chain structure, esaxerenone
has an affinity for MRs that is over 1000 times higher than other NR3C nuclear receptors.
Additionally, the binding site of esaxerenone is larger and penetrates deeper into the protein
core, making its inhibitory effect more potent and longer-lasting compared with that of
spironolactone and eplerenone [9,10]. However, there is still limited research on the impact
of esaxerenone on patients with DCM.

In our study, we aimed to establish the DCM model and utilize sequencing and
network-pharmacology methods to identify key targets. Additionally, enrichment analysis
was conducted to determine the main pathways through which these proteins act in the
treatment of DCM with esaxerenone. The aim of this research is to provide treatment
evidence for clinical studies.

2. Materials and Methods
2.1. Experimental Animals

In our study, the mice (male C57BL/6J mice) were housed with a temperature range
of 21–23 ◦C and humidity maintained at 40–60%. The mice were acclimated for 2 weeks
before the experiment. They were randomly divided into two groups, with 6 mice in each
group. To induce the DCM model, the DCM group mice were treated with streptozotocin
(STZ, Sigma-Aldrich, St Louis, MO, USA) at 55 mg/kg per day for 5 days intraperitoneally.
STZ was dissolved in citrate buffer, and the control group mice received injections of the
vehicle (citrate buffer) for 5 days. One week after the injections, tail vein blood samples
were randomly collected from the mice, and their glucose levels were measured from
Roche, Indianapolis, IN. Mice glucose levels equal to or higher than 16.7 mmol/L were
considered to have successfully developed the diabetic model. Following the establishment
of the model, both groups of mice were continuously fed a normal diet for 16 weeks. The
mice were anesthetized with 1.5% isoflurane (30 mg/kg) and euthanized. The myocardial
tissue was collected for subsequent experiments. Specimens from the middle part of the left
ventricle were fixed in 4% paraformaldehyde for histopathological analysis. The remaining
left-ventricular tissue was stored at −80 ◦C, and the cardiac apex tissue was used for RNA
sequencing analysis. The protocol was approved by the Experimental Animal Committee
of the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong,
China. A flow chart of the animal study is shown in Figure 1.
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2.2. Echocardiographic Assessment

After 16 weeks of establishing the diabetes model, mice were sedated with 1.5%
isoflurane and placed in the supine position, and cardiac function was evaluated using
the Vevo 2100 system (Fujifilm Visual Sonics, Toronto, ON, Canada). M-mode-and-B-
mode echocardiography was performed to measure various parameters related to cardiac
function.

2.3. Histological Staining

The hearts from two experimental groups, using a 4% paraformaldehyde solution,
were embedded in paraffin and sectioned. The sections were then subjected to staining
procedures, including Masson’s staining (performed using Sigma-Aldrich, Burlington,
MA, USA) and HE staining (performed using Sigma-Aldrich, Burlington, MA, USA).
By analyzing the stained sections using ImageJ1.8.0 (Media Cybernetics Inc., Rockville,
Maryland, USA), researchers were able to quantify and measure specific features of left-
ventricular remodeling, providing insights into the structural changes occurring in the
hearts of the experimental group’s RNA sequencing (RNA-seq).

RNA sequencing was performed on two groups of mouse apical cardiac tissues
stored at −80 ◦C. Total RNA was gained using the RNeasy Mini Kit (250) manufactured
by Qiagen, Hilden, Germany. Three replicates from both the control and DCM groups
underwent quality control and RNA quantification. Strand-specific libraries were prepared
and sequenced (Illumina NovaSeq 6000, San Diego, CA, USA). The raw sequencing data
underwent initial processing. The sequences were then aligned to reference genes, and
differentially expressed genes were identified based on criteria including a p-value and
a fold change (FC). Differentially expressed genes with FPKM < 1 in each group were
excluded.

2.4. Data Analysis

The continuous data were reported as mean ± standard error of the mean (SEM).
Comparison was performed using a one-way analysis of variance (ANOVA), followed by a
post hoc Bonferroni test in case of significant interaction in ANOVA. A p-value < 0.05 was
considered statistically significant. Statistical analysis was performed using GraphPad
Prism 7.0 software (GraphPad Software Inc., San Diego, CA, USA).

2.5. Network Pharmacology
2.5.1. Potential Targets of Esaxerenone

The 2D structure of esaxerenone was obtained from PubChem and gained the targets of
esaxerenone from the Swiss Target Prediction platform (http://www.swisstargetprediction.
ch/, accessed on 21 August 2023) [11]. Targets with a probability greater than 0.1 were
filtered out to refine the prediction results. All target names were standardized according
to Uniprot (http://www.uniprot.org/, accessed on 21 August 2023) [12].

2.5.2. Construction of PPI Network

We utilized an online tool called Interactive Venn to generate a Venn diagram, where
the overlapping regions represent the typical targets of esaxerenone and DCM [13]. The
identified targets were then uploaded to the STRING 11.0 platform (http://string-db.
org/, accessed on 25 August 2023), and a protein–protein-interaction (PPI) network was
generated. This PPI network provided a comprehensive view of the potential protein
interactions and functional associations among the identified targets [14].

2.5.3. Enrichment Analysis

The Metascape platform was used to perform enrichment analysis (https://metascape.
org/, accessed on 15 September 2023) [15]. The top-20 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (p < 0.05) and top-10 Gene Ontology (GO) items were selected
for analysis. The results were further processed using EHBIO for visualization.

http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://www.uniprot.org/
http://string-db.org/
http://string-db.org/
https://metascape.org/
https://metascape.org/
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2.5.4. Construction of Target-Pathway Network

We uploaded the results of enrichment analysis to Cystoscopes 3.7.2 [16] to identify the
core targets for intervention in DCM. Cystoscopes 3.7.2 revealed the interactions between
components, targets, and pathways, providing insights into potential therapeutic targets.

2.5.5. Molecular Docking Verification

The 2D structure information of esaxerenone was gained from the PubChem database [17].
The candidate targets were found on the PDB database to download their 3D structures [18].
Autodock Vina was employed for saving pdbqt-format files, which are compatible with
molecular docking software [19]. The molecular docking verification was visualized using
PyMOL 2.4.025 and Discovery Studio 2019 [20]. A flow chart of the network-pharmacology
study is shown in Figure 1.

3. Results
3.1. Myocardial Injury in DCM Mice

Normal and diabetic-cardiomyopathy mice were used to evaluate cardiac function
(Figure 2A). Through echocardiography (Figure 2B), the contraction and relaxation func-
tions of the mouse heart were evaluated. The DCM group showed notable impairment in
ventricular contraction function compared to the control group, manifested by a decrease
in both fractional shortening (FS%) and ejection fraction (EF%). Additionally, the DCM
group showed poorer stroke volumes (SV), end-systolic left-ventricular internal diame-
ter (LVESD), and end-systolic left-ventricular volume (LVESV), indicating the successful
establishment of the DCM mouse model (Figure 2C).

Tissue samples were collected from the mice and subjected to HE staining and Mas-
son’s staining. Figure 2D demonstrates that the cardiomyocytes in the DCM group exhibited
significant sparsity and hypertrophy, while the myocardial fibers appeared fragmented
and disorganized. Additionally, Figure 2E,F reveal that collagen fiber deposition was en-
hanced in the DCM group (p < 0.0001) compared to the control group, as observed through
Masson’s trichrome staining.

3.2. Candidate Targets of Esaxerenone and DCM

In the RNA sequencing analysis of root tip tissue in the DCM group, a total of
24,197 genes were detected, among which 375 genes showed differential expression, with
74 upregulated genes and 301 downregulated genes (Figure 3A). Through screening of liter-
ature and online databases, a total of 104 candidate genes for esaxerenone were identified.
A total of 36 common genes were identified between esaxerenone and DCM (Figure 3B).
Then, a heatmap was generated using these common genes (Figure 3C).

3.3. PPI Network

In order to explore the target genes’ functions and identify connections in complex
diseases, we submitted the overlapping targets to the STRING website to construct a
PPI. After removing disconnected nodes, the resulting network consisted of 32 nodes and
106 edges. The topological parameters were analyzed, and the 32 targets were ranked based
on their degrees. They were then arranged into concentric circles, as shown in Figure 3D.
To gain further insights into the mechanism of esaxerenone in treating DCM, MCODE was
used to perform cluster analysis. This analysis identified a potential protein functional
module with the highest score, as depicted in Figure 3E. Proteins within such a module are
believed to have closer relationships and may interact with each other to perform specific
biological functions. Therefore, these targets were predicted to be important, including
PIK3CA, PIK3CB, CDK4, JAK3, CCR2, CCR3, and CXCR3. These targets have the potential
to play crucial roles in the mechanism of action of esaxerenone in the treatment of DCM.
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Figure 2. Echocardiographic variables and cardiac fibrosis in mice. (A) Experimental animals.
(B) The quantitative results of echocardiography. (C) Results are shown as the mean ± SEM (n = 6).
Significance: **** p < 0.0001. (D) HE staining in 2 groups. (E) Masson’s trichrome staining in 2 groups.
(F) Measurements of fibrotic area in cardiac cross sections in 2 groups of mice.
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Figure 3. Common targets of esaxerenone in the treatment of DCM. (A) The scatter plot displays 
the gene expression differences in 2 groups. The horizontal and vertical axes represent the samples 
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Figure 3. Common targets of esaxerenone in the treatment of DCM. (A) The scatter plot displays the
gene expression differences in 2 groups. The horizontal and vertical axes represent the samples from
the control and DCM groups, respectively. Upregulated genes in the DCM group are shown in red,
downregulated genes in blue, and insignificant genes in gray. (B) The Venn diagram illustrates the
overlap between DCM-related targets and esaxerenone-related targets. The pink section represents
DCM-related targets, while the blue section represents esaxerenone-related targets. There are 36 com-
mon targets in the overlapping section. (C) The heat map visualizes the differential-gene-expression
patterns. Each row represents a differential gene, each column represents a mouse sample, and each
group consists of 3 replicates. (D) The PPI network consists of 32 target proteins and 106 interacting
edges. The node sizes reflect the degree values, with larger nodes indicating higher degrees of
connectivity. (E) The PPI network analysis identified a potential protein functional module with the
highest score.
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3.4. Enrichment Analysis

To gain insights into the biological effects of esaxerenone related to the treatment of
DCM, we conducted GO functional analysis and KEGG-pathway enrichment analysis.
Figure 4 displays the top-10 GO terms and top-20 KEGG pathways, which were selected
based on their p-values.

For biological processes, the targets were mainly enriched in the chemokine-mediated
signaling pathway, phosphatidylinositol-3-phosphate biosynthetic process, peptidyl-threonine
phosphorylation, and amyloid-beta formation. For cellular components, the enrichment analy-
sis revealed that the targets were predominantly associated with protein kinase activity, kinase
activity, and protein tyrosine kinase activity. In terms of molecular functions, the targets were
primarily enriched in receptor complexes, phosphatidylinositol 3-kinase complexes, extrinsic
components of the membrane, and glutamatergic synapses. The KEGG-pathway analysis indi-
cated that the majority of the pathways involved were associated with the chemokine signaling
pathway, PI3K-Akt signaling pathway, neurotrophin signaling pathway, and ErbB signaling
pathway. Notably, the chemokine signaling pathway exhibited a considerable concentration
of targets, emphasizing the significance of the chemokine-mediated signaling pathway in
the context. Additionally, biological processes involved the chemokine-mediated signaling
pathway and phosphatidylinositol-3-phosphate biosynthetic process. The cellular compo-
nent involved phosphatidylinositol kinase activity, and molecular functions involved the
phosphatidylinositol 3-kinase complex. Therefore, we thought that the chemokine signaling
pathway and PI3K-Akt signaling pathway should be important.

3.5. Compound-Pathway Network

To establish a target-pathway network, we connected potential pathways and hub
genes based on the results of the KEGG analysis. This network provides a visual rep-
resentation of the relationships between the enriched pathways and the genes involved
(Figure 5). Among the important targets identified through the PPI network, the average
degree of connectivity for the included targets was 7.36. PIK3CA (Degree = 20), PIK3CB
(Degree = 20), CDK4 (Degree = 7), and JAK3 (Degree = 7) were enriched in the PI3K-Akt
signaling pathway, and CXCR3 (Degree = 7), CCR2 (Degree = 7), and CCR3 (Degree = 7)
were enhanced in the chemokine signaling pathway.

3.6. Molecular Docking Result Analysis

In this study, we performed molecular docking to validate the interaction between the
core genes and fibrosis. It is commonly accepted that a lower energy value indicates a more
stable conformation of the ligand–receptor binding and a higher likelihood of interaction. We
conducted docking simulations, and the majority of the binding complexes showed strong
binding affinities, with an average energy of −7.14 kcal/mol. The modes of eight binding com-
plexes were displayed in Figure 6, including esaxerenone-PI3KCA(7bi4) docking (−8.0 kcal/mol),
esaxerenone-CXCR3(6wzl) docking (−5.9 kcal/mol), esaxerenone-PI3KCB(4v0i) docking (−6.7
kcal/mol), esaxerenone-CDK4(3g33) docking (−7.5 kcal/mol), esaxerenone-JAK3(6dap) docking
(−6.3kcal/mol), esaxerenone-CCR2(5t1a) docking (−6.6 kcal/mol), and esaxerenone-CCR3(7x9y)
docking (−7.7 kcal/mol). Using the esaxerenone-PI3KCA docking as an example, it is observed
that the small-molecule ligand esaxerenone potentially binds to the interface pocket created
by the interaction of protein amino acid residues (Figure 6A(a)). As shown in Figure 6A(b),
a hydrogen bond was formed between esaxerenone and THRB:471, near the active site of
PI3KCA. The other essential residues (TYRB:470, GLNB:475, GLNB:475, SERB:474, ASNA:467,
LYSA:678, HOHA:1296, ASNA:465, HISA:450, TYRB:467, PROA:449, PROA:447, TRPA:424,
VALA:448, TBPA:446, THRA:678, GLYA:1009, ASNA:677, and HISA:676) interacted with esax-
erenone through van der Waals forces, pi-alkyl interaction, alkyl, carbon–hydrogen bond, and
water hydrogen bond. For esaxerenone-CXCR3, the essential residues (HOHD:349, ARGD142,
GLUD:143, HOHD:337, PROD:141, HOHD:303, GLND:199, TYRD140, GLUD:105, LYSD:107,
SERD:12, THRD:10, PROD:8, and LEUD:11) interacted with esaxerenone through van der
Waals, water hydrogen bond, conventional hydrogen bond, carbon–hydrogen bond, unfavor-



Biomedicines 2023, 11, 3319 9 of 18

able donor–donor, amide-pi stacked, alkyl, pi-alkyl, and halogen (fluorine). For esaxerenone-
PI3KCB, the essential residues (LYSN:598, PHEB:595, ARGB:601, SERB:594, GLUB:628, CYSB:590,
METB:387, CYSB:569, LEUB:488, TYRB:591, ASPB:626, and CYSB:627) interacted with esax-
erenone through van der Waals, conventional hydrogen bond, carbon–hydrogen bond, halogen
(fluorine), unfavorable donor–donor, pi-sulfur, alkyl, and pi-alkyl. For esaxerenone-CDK4, the
essential residues (TYRA:170, ALAA:21, TYRA:22, ARGA:186, ASPA:145, VALA:190, ARGA:144,
LEUA:183, GLUA:224, VALA:181, and PROA:178) interacted with esaxerenone through van
der Waals, conventional hydrogen bond, halogen (fluorine), Pi-Anoon alkyl, and pi-alkyl.
For esaxerenone-JAK3, the essential residues (PROA:896, SERA:860, GLNA:896, LEUA:898,
PHEA:868, LEUA:857, GLNA:856, ARGA:899, GLUA:819, and GLNA:858 interacted with
esaxerenone through van der Waals, conventional hydrogen bond, carbon–hydrogen bond,
halogen (fluorine), unfavorable donor–donor, pi-sulfur, alkyl, and pi-alkyl. For esaxerenone-
CCR2, the essential residues (PROA:896, LEUA:133, ILEA:217, LEUA:213, ILEA:132, PHEA:129,
VALA:167, LEUA:209, ILEA:163, THRA:164, THRA:160, VALA:159, and PHEA:156 interacted
with esaxerenone through van der Waals, halogen (fluorine), pi-sigma, alkyl, and pi-alkyl. For
esaxerenone-CCR3, the essential residues (PROA:896, LEUA:133, ILEA:217, LEUA:213, ILEA:132,
PHEA:129, VALA:167, LEUA:209, ILEA:163, THRA:164, THRA:160, VALA:159, and PHEA:156
interacted with esaxerenone through van der Waals, halogen (fluorine), pi-sigma, alkyl, and
pi-alkyl. Hydrogen bonds and other types of interactions played a vital role in facilitating the
stable binding of small molecules to the active sites of their target proteins. These interactions
were crucial for maintaining the structural integrity and functional specificity of the binding
complexes.
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enriched for up- and downregulated genes. (B) The KEGG-pathway enrichment analysis represents
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nodes are arranged in degree values, from large to small.
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Figure 6. Molecular docking. (A) The diagram displays conformations obtained from the molecular
docking simulation. The 3D models illustrate esaxerenone’s molecular structure within the protein’s
binding pocket, represented as orange sticks. The surrounding amino acid residues are depicted in a
surface style. The interactions between the esaxerenone and the neighboring residues are visually
depicted in the 2D diagrams. (B) The docking affinity of the column diagram.



Biomedicines 2023, 11, 3319 13 of 18

4. Discussion

In individuals with diabetes, DCM stands as a prominent contributor to both heart
failure and mortality, and currently, there is no recognized treatment for it. The develop-
ment of DCM is influenced by factors such as increased secretion in mineralocorticoid
hormones due to high blood glucose and insulin resistance. The current treatment methods
include ACE inhibitors/ARBs [21], guanosine monophosphate cyclohydrolase stimulators,
sodium-glucose co-transporter 2 inhibitors [22], MR antagonists, or modulation of T-cells
[23–26]. These treatments can reduce the incidence and mortality rate. Currently, the use of
non-steroidal MR antagonists is being evaluated for the treatment of heart failure, both as
standalone therapy and in combination with sodium-glucose co-transporter 2 inhibitors.
These groundbreaking drugs have the potential to become important therapies for vari-
ous cardiac and renal diseases. Esaxerenone has shown promising cardiovascular effects
in patients with diabetes. However, additional investigation is needed to pinpoint the
precise treatment targets and mechanisms associated with DCM. In our study, we uti-
lized the network-pharmacology method to predict and elucidate the potential molecular
mechanisms of action of esaxerenone in DCM.

To delve into the core constituents and action mechanism of esaxerenone in DCM
treatment, a PPI network was established for 36 therapeutic targets. Utilizing topology
analysis on the PPI network, a total of seven key pathogenic genes were identified, namely
PIK3CA, PIK3CB, CDK4, JAK3, CCR2, CCR3, and CXCR3. Among them, PIK3CA and
PIK3CB correspond to the genes encoding the alpha subunit of phosphatidylinositol
3-kinase. Frequent mutations in PIK3CA and PIK3CB have been identified in patients with
DCM. These mutations have been found to be associated with myocardial fibrosis and
cardiac dysfunction [27]. Additionally, studies have shown that excessive activation of
PIK3CA and PIK3CB may lead to increased myocardial cell proliferation and inflammation,
exacerbating the pathological process of DCM [28]. Playing a pivotal role in govern-
ing the progression of the cell cycle, particularly in cellular proliferation and division,
CDK4 emerges as a vital protein [29]. Excessive activation of CDK4 has been implicated
in the development of myocardial fibrosis and cardiac dysfunction. Research has demon-
strated that inhibiting CDK4 can attenuate the extent of myocardial fibrosis and improve
cardiac function in animal models of DCM [30]. JAK3 (Janus kinase 3) is a member of the
Janus kinase family of proteins that play a crucial role in signal transduction pathways in-
volved in inflammation and immune responses [31]. Activation of the JAK/STAT pathway
has been observed in various cardiovascular diseases, including DCM, and is associated
with inflammation, oxidative stress, and fibrosis, which are key pathological processes in
DCM [32]. Inhibition of JAK/STAT signaling has shown promising results in attenuating
cardiac dysfunction and fibrosis in animal models of DCM. Although the exact role of
JAK3 in DCM is not fully elucidated, targeting the JAK/STAT pathway, including JAK3,
has emerged as a potential therapeutic strategy [33]. Both CCR2 and CCR3 are chemokine
receptors that play a role in the recruitment and activation of immune cells in inflammatory
conditions [34]. This upregulation is associated with increased infiltration in monocytes,
macrophages, and eosinophils into the cardiac tissue, leading to chronic inflammation.
CCR2-and-CCR3-mediated inflammatory responses actively contributes to the generation
of pro-inflammatory cytokines, oxidative stress, and fibrosis, all of which represent sig-
nificant pathological characteristics observed in DCM [35]. CXCR3 is another chemokine
receptor that plays a role in immune cell recruitment and activation. Our studies have
shown that CXCR3 is upregulated in the hearts of diabetic animals and patients with DCM.
This upregulation is associated with increased infiltration in immune cells, such as T-cells
and macrophages, into the cardiac tissue [36]. The activation of CXCR3 leads to the release
of pro-inflammatory chemokines, such as CXCL9 and CXCL10, which further promote
the recruitment of immune cells and contribute to the chronic inflammation observed in
DCM [37,38].

Among the various pathways analyzed using KEGG-pathway enrichment analysis,
the chemokine and the PI3K-Akt signaling pathway emerged as the most prominent,
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displaying significant roles in relation to the study of interest (Figure 7). Furthermore,
by constructing a compound-pathway network, it was observed that all seven targets
were significantly enriched in both the chemokine and the PI3K-Akt signaling pathway.
This reaffirms the potential efficacy of esaxerenone treatment in DCM by highlighting
the favorable impact of the chemokine signaling pathway and the PI3K-Akt signaling
pathway. So far, there is considerable clinical evidence to suggest that esaxerenone, as an
MR inhibitor, can significantly improve the prognosis of patients with diabetes [39–41]. The
chemokine signaling pathway is significant in the pathogenesis of DCM. Chemokines are
small signaling proteins that regulate the migration and activation of immune cells [42,43].
In DCM, chronic inflammation and immune cell infiltration contribute to the development
and progression of cardiac dysfunction and fibrosis. The involvement of the PI3K signaling
pathway in cardiac pathology is well established, and changes in the expression and activity
of PI3K have a significant influence on the progression of diabetic cardiomyopathy [44,45].
Research findings have demonstrated that esaxerenone exhibits the potential to decrease
the occurrence and fatality rate of diabetic nephropathy and cardiovascular events, en-
hance myocardial hypertrophy and interstitial fibrosis, and slow down the pathological
advancement of left-ventricular systolic dysfunction [39,46]. Similarly, in patients with
diabetic cardiomyopathy, MR inhibitors not only prevent left-ventricular remodeling and
expansion of fibrotic areas but also protect against myocardial injury [46].
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Limitations of the Study

This study solely relied on network pharmacology to predict the molecular mecha-
nisms of MR antagonist treatment for DCM, specifically involving chemokines and the
PI3K-Akt signaling pathway. The main limitation of this study is the lack of experimen-
tal validation to verify the accuracy and reliability of these predictions. While previous
research has established a clear association between the pathogenesis of heart failure and
the overexpression of MR and aquaporin-1, supported by relevant clinical studies, the
mechanism through which the benefit of inhibitors of MR is still unclear for DCM [47,48].
Additionally, we are aware that the guanosine monophosphate (GMP) cyclohydrolase
pathway plays a role, but the pathway we predicted did not enrich the GMP pathway.

However, from the perspective of practicing physicians, these research findings can
still provide some guidance for clinical practice. Firstly, esaxerenone can be considered
one of the drug choices for treating diabetic cardiomyopathy. Clinicians can incorporate
esaxerenone into treatment regimens and personalize the treatment based on individual
patient characteristics. Secondly, chemokines and the PI3K-Akt signaling pathway may
be the target of esaxerenone’s effects. Therefore, clinicians can focus on the activity of
these signaling pathways and related biomarkers when evaluating patients with diabetic
cardiomyopathy. This can help better understand the patient’s condition and provide
more accurate evidence for treatment plan formulation. Finally, we believe that it is
necessary to experimentally determine the pathway through which this drug treats diabetic
cardiomyopathy, and this will be the focus of our next study.

5. Conclusions

In our study, we utilized a DCM model and employed RNA sequencing and network-
pharmacology approaches to investigate the molecular mechanisms underlying the ther-
apeutic effects of esaxerenone in DCM treatment. By analyzing a complex network, we
identified key targets and highlighted the involvement of the chemokine and PI3K-Akt
signaling pathway in mediating the therapeutic effects of esaxerenone. Our initial predic-
tions also indicated promising interactions between esaxerenone and targets within these
pathways. These preliminary findings provide scientific evidence supporting the potential
clinical application of esaxerenone in DCM treatment. Further research is warranted to
explore these findings in more detail.
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