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Abstract: Agitation is one of the most eminent characteristics of neuropsychiatric symptoms (NPS)
affecting people living with Alzheimer’s and Dementia and has serious consequences for patients and
caregivers. The current consensus is that agitation results, in part, from the disruption of ascending
monoamine regulators of cortical circuits, especially the loss of serotonergic activity. It is believed
that the first line of treatment for these conditions is selective serotonin reuptake inhibitors (SSRIs),
but these are effective in only about 40% of patients. Person-specific biomarkers, for example, ones
based on in vitro iPSC-derived models of serotonin activity, which predict who with Agitation
responds to an SSRI, are a major clinical priority. Here, we report the generation of human-induced
pluripotent stem cells (iPSCs) from a 74-year-old AD patient, the homozygous APOE ε4/ε4 carrier,
who developed Agitation. His iPSCs were reprogrammed from peripheral blood mononuclear
cells (PBMCs) using the transient expression of pluripotency genes. These display typical iPSC
characteristics that are karyotypically normal and attain the capacity to differentiate into three germ
layers. The newly patient-derived iPSC line offers a unique resource to investigate the underlying
mechanisms associated with neuropsychiatric symptom progression in AD.

Keywords: iPSC generation; Alzheimer’s disease; neuropsychiatric symptoms; agitation

1. Introduction

The neuropsychiatric symptoms (NPS), specifically agitation and psychosis, are consid-
ered the universal core symptoms of Alzheimer’s disease (AD) that occur in the preclinical,
early clinical, as well as advanced clinical (dementia) phases of the disease [1]. These
symptoms have significant adverse effects on patients and caregivers, including accelerated
disease progression, significant disability, worse quality of life, and accelerated mortal-
ity [1–3]. A consensus group proposed that disruptions in the following types of circuits
underlie NPS: frontal subcortical, cortical—cortical, and ascending monoamine “regulators”
of cortical circuits [2].

Damage to the monoamine-producing nuclei, including dorsal raphe, is evident
pathologically early in AD [3]. Clinical pathologic correlations consistently link NPS with
dorsal raphe degeneration [4–11]. Available (modestly) effective therapies for psychosis
and agitation are medications that target the dopamine and serotonin systems, such as
atypical antipsychotics, SSRIs, or psychostimulants [3]. Recent evidence suggests that
only subgroups of patients benefit from such medications (e.g., the agitation subgroup to
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the SSRI escitalopram [12]), raising questions as to how benefitting patients differs in the
functioning of their mono-amine systems. There is also significant clinical variability in the
timing and type of NPS emergence at different AD stages [1–3].

As NPSs are inherently human symptomatic expressions, animal models have not
been successfully developed. While animal models have contributed to understanding
the interactions between monoamine systems and the amyloid cascade in transgenic mice,
they have not been helpful in understanding NPS mechanisms. Therefore, the opportunity
to acquire knowledge at the individual level of the efficiency of monoamine systems as a
personalized medicine approach would be a major advance.

Human iPSCs provide unprecedented opportunities for regenerative medicine appli-
cations. They can be routinely derived from somatic cells in unlimited supplies and can
be re-differentiated with methodologies that optimize the safety of pluripotent cells and
their progeny [13,14]. Human iPSCs have the capability to differentiate into all functional
cell types; they can also capture the unique genomic information of the donors, thus serv-
ing as an excellent source to understand molecular pathogenesis and develop targeted
treatments [15,16].

In this case study, we generated a human iPSC line from a 74-year-old Master’s-
prepared male with AD enrolled in a clinical trial evaluating the safety and efficacy of
escitalopram, an SSRI, for the treatment of Agitation in people with AD (ClinicalTrials.gov-
Identifier: NCT03108846). He was first diagnosed with dementia 3 years earlier and, at
the time of study enrollment, had a Mini-Mental State score of 12/30, with moderate
functional dependency (50 on the ADCS-ADL scale). He first developed Agitation about
a year before, and by study, entry was moderate in severity (22 on the Neuropsychiatric
Inventory Clinician Rating). He had not improved on other treatments for Agitation. This
patient’s derived iPSC line offers a unique opportunity to shed light on NPS mechanisms.
Generating iPSCs from more AD patients with NPS could also allow the differences in
therapeutic responses to be studied, thus paving the way for the development of patient-
specific drug-screening platforms.

2. Materials and Methods
2.1. Human Induced Pluripotent Stem Cell Generation

The SAN013 iPSC line was generated using episomal vectors under feeder-free/xeno-
free culture conditions, as described in previous studies [17–19]. Briefly, after informed
consent was provided, blood was collected from the patient using a study collaborator
(DCW) through the ongoing S-CitAD clinical trial with oversight by the Johns Hopkins
Institutional Review Board (IRB) internal review board. Peripheral blood mononuclear
cells (PBMCs) were isolated at the Johns Hopkins Core facility and then cultured to enrich
erythroblasts. Afterward, the erythroblasts were reprogrammed via nucleofection, which
involved the transient expression of MOS, MMK, and GBX episomal vectors (Addgene,
Watertown, MA, USA) through the 4D Nucleofector (Lonza, Basel, Switzerland), as pre-
viously published [17]. The cells were then transferred to plates coated with vitronectin
(Gibco, Grand Island, NY, USA) and cultured in a DMEM medium (Gibco, Grand Island,
NY, USA) containing 10% of the fetal bovine serum (FBS). After one day, the serum con-
taining the medium was replaced with 50% of the Essential 8 (E8) medium (Gibco, Grand
Island, NY, USA) supplemented with sodium butyrate (NaB) (Millipore Sigma, St. Louis,
MO, USA) every other day until colony formation. At days 14–19 post-transfection, the
newly developed colonies were pooled, and the TRA-1-60 positive pluripotent cells were
isolated via positive selection with anti-TRA-1-60 MicroBead-kit (Miltenyi Biotec, Auburn,
CA, USA). The positive cells were cultured (250,000 cells/well) in an E8 medium supple-
mented with a 10 uM rock inhibitor (Y-27632) (STEMCELL Technologies, Cambridge, MA,
USA) on vitronectin-coated tissue-culture plates (250,000 cells/well) and the E8 medium
was changed daily [18,19].
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2.2. Flow Cytometric Analysis

The flow cytometric analysis was conducted according to previously described study [17].
Briefly, the human iPSCs were dissociated with TrypLE (Gibco, Grand Island, NY, USA)
into a single-cell suspension in PBS and centrifuged. They were then resuspended with
the BD FACS-staining buffer (Thermo Fischer, Carlsbad, CA, USA) upon resuspension in
this buffer, and the cells were labeled with the anti-human TRA-1-60 antibody (Millipore
Sigma, St. Louis, MO, USA). The anti-mouse IgM control, PE, conjugated (R&D Systems,
Minneapolis, MN, USA) was used as a control. Flow cytometric analysis was conducted
on a BD LSR Fortessa analyzer (BD Biosciences, San Jose, CA, USA), and FlowJo software
(v10.8.1) was used for data analysis.

2.3. APOE Genotyping

The genotyping of the induced pluripotent stem cells (iPSCs) was performed using the
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.
Genomic DNA was extracted from the iPSCs using the DNeasy kit (Qiagen, Germantown,
MA, USA). To confirm the genotypes, Sanger sequencing was conducted. Gene-specific
primers were used for PCR amplification (Table 1). The ABI Prism 3730 XL genetic analyzer
(Applied Biosystems, Waltham, MA USA) was used for gene sequencing and the analysis
of the amplified PCR products.

Table 1. List of antibodies and primers.

Antibody and Host Species Dilution Manufacturer

Pluripotency markers

TRA-1-60, Mouse IgM 1:300 EMD Millipore, MAB4360,
RRID:AB_3548341

OCT4, Rabbit IgG 1:200 Santa Cruz Biotechnology,
sc-9081, RRID:AB_E1011

NANOG, Mouse IgG 1:200 BD Biosciences, 560482,
RRID:AB_8240787

Differentiation markers

β-tubulin III, Mouse IgG 1:500 Biolegend, 801201,
RRID:AB_B205808

AFP, Mouse IgG 1:100
Thermo Fisher Scientific,

MA5-14666,
RRID:AB_VI308040

α-SMA, Mouse IgG 1:50 EMD Millipore, CBL171,
RRID:AB_2223166

MAP2 (D5G1), Rabbit IgG 1:400 Cell Signaling, 8707, D5G1,
RRID:AB_2722660

Secondary antibodies

Alexa Fluor 555 goat anti-mouse IgM 1:500 Thermo Fisher Scientific,
A-21426, RRID:AB_2128995

Alexa Fluor 488 goat anti-mouse IgG 1:500 Thermo Fisher Scientific,
A-11001, RRID:AB_1907294

Alexa Fluor 555 goat anti-Rabbit IgG 1:500 Thermo Fisher Scientific,
A-21428, RRID:AB_ 2535849

Alexa Fluor 488 goat anti-rabbit IgG 1:500 Thermo Fisher Scientific,
A-11034, RRID:AB_1885241

Primers for APOE
Genotyping

Forward/Reverse primer (5′–3′)
F: GGCACGGCTGTCCAAGGA;

R: GCCCCGGCCTGGTACAC
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2.4. Immunocytochemistry Staining for Pluripotency Markers

Cultured human iPSCs in 12-well plates were washed in PBS and fixed in freshly
prepared 4% (v/v) paraformaldehyde (PFA) in PBS (pH 7.4) for 20 min. For the staining of
nuclear antigens, 0.1% Triton X-100 (v/v in PBS) was used for permeabilization. The cells
were blocked in 10% goat serum for 1 h at 4 ◦C, and they were subsequently stained with
primary antibodies (anti-human TRA-1-60, NANOG, and OCT4) at 4 ◦C overnight. The
next day, cells were washed with PBS, they were incubated with the appropriate secondary
antibodies (see Table 1) for 1 h, washed 3 times with PBS, and counterstained with DAPI.

2.5. In Vitro Trilineage Differentiation

In vitro trilineage differentiation was conducted using the StemMACS TM Trilineage
Differentiation Kit, Human (Miltenyi Biotec, Auburn, CA, USA) as per the manufacturer’s
instructions. Briefly, iPSCs were seeded onto a Matrigel-coated 12-well plate after single-
cell dissociation and cultured in the trilineage differentiation-specific medium until day
7. About 250,000 cells/well were seeded for endoderm differentiation, 200,000 cells/well
for ectoderm, and 150,000 cells/well for mesoderm. The cells were fixed with 4% PFA
and stained for Alpha-fetoprotein (endoderm), smooth muscle actin (mesoderm), and
β-tubulin III (ectoderm) (antibodies listed in Table 1).

2.6. Karyotyping Analysis

Human iPSCs were submitted to the Johns Hopkins Cytogenetics Core Facility Center for
G-band karyotyping when the cells were at 70–80% confluency. About 20 metaphases were
counted, and the structural evaluation of G-banding was performed at a 450–500 band resolution.

2.7. Short Tandem Repeats (STRs) Analysis

DNA from both parental PBMCs and the generated iPSC line were analyzed at the
Johns Hopkins Genetic Resources Core Facility. The polymerase chain reaction (PCR) am-
plification of ten short tandem repeat (STR) loci was performed with a Promega GenePrint
10 Kit. Amelogenin (AMEL), a gender-determining marker, was included in the analysis.
The ABI Prism® 3730Xl genetic analyzer was used for the electrophoresis of the PCR prod-
uct, and GeneMapper® v 4.0 software (Applied Biosystems, Waltham, MA, USA) was used
for data analysis.

2.8. Mycoplasma Detection

The hiPSC culture medium was collected and analyzed for mycoplasma contamination
using the PCR-based MycoDect™ kit (Greiner Bio-One, Monroe, NC, USA).

2.9. Lentiviral Transduction and Neuronal Differentiation

We performed the neuronal differentiation and lentivirus transduction to obtain the
high yield of glutamatergic excitatory neurons for this newly generated hiPSC using rtTA
and NgN2-expressing lentiviruses (Cellomics Technology, Arbutus, MD, USA), as per the
previously published protocol [20]. The established hiPSC was transduced with NgN2
and rtTA-expressing lentiviruses supplemented with polybrene when they reached the
confluence for up to 50% and were incubated for 6 h at 37 ◦C. After the recommended
time of incubation with lentivirus, the medium was replaced with fresh E8, and incubation
was conducted to reach the confluency of 90%. Then, the transduced cells were passaged
(250,000 cells/well) on a vitronectin coated plate in the E8 medium supplemented with a
rock inhibitor. The medium was replaced with an induction medium (iN-N2) and supple-
mented with doxycycline after 48 h of the culture in E8 media to start the differentiation
procedure. The next day, puromycin was added to the induction media for the selection
of transduced cells for 24 h. The surviving cells were then passed (500,000 cells/well)
onto the Matrigel-coated plate in a neurobasal medium for neuronal differentiation. The
protocol was followed, as described in our previously published paper, and at day 30,
mature neurons were collected to perform gene expression using qPCR [20].
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2.10. Immunocytochemistry Staining for Neuronal Markers

We used the same protocol for the immunostaining of differentiated neurons on day
15 and used the primary antibody (anti-human MAP 2 and TUJ1) as described in the
methodology Section 2.4.

2.11. Quantitative RT-PCR

We collected the hiPSC of the SAN013 cell line before the start of neuronal differ-
entiation and, on day 30, collected neuronal cell pellets to extract the total RNA using
Quick-RNA Miniprep Kit (Zymo Research, Irvine, CA, USA) as per the manufacturer’s
guidelines. Then, the cDNA was synthesized using High-Capacity RNA and the cNDA
Kit (Applied Biosystems, Waltham, MA, USA). Lastly, we performed the gene expressions
for the specific PCR primers listed in Table 2. A total of 3 µL of cDNA was used as a
template for every single reaction mixture in real-time quantitative PCR analysis using
the SsoAdvanced Universal SYBER green supermix (Biorad, Hercules, CA, USA). The
housekeeping gene (GAPDH) was used as a control gene to normalize the relative expres-
sion of pluripotency markers (TRA-1-60 and NANOG) in the hiPSC. The fold change in
gene expression for target genes (neuronal markers) was analyzed for the gene expression
of iPSC.

Table 2. List of primers for real-time quantitative PCR analysis.

Markers Forward Primer Reverse Primer

TRA-1-60 ACAGGAAACACCCTCTGTGC GAAGGTGGCTTTGACTGCTC
NANOG ACAACTGGCCGAAGAATAGCA GGTTCCCAGTCGGGTTCAC

MAP2 TC GAGGCAATGACCTTACC GTGGTAGGCTCTTGGTCTTT
VGLUT1 CACCATGGAGTTCCGCC CACTCAGCTCCAGCGTCTC

NMDAR1 ATCTACTCGGACAAGAGCATCC AGCTCTTTCGCCTCCATCAG
CTIP2 CAGAGCAGCAAGCTCACG GGTGCTGTAGACGCTGAA GG

3. Results and Discussion

We generated and characterized iPSCs from the peripheral blood mononuclear cells
(PBMCs) of a 75-year-old patient (Figure 1). PBMCs were reprogrammed via the trans-
fection of three episomal vectors expressing human OCT4/SOX2 (MOS), C-MYC/KLF4
(MMK), and BCL-XL (GBX) genes which increased the reprogramming efficiency up to
50-fold [20,21]. The generated iPSCs formed colonies with well-defined borders and a
high nuclear/cytoplasmic ratio resembling the morphology of human embryonic stem
cells, as shown by light microscopy (Figure 2A). Pluripotency was evaluated both by
immunocytochemistry for pluripotency markers such as OCT4, TRA-1-60, and NANOG
markers (Figure 2B), as well as flow cytometry for TRA-1-60 positive cells (Figure 2C). The
pluripotency of newly generated hiPSC was also confirmed with the gene expression of
pluripotency markers (TRA-1-60 and NANOG) using RT-PCR (Figure 3A). Using Sanger
sequencing, we detected the presence of two APOE ε4 alleles in the iPSCs (Figure 2D). The
karyotype analysis of about 20 metaphases indicated that the cells were 46, XY (Figure 2E).
To assess pluripotency, we performed tri-lineage differentiation via embryoid body forma-
tion (EB), confirming the generation of ectoderm (β-tubulin III), mesoderm(α-SMA), and
endoderm (AFP) (Figure 2F). Short tandem repeat (STR) based analysis showed 100% iden-
tity between the parental (PBMC) and the cultured (iPSC) line (Figure 2G). Mycoplasma
testing of the SAN013 iPSC line showed negative results. Then, the potential to differentiate
the glutamatergic excitatory neuronal identity was evaluated with different neuronal mark-
ers (e.g., MAP2, VGLUT1, NMDAR1, and CTIP2) using RT-PCR (Figure 2B), morphology
via light microscopy (Figure 2C) and neuronal identity via the immunocytochemistry of
neurons specific markers such as TUJ1 and MAP2 (Figure 2D). This patient’s derived iPSC
line offers a unique resource to study the mechanisms associated with neuropsychiatric
symptom progression in AD.
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cytometry. (D) Genotyping using DNA sequencing. (E) Chromosome Analysis using Karyotyping.
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SMA), and Ectoderm (β-tubulin III) markers (scale bar: 100 µm). (G) Short tandem repeat (STR)
profiling analysis between newly generated iPSC line and parental PBMC.

Neuropsychiatric symptoms (NPS) encompass a wide range of cognitive, emotional,
and behavioral disturbances observed in AD patients, arising from early clinical to ad-
vanced stages of the disease [21–23]. These are among the foremost contributors to the
disease burden affecting both patients and caregivers. The previous literature provides
strong evidence that NPS accelerates the progression of cognitive and functional decline
in patients with AD [24,25]. Studies have found that Agitation occurs in around 60% of
patients with AD and is associated with depression, delusions, and other NPSs [26,27].
The symptoms of agitation and aggression are more common in patients with Alzheimer’s
disease who are homozygous carriers of APOE4 alleles [28–31]. Few studies assess the
association of APOE genotypes. Understanding the complex interplay between the APOE
genotype and NPS holds promise for improving diagnostic and therapeutic approaches.
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immunostaining of β-Tubulin III (TUJ1) and MAP2-positive neurons on day 15 (scale bar: 50 µm).

This is a case report detailing the generation and characterization of a distinct iPSC line
derived from an Alzheimer’s disease (AD) patient with neuropsychiatric symptoms (NPS).
Patient-derived iPSCs offer the possibility for novel, disease-relevant in vitro models that
can be helpful in understanding neuropathological mechanisms using a precision medicine
approach [32]. Our work establishes a human iPSC line with specific clinical manifestations
of NPS from a genotypically defined AD patient carrying APOE ε4/ε4. This serves as a
fundamental step for future in vitro studies aimed at decoding the correlation between the
molecular pathology behind APOE ε4/ε4 in AD and the development of NPS.

Reprogrammed iPSCs from specific subsets of patients, such as the one reported herein,
hold great potential for disease modeling, which can be used to study poorly understood
pathophysiological mechanisms of AD and NPS. An iPSC-based model of NPS in AD can
help to illuminate the impact of high-risk genetic variants and their relevance on physiolog-
ical neuronal functioning. In addition to these broader genetic studies, cells derived from
patients with specific symptomatology can be used for a variety of in vitro experiments.
Single-cell and co-culture systems of iPSCs-derived cells are being increasingly explored
for analogous purposes, including three-dimensional organoid cultures of specialized brain
regions [33,34]. This increasing complexity can help elucidate disease mechanisms that
emerge from the interplay between multiple cell types and across tissues. Studies have
shown a link between the manifestation of NPS in AD and disruptions in the serotonergic
neurons in the raphe-nuclei, which could be recapitulated using iPSC-derived serotonergic
cells and/or organoids [35–38].

At the same time, patient-specific cells and tissues of interest can be used as biomarkers
to screen commercially available and/or novel therapeutic agents in vitro before exposing
people to drugs they may or may not benefit from. This is becoming a topic of particular
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interest as of December 2022 since newly signed legislation in the US established that the
Federal Drug Administration (FDA) no longer requires animal testing before human trials
for drug approval [39].

Our personalized medicine approach could eventually be applied to study differences
in therapeutic responses, starting with iPSCs as clinically relevant in vitro models. We
believe that the iPSC line reported here could be highly useful in studying the neurobiology
of NPS, such as agitation, the effect of the APOE ε4/ε4 genotype, and responsiveness (or
lack thereof) to pharmacological treatment options.
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