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Abstract: Antipsychotics are an important pharmacotherapy option for the treatment of many mental
illnesses. Unfortunately, selecting antipsychotics is often a trial-and-error process due to a lack
of understanding as to which medications an individual patient will find most effective and best
tolerated. Metabolomics, or the study of small molecules in a biosample, is an increasingly used
omics platform that has the potential to identify biomarkers for medication efficacy and toxicity.
This systematic review was conducted to identify metabolites and metabolomic pathways associated
with antipsychotic use in humans. Ultimately, 42 studies were identified for inclusion in this review,
with all but three studies being performed in blood sources such as plasma or serum. A total of
14 metabolite classes and 12 lipid classes were assessed across studies. Although the studies were
highly heterogeneous in approach and mixed in their findings, increases in phosphatidylcholines, de-
creases in carboxylic acids, and decreases in acylcarnitines were most consistently noted as perturbed
in patients exposed to antipsychotics. Furthermore, for the targeted metabolomic and lipidomic
studies, seven metabolites and three lipid species had findings that were replicated. The most consis-
tent finding for targeted studies was an identification of a decrease in aspartate with antipsychotic
treatment. Studies varied in depth of detail provided for their study participants and in study design.
For example, in some cases, there was a lack of detail on specific antipsychotics used or concomitant
medications, and the depth of detail on sample handling and analysis varied widely. The conclusions
here demonstrate that there is a large foundation of metabolomic work with antipsychotics that
requires more complete reporting so that an objective synthesis such as a meta-analysis can take place.
This will then allow for validation and clinical application of the most robust findings to move the
field forward. Future studies should be carefully controlled to take advantage of the sensitivity of
metabolomics while limiting potential confounders that may result from participant heterogeneity
and varied analysis approaches.

Keywords: antipsychotic; metabolomic; lipidomic; human; review

1. Introduction

Antipsychotics are an essential component of medication management for the treat-
ment of psychosis and bipolar disorder. However, their use has been steadily increasing
in younger patients and for an extended number of disease states, such as depression,
autism, conduct disorders, and anxiety [1–3]. Antipsychotics work primarily through the
dopamine system, and atypical or second-generation antipsychotics also have effects on the
serotonin system. Despite being effective medications for many patients, high rates of side
effects and non-adherence often lead to multiple trials and even polypharmacy [4,5]. The
exact mechanisms by which antipsychotics exhibit their efficacy and side effects remain to
be understood, and furthermore, biomarkers that predict antipsychotic outcomes are few.
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Investigations into the mechanisms and biomarkers of antipsychotic treatment have been
ongoing, and more recently, technological advancements in metabolomics and lipidomics
have enabled the simultaneous assessment of tens to hundreds of potential biomarkers in
the context of antipsychotic treatment. Metabolomics, the assessment of small molecules
in a sample, and lipidomics, the assessment of lipid species in a sample, have rapidly
advanced, and with it, the number of investigations reporting their associations with
antipsychotic treatment. Despite this growing body of metabolomic and lipidomic literature
on antipsychotic treatment, no clear findings have emerged. This may be due to the widely
varying metabolomic and lipidomic approaches taken between the studies, which make it
difficult to compare findings.

In this systematic review, we aimed to identify and summarize the current literature
regarding metabolomic and lipidomic studies of antipsychotic use. The goal of this work
is to provide a comprehensive yet succinct summary of the current findings in the area
and provide researchers within this field with easily referenced evidence that will allow
them to pursue further research that builds off the current evidence base. We also aimed
to provide an easily referenced summarization of the field that can be referenced by those
interested in specific molecular pathways or metabolites. By providing the current state of
the field, the findings here will enable further advancements in antipsychotic metabolomic
and lipidomic research by illustrating which metabolites, lipids, and/or pathways show
the most promise for future validation and eventual clinical application. The ultimate goal
of biomarker use is to improve antipsychotic efficacy, reduce side effects, and improve
treatment adherence.

2. Materials and Methods

Our systematic review, conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines, aimed to identify
any reported associations within a metabolomic or lipidomic study with antipsychotic
treatment in humans [6]. To that end, Pubmed, Embase, and Web of Science were queried
from inception to the time of search (June 2023) using a combination of the following
words: antipsychotic, neuroleptic, metabolite, metabolomic, lipid, lipidomic, schizophrenia,
bipolar disorder, and individual antipsychotic names. Searches were limited to exclude re-
views and exclude non-human investigations. Searches were performed in the “advanced”
search toolbox for the databases using Boolean operators and allowing the software to
create truncated keywords or Medical Subject Headings (MESH) terms, if available (e.g.,
antipsychotic keyword input will use variations such as antipsychotics, antipsychotic agent,
etc.). Titles and abstracts were first screened, and then those included were screened at
the full-text level. Studies were included if they (1) assessed the effect of antipsychotic
treatment on metabolomic (or lipidomic) levels via longitudinal methods (i.e., a pre-post
study), (2) assessed the effect on antipsychotic treatment on metabolomic levels via corre-
lational methods (e.g., case-control study comparing those on antipsychotics to healthy
controls, cross-sectional study looking at correlation between metabolite levels and an-
tipsychotic dose, etc.) and (3) used mass spectrometry or other quantitative technology
to assay > 5 metabolites or lipids simultaneously. Studies whose primary aim was to
investigate disease-based metabolomic or lipidomic associations (e.g., schizophrenia versus
healthy controls) were allowed as long as either all patients were on an antipsychotic
(which was compared to a healthy control group) or there was a specific sub-analysis
describing an association with antipsychotic treatment such as dosage, antipsychotic type,
antipsychotic as a covariate or a comparison between patients that were naive or free of
antipsychotics versus patients currently taking antipsychotics. Studies were excluded if
they (1) were a review, (2) used non-human populations, or (3) compared antipsychotics to a
non-antipsychotic (e.g., antidepressant, mood stabilizer, etc.). Of note, during our exclusion
process, we did not identify an NMR-based study that met our inclusion criteria [7]. All
screening utilized two authors, and disagreements were resolved through consensus. This
systematic review protocol and methods were registered in the Open Science Framework
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database (https://osf.io/kd2bw?view_only=ee5a1807b390411aa977c58f158f9893, accessed
on 6 November 2023).

Data from the included studies were extracted for qualitative synthesis and presenta-
tion. The extracted data included study name, authors, population studied, antipsychotics
studied, antipsychotic dosage (if available), population age, sex proportion, metabolomic
approach (i.e., untargeted versus targeted), number of metabolites or lipids analyzed, and
results. Study quality was evaluated using the National Heart, Lung, and Blood Institute
(NHLBI) Quality Assessment Tool that is tailored to a given study design. Given the
number of included studies and the size of metabolomic studies in general, extracted data
was qualitatively summarized in two forms. First, in an abbreviated, reader-friendly form,
which is presented in tabular format in the results, and in a more detailed form, which is
presented in the supplementary information.

3. Results
3.1. Description of Included Studies

From the 2876 studies identified as potentially eligible for review, a total of 42 studies
were included that investigated the effects of antipsychotics on metabolomic profiles
(Table 1) [8–49]. The PRISMA flow diagram is included with the supplementary files. Most
studies excluded at the full-text stage were removed because they either excluded patients
on antipsychotics, the patient group was not all on an antipsychotic, or they did not include
a reported association between the metabolomic/lipidomic features and antipsychotics,
such as in the studies by Kageyama and Ward [50,51]. Within the Kageyama study, patients
were excluded if they were on antipsychotic treatment, while in the Ward study, all patients
were on an antipsychotic; however, the metabolomic analysis was performed based on
serum insulin quartiles, not antipsychotic dose or type. Twenty-five studies used a pre-post
design to analyze the change in metabolites after treatment with an antipsychotic. All
pre-post designs were non-randomized, with the exception of one study, which was a
randomized controlled trial [30]. The remaining studies were of cross-sectional (10 studies)
and case-control (7 studies) design. The primary study population consisted of people with
schizophrenia and/or psychosis. There was one study that utilized healthy volunteers
from a bioequivalence study of olanzapine [27]. Treatment length varied from a single dose
to 7 years. In total, 19 studies utilized an untargeted approach to assess either metabolomic
or lipidomic profiles or both. The primary tissue source for metabolomics was plasma
(21 studies), followed by serum (15 studies). Three studies were conducted using brain
tissue, which included the superior temporal gyrus (Atagun et al.), prefrontal cortex and
hippocampus (Fuji et al.), and prefrontal cortex (Schwarz et al.) [10,19,39]. Antipsychotic
medication varied widely across the studies, but detailed descriptions of current medication
use were not always available. Medication and additional study characteristics are included
in Supplementary Table S1. Study quality ranged from high to low and can be found in
Supplementary Tables S6–S10.

Table 1. Characteristics of Included Studies.

Study Tissue Study Design Participant Diagnoses Treatment Length Type of Study

Al Awam 2015 [8] P CC 26 Scz NR UM, UL

Aquino 2018 [9] P PP 54 Scz 6 weeks UL

Atagün 2018 [10] B b CC 29 BP NR TM

Bicikova 2013 [11] S PP a 21 Scz 6 months TM

Brunkhorst-Kanaan 2019 [12] P CC 67 MDD/BP NR TL

Buretić-Tomljanović 2008 [13] S PP a 44 Scz 7 months TM

Cai 2012 [14] P/U PP a 11 Scz 6 weeks UM, TM

Cao 2019 [15] S PP 122 Scz 8 weeks UM

https://osf.io/kd2bw?view_only=ee5a1807b390411aa977c58f158f9893
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Table 1. Cont.

Study Tissue Study Design Participant Diagnoses Treatment Length Type of Study

Condray 2011 [16] P PPa 24 Scz 4 weeks TM

deAlmeida 2020 [17] P PP 54 Scz 6 weeks UL

Evans 2014 [18] P CC 54 BP NA TL

Fujii 2017 [19] B b CC 29 Scz NA UM

He 2012 [20] P CC 265 Scz NA TM

Kaddurah-Daouk 2007 [21] P PP a 50 Scz 2–3 weeks TL

Kim 2022 [22] S PP a 40 Scz NR UM

Kriisa 2017 [23] S PP a 36 Scz 7 months TM

Lenski 2021 [24] P PP 86 Scz 1 month TM

Li 2022 [25] RBC PP a 327 Scz 4 weeks TL

Liu 2015 [26] PBMC CS 20 Scz NA TM

Liu 2020 [27] P PP a 17 HC single dose b UM, TM

Liu 2021 [28] P PP 27 Scz 4 weeks UM

Maes 2019 [29] P CS 37 MDD, 45 BPI, 23 BPII NA TM

McEvoy 2013 [30] P RCT a 40 Scz 2 weeks TL

Mednova 2021 [31] S CS 37 Scz NR TM

Mednova 2022 [32] S CS 112 Scz 7 years TM

Okamoto 2021 [33] S CC 30 Scz NR UM

Orešič 2011 [34] S CS 19 Scz, 57 ONAP, 37 AfPs NA UM

Paredes 2014 [35] P CS 60 Scz NA UM, UL

Parksepp 2020 [36] S PP a 52 Scz 6 months and
5 years TM

Parksepp 2022 [37] S PP a 112 Scz 6 months and
5 years TL

Qiao 2016 [38] S PP a 15 Scz 4 weeks UM

Schwarz 2008 [39] B b, RBC CS 35 Scz15 BP NA UL

Suvitaival 2016 [40] S PP 36 Scz 2 months, 1 year UM, UL

Tessier 2016 [41] RBC CS 74 Scz NA TL

Tkachev 2021 [42] P PP 92 Scz 37 days UL

Wang 2018 [43] S PP a 115 Scz 8 weeks TL

Wang 2022 [44] P PP 25 Scz 4 weeks UM

Wood 2015 [45] P, PLT CS 23 Scz NA TL

Xuan 2011 [46] S PP a 18 Scz 8 weeks UM

Yan 2018 [47] P PP a 20 Scz 8 weeks UL

Yao 2010a [48] P PP a 25 Scz 4 weeks TM

Yao 2010b [49] P PP a 25 Scz 4 weeks TM
a A healthy control group was included with the pre-post design to compare to the baseline sample prior to
treatment. This is not reported in this systematic review since we are concerned with treatment effects. b The
brain regions investigated were as follows: Atagun et al. superior temporal gyrus; Fuji et al. prefrontal cortex and
hippocampus Schwarz et al. prefrontal cortex [10,19,39]. Abbreviations: AfPs = affective psychosis, B = brain,
BP = bipolar disorder, CC = case-control, CS = cross-sectional, HC = health control, MDD = major depressive
disorder, NA = Not applicable, NR = not reported, ONAP = other non-affective psychosis, P = plasma, PBMC = pe-
ripheral blood mononuclear cells, PLT = platelets, PP = pre-post, RBC = red blood cells, RCT = randomized
controlled trial, S = serum, SCZ = schizophrenia, TL = targeted lipidomics, TM = targeted metabolomics, U = urine,
UL = untargeted lipidomics, UM = untargeted metabolomics.
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3.2. Untargeted Metabolomic Studies

Fourteen studies used an untargeted metabolomic approach. Reporting of the full
metabolomic data set available for analysis (e.g., total ions identified, known metabolites
identified, etc.) was mixed. Additionally, analysis strategies varied across the studies
and included multivariate (e.g., partial least squares-discriminant analysis, etc.) and
univariate approaches (e.g., t-tests with multiple testing corrections). Seven studies found
>10 significant metabolites associated with antipsychotic use, while six studies found
<10 metabolites, and one study found no associations [22] Fifty-four associations with
metabolite classes were identified across all studies, with carboxylic acids being the most
commonly identified in nine studies. General metabolite class identifications are detailed
in Table 2, and in-depth findings are provided in Supplementary Table S2.

Table 2. Metabolite Class Changes with Antipsychotic Treatment—Results from Untargeted
Metabolomic Studies. Markings indicate metabolite class(es) with statistically significant associ-
ations with antipsychotic treatment.

Study Tissue CA FA E GPL HA Imid Ind Ka Nt Nuc Oc Ox Q S

Al Awam 2015 [8] P x x x x x

Cai 2012 [14] P/U x x x x x x

Cao 2019 [15] S x x x

Fujii 2017 [19] B x x x x

Kim 2022 [22] S

Liu 2020 [27] P x x x x

Liu 2021 [28] P x x

Okamoto 2021 [33] S x x x x

Orešič 2011 [34] S x x x x

Paredes 2014 [35] P x x x x

Qiao 2016 [38] S x x x x

Suvitaival 2016 [40] S x

Wang 2022 [44] P x

Xuan 2011 [46] S x x x x x x

Abbreviations: B = brain; CA = carboxylic acids; FA = fatty acyl or lipid-like molecule; E = energy metabolites;
GPL = glycerophospholipids; HA = hydroxy acids; Imid= imidazopyrimidines; Ind = indoles; Ka = keto acids; Nt
= neurotransmitters; Nuc = nucleotides; Oc = organic compounds; Ox= oxazinanes; P = plasma; Q = quinolines; S
= serum; S = steroids; U = urine.

3.3. Untargeted Lipidomic Studies

Eight studies used an untargeted lipidomic approach to explore lipid metabolite asso-
ciations with antipsychotic treatment. These studies involved analyzing anywhere from
several hundred to more than a thousand lipid metabolites in a sample and evaluated a total
of 11 lipid classes. Numerous significant lipid metabolites associated with antipsychotic
treatment were identified in every study, with 29 total lipid class associations across all
studies. The most commonly associated lipid class with antipsychotic treatment was phos-
phatidylcholines (five studies). Three studies included analyses of metabolites associated
with antipsychotic response [9,17,42]. A summary of the untargeted lipidomic studies is in
Table 3 and Supplementary Table S3.
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Table 3. Lipid Metabolite Class Changes with Antipsychotic Treatment—Results from Untargeted
Lipidomic Studies. Markings indicate metabolite class(es) with statistically significant associations
with antipsychotic treatment.

Study Tissue Cer FA GL PA PC PE PG PI PS SM SL

Al Awam 2015 [8] P x x

Aquino 2018 a [9] P x x x x x x x

deAlmeida 2020 a [17] P x x x x x x x x

Paredes 2014 a [35] P x

Schwarz 2008 [39] B, RBC x x

Suvitaival 2016 a [40] S x x

Tkachev 2021 [42] P x

Yan 2018 [47] P x x x x x x
a changes dependent on individual antipsychotic medication or medication grouping (e.g., low versus high-risk for
side effects) Abbreviations: B = brain; Cer = ceramide; FA = fatty acyl; GL = glycerolipid; PA = phosphatidic acids;
PC = phosphatidylcholine; PE = phosphatidylethanolamine; PG = phosphatidylglycerol; PI = phosphatidylinositol;
P = plasma; PS = phosphatidylserine; S = serum; SM = sphingomyelin; SL = sterol lipid; RBC = red blood cell.

3.4. Targeted Metabolomic Studies

Fifteen studies used targeted approaches to investigate metabolomic changes with an-
tipsychotic use (Table 4 and Supplementary Table S4). Targeted metabolite classes included
neurotransmitters, sugars, tryptophan metabolites, amino acids, acylcarnitines, cytokines,
growth factors, amines, amides, organic acids, oxidative metabolites, endocanabinoids,
eicosanoids, purines, or a combination of these metabolite classes with data on select
lipids [20,23,24,31,32]. A total of 803 metabolites were analyzed in all studies, with 91 signif-
icant associations identified. Seven metabolites showed replicated associations (aspartate,
5-hydroxyindoleadceitc acid, glutamine, kynurenine, oleylcarnitine, stearoylcarnitine, and
tiglylcarnitine). The five studies that measured lipid and non-lipid metabolites were in-
cluded in this section of the review. Three studies utilized the commercially available
Biocrates AbosluteIDQ® metabolomic kits [20,23,36].

Table 4. Overview of Metabolomic Associations with Antipsychotic Use in Targeted Studies. Arrows
provide directional changes of significant associations.

Study Tissue # Metabolites Metabolites Targeted Significant Results

Atagün 2018 [10] B 6 Neurotransmitters and sugars No significant changes

Bicikova 2013 [11] S 31 Steroids

↑ androsterone,
↓ 5,20-tetrahydroprogesterone,
↓ etiocholanolone,
↓ pregnenolone sulfate

Cai 2012 [14] P/U 11 Neurotransmitters

Multivariate significance that included
all metabolites. Shifts included
↑ glutamate, ↑ glutamine,
↓ dopamaine,
↑ dihydroxyphenylacetic acid,
↑ homovanillic acid, ↑ norepinephrine,
↑ vanillylmandelic acid,
↓ 3-methoxy-4-hydroxyphenylglycol,
↑ 5-hydroxytryptamine,
↓ 5-hydroxyindoleacetic acid

Condray 2011 [16] P 7 Tryptophan metabolites No significant changes

He 2012 [20] P 163 AbsoluteIDQ p150® kit ab PC acyl-akyl C34:3 e
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Table 4. Cont.

Study Tissue # Metabolites Metabolites Targeted Significant Results

Kriisa 2017 [23] S 206 AbsoluteIDQ p180® kit bcd

↓ C16 hexadecanoyl-carnitine, ↓ C18:1
octadecenoyl-carnitine, ↓ C18:2
octadecadienyl-carnitine, ↑ C3
propionyl-carnitine

Lenski 2021 [24] P 220

Acylcarnitines, amino acids,
amines, amides, tryptophan
metabolites, organic acids, and
sugars b

Significant metabolites pre to post
included 5 amino acids (1 ↑ and 4 ↓) g,
6 acylcarnitines (5 ↑ and 1 ↓), 4
↑ carboxylic acids, 1 ↓ catecholamine,
1 ↑ nucleoside, 1 ↓ pyridine, and 1
↑ tetrapyrrole.

Liu 2015 [26] PBMC 13 Glucose metabolism pathway ↑ Ribose 5-phosphate

Liu 2020 [27] P 13 Neurotransmitters

↓ L-tryptophan, ↓ L-tyrosine,
↓ 5-hydroxytryptophan,
↓ 5-hydroxyindoleacetic acid,
↓ γ-aminobutyric acid,
↓ L-3,4-dihydroxyphenylalanine,
↓ taurine, ↓ kynurenine

Maes 2019 [29] P 6 Nitro-oxidative and nitrosative
stress pathways No significant changes

Mednova 2021 [31] S 45 Amino acids and
acylcarnitines b

↓ 8 amino acids and 12 acylcarnitines
(1 ↑ and 11 ↓)

Mednova 2022 [32] S 32 Amino acids and
acylcarnitines b

↑ alanine, ↓ C5, ↓ C5:1, ↓ C10, ↓ C10:1,
↓ C12, ↓ C18

Parksepp 2020 [36] S 31 AbsoluteIDQ p180®f

↑ asparagine, ↓ aspartate, ↑ glutamine,
↓ glutamate, ↑ methionine, ↑ valine,
↓ α-amino-adipic acid, ↓ histamine,
↑ putrescine, ↑ taurine,
↓ α-amino-adipic acid/kynurenine
ratio, ↓ aspartate/asparagine ratio,
↓ glutamate/glutamine ratio,
↑ ornithine/arginine ratio

Yao 2010a [48] P 6 Purine pathway metabolites ↓ guanine and ↑ uric acid/
guanosine ratio

Yao 2010b [49] P 13 Tryptophan pathway
metabolites No significant changes

a p150 kit includes acyl carnitines, amino acids, glycerophospholipids, sphingolipids, and hexose. b The targeted
metabolic analysis also included lipid metabolites; c p180 kit includes classes in 150 kit plus biogenic amines
and additional amino acids. The investigators only utilized acylcarnitine levels from the P180 kit. d This study
included metabolomic changes measured by the Randox biochip which measured tumor necrosis factor-alpha
(TNF-α), interferon-gamma (IFN-γ), interleukin 1 alpha (IL-1α), Interleukin 1 beta (IL-1β), Interleukin 2 (IL-2),
Interleukin 4 (IL-4), Interleukin 6 (IL-6), Interleukin 8 (IL-8), Interleukin 10 (IL-10), Monocyte Chemoattractant
Protein-1 (MCP-1), Vascular endothelial growth factor (VEGF), Epidermal growth factor (EGF), C-peptide, insulin
leptin, resistin, ferritin, and Plasminogen activator inhibitor-1 (PAI-1). While the focus of this systematic review
was MS-based metabolomic studies, the details of the metabolite changes measured by this biochip are in the
supplementary material. e metabolite was significantly different pre- to post-treatment, but direction was not
indicated. f This study did not analyze the lipid metabolite levels obtained by the AbsoluteIDQ® kit but only the
amino acid and biogenic amine levels. g The parenthetical increases (↑) and decreases (↓) refer to the number
within that cited metabolite class; for example, five amino acids (1 ↑ and 4 ↓) means that one amino acid in that
study increased with antipsychotic treatment while four decreased.

3.5. Targeted Lipidomic Studies

Ten studies investigated lipidomic changes utilizing a targeted approach (Table 5 and
Supplementary Table S5). The number of targeted lipids ranged from 4 to greater than 290
per study, with a total of 747 lipid metabolites analyzed across all studies. Cumulatively,
lipids that increased in concentration upon antipsychotic exposure included ceramides,
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fatty acids, polyunsaturated fatty acids, and phosphatidylcholines. Decreases in lipids were
observed in four studies, including in phosphatidylcholines, phosphatidylserines, sphin-
gomyelins, and fatty acids. Three lipid species were found to be replicated and included
eicosapentaenoic acid, FA22.46, and PC40:6. Only one study identified no significant lipid
changes with antipsychotic treatment [12].

Table 5. Overview of Lipidomic Associations with Antipsychotic Use in Targeted Studies. Arrows
provide directional changes of significant associations.

Study Tissue # Lipid
Metabolites

Lipid Metabolites
Targeted Significant Results

Brunkhorst-Kanaan 2019 [12] P 36 Cer, ECB, GPL, SM No Significant Changes b

Buretić-Tomljanović 2008 [13] S 105 AbsoluteIDQ p150® kit a ↑ 2 LysoPC acyls, ↑ Total PC diacyls,
↑ 9 PCs, ↓ 2 SMs

Evans 2014 [18] P 16 FA ↑ EPA, ↑ LA

Kaddurah-Daouk 2007 [21] P 290 Cer, FA, GL, GPL, PC, PE ↓ PCs, ↓ Pes, ↓ DAGs, ↓ TGs, ↑ fatty acids

Li 2022 [25] RBC 10 FA ↑ (all)

McEvoy 2013 [30] P 43 GPL, PC, PE ↑ PE.n3, ↑PE.n6

Parksepp 2022 [37] S 55 ECB, GPL ↑ ECB (1 total), ↑ PC (4 total), ↓ PC (9 total)

Tessier 2016 [41] RBC 128 PC, PE, PS, SM ↑ PS, ↓ SM

Wang 2018 [43] S 49 FA 9 AA (5 ↑, 4 ↓) d, 2 ↓ DHA, 2 ↓ EA,
1 ↓ EDA, 1 ↑ EPA, 7 ↓ LA

Wood 2015 [45] P, PLT 15 FA, GPL In the plasma, 5 ↓ PC, 4 ↓ PE, ↓ DHA c

a p150 kit includes acyl carnitines, amino acids, glycerophospholipids, sphingolipids, and hexose; however,
the investigators limited their analysis to glycerophospholipids and sphingomyelins. b No significant effect
of antipsychotics as a class but an effect of olanzapine in the sub-analysis. See supplementary information
for details. c Study also analyzed platelets, which showed ↑ PC, ↓ PE, and ↓ DHA. d The parenthetical In-
creases (↑) and decreases (↓) refer to the number within that cited metabolite class; for example, 9 AA (5 ↑, 4 ↓)
means that five arachidonic acid metabolites in that study increased with antipsychotic treatment while four de-
creased. Abbreviations: AA = arachidonic acid; Cer = ceramide; DHA = docosahexaenoic acid; EA = ethanolamide;
ECB = endocannabinoid; EDA= eicosadienoic acid; EPA = eicosapentaenoic acid; FA = fatty acyl; GL = glycerolipid;
GPL = glycerophospholipid; LA = γ-linoleic acid; PBMC = peripheral blood mononuclear cells, PC = phosphatidyl-
choline; PE = phosphatidylethanolamine; PLT = platelet; P = plasma, PS = phosphatidylserine; RBC = red blood
cell; S = serum; SM = sphingomyelin.

4. Discussion

This systematic review summarized the literature regarding antipsychotic effects on
metabolomic and lipidomic profiles in humans, as assessed with mass spectrometry. To
that end, 42 studies were identified that met the inclusion criteria and were published
from 2007 to 2022. The included studies were quite varied in their design and approach to
assessing metabolites (i.e., targeted versus untargeted); however, 88% of the studies were
conducted in patients with psychosis, and 50% analyzed metabolite profiles in the plasma.
Furthermore, 80% of studies reported assessing the metabolomic associations with atypical
antipsychotics. Although highly heterogeneous, some commonalities and findings among
the studies can be discussed (Figure 1).
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Figure 1. Summarized Findings. The figure outlines the findings of studies included in this review
that have investigated the effects of antipsychotics on the metabolome and lipidome through both
untargeted and targeted studies. The first row of bubbles indicates the number of included studies
for the four categories of untargeted metabolomic studies, untargeted lipidomic studies, targeted
metabolic studies, and targeted lipidomic studies. Within these bubbles, the type of tissue or medium
used for the omic analysis is indicated. Of note, one study in the untargeted metabolomic and
lipidomic categories (each) used multiple tissue sources, two studies in the targeted metabolomic
category, and three studies in the targeted lipidomics category (see tables for details). The second
row of bubbles gives the total number of metabolite/lipid classes analyzed for untargeted studies
and the total number of individual metabolites/lipids analyzed for targeted studies, along with their
classes. For example, in the left, second-row bubble, the 14 included untargeted metabolomic studies
analyzed a total of 14 metabolite classes, which are listed in the bubble. The final third row of bubbles
gives the summarized findings for the included studies. Each bubble gives a broad overview of the
findings of all studies. For example, 54 total metabolite class associations were identified across all the
untargeted metabolomic studies. Each bubble also gives the metabolite/lipid classes or individual
metabolite/lipids with replicated associations in the included studies. The number of replications
is indicated in parentheses and for the targeted studies, the directionality of the replications are
indicated by an up (increased) or down (decreased) arrow.

4.1. Findings in Untargeted Metabolomic Studies

Amongst the 14 untargeted metabolomic studies, the most frequently identified class
of metabolites associated with antipsychotic treatment was carboxylic acids (nine studies).
The carboxylic acid class of metabolites is large and contains many compounds that have the
carboxylic acid moiety attached [52]. It includes several critical groups of molecules such as
amino acids, citric acid cycle metabolites, and fatty acids of various chain lengths. Amino
acids have been suggested to play a role in both the pathophysiology of schizophrenia
and response to antipsychotic treatment, likely due to their role as building blocks for
neurotransmitters or functionality as neurotransmitters themselves [53,54]. Furthermore,
genetic models of altered binding efficiency involving amino acids have been associated
with schizophrenia symptoms [55]. This research and possibly findings from the studies
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included here have led to investigations into the utilization of amino acids and related
compounds in the treatment of schizophrenia [56].

The next most common metabolite class associated with antipsychotic treatment
amongst the untargeted metabolomic studies were the keto acids and organic compounds.
Keto acids consist of compounds with a ketone and carboxylic acid group and can be influ-
enced both by medication and dietary interventions [57,58]. The metabolism of ketones has
been linked to cardiovascular disease, which may be relevant to the cardiovascular disease
associated with antipsychotic treatment [59,60]. Indeed, one study investigated the effect of
ketogenic diets in animal models treated with antipsychotics and found that a diet-based
approach to increasing ketones may be helpful in reducing antipsychotic-associated hyper-
glycemia [61]. Limited case studies in humans have also suggested that a ketogenic diet
may be helpful in the management of schizophrenia symptoms and metabolic disease [62].
The other common group, organic compounds, primarily consisted of organooxygen com-
pounds (e.g., glucose, glucuronic acid, etc.), organic sulfonic acids (e.g., taurine, etc.),
and organonitrogen compounds (e.g., Trimethylamine N-oxide (TMAO), etc.). Beyond
the well-known effects of antipsychotics on glucose metabolism, one study found that
adjunctive taurine treatment in patients with first-episode psychosis had improved symp-
toms of psychosis, as measured by the Brief Psychiatric Rating Scale [63]. Furthermore,
organonitrogen compounds like TMAO have been linked to general cardiovascular disease
and microbiome (brain–gut) health [64,65]. Together, this suggests a potential role for
organonitrogen compounds like that of TMAO in antipsychotic efficacy and side effects.

4.2. Findings in Untargeted Lipidomic Studies

Within the untargeted lipidomic studies, the most common lipid classes associated
with antipsychotic treatment included phosphatidylcholines (5 studies), triglycerides
(4 studies), phosphatidylethanolamines (3 studies), sphingomyelins (3 studies), ceramides
(2 studies), and diacylglycerides (2 studies). Alterations in lipid profiles have long been
associated with antipsychotic treatment; therefore, advanced profiling of lipid species
with lipidomics has been a natural progression from that of a simple, clinical lipid profile.
Changes in lipid profiles have not only been cited as a side effect but also an indicator
of antipsychotic efficacy, and it has been hypothesized that changes in lipid metabolism
are among possible pathogenic mechanisms of schizophrenia [66,67]. Yet, the mechanism
by which antipsychotics induce lipid alterations is still debated and includes influencing
lipid biosynthesis, metabolism, trafficking, and signaling, in addition to altered gene activ-
ity [68–71]. The findings in the untargeted studies included here suggest that antipsychotics
have widespread effects on various lipid classes within the body. Interestingly, there is also
work indicating that lipid-lowering therapy in antipsychotic-treated patients should be
considered in study design when utilizing lipidomics to elucidate mechanisms of mental
illness or cardiovascular side effects of antipsychotics [72].

4.3. Targeted Metabolomic and Lipidomic Findings

For the targeted metabolomic studies, multiple studies identified changes in acylcar-
nitines as being significantly associated with antipsychotic use. The acylcarnitines are a
class of fatty acyls that have wide-reaching effects, including roles in energy production,
energy homeostasis, lipid metabolism, inflammation, and insulin sensitivity [73–77], but
their hypothesized associations with antipsychotic treatment seem apparent. Future work
will need to better define which acylcarnitines are predictive of treatment outcomes with
antipsychotics, whether genetics of acylcarnitines metabolism plays a role in antipsychotic
outcomes, and if carnitine-based therapies, which to date have mixed findings, have a place
in antipsychotic treatment [78–81].

Two studies found significant alterations in neurotransmitters [14,27], while one study
found no effect [10], which is notable as both of the studies found significant associations
utilizing peripheral sources (i.e., plasma) for their investigations, while the study with no
associations utilized brain samples. This could suggest that circulating neurotransmitters
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may have biomarker potential for psychopharmacologic treatment. In contrast to some
of the positive findings described above, both studies on tryptophan metabolites and one
study on oxidative metabolites did not identify significant associations with antipsychotic
treatment [16,29,49].

Three studies within this group utilized the commercially available and validated
Absolute IDQ® kits [20,23,36]. The use of such a kit is important as it begins to create a
standardized metabolomic workflow that allows for comparisons between studies and
can be applied clinically. With the three studies that utilized the AbosoluteIDQ platform,
the findings were heterogeneous; however, this is partly because investigators performed
sub-analyses on certain classes of metabolites measured by the platform while excluding
other classes from the analysis. For example, He and colleagues utilized all metabolites
measured by the P150 kit and found only one statistically significant change in phos-
phatidylcholine that remained after correction for multiple tests [20]. The second study
by Krissa and colleagues only analyzed acylcarnitines from the kit but found several sig-
nificant associations with antipsychotic use [23]. Finally, Parksepp only analyzed amino
acids and biogenic amines from the kit but found several significant associations with an-
tipsychotics [36]. Going forward, these commercially available metabolomic kits, coupled
with fully reported data that includes non-significant metabolites, will enable approaches
such as meta-analysis to better understand those metabolites that are truly associated with
antipsychotic treatment.

The targeted lipidomic studies, of which there were 10, showed similar results to
the untargeted studies in that there were changes identified in many of the untargeted
lipid classes described above (e.g., phosphatidylcholines, fatty acyls, etc.). Eight of the ten
studies found an increase in at least one lipid, one study only found decreases in lipids, and
one study found no changes with antipsychotic treatment. One novel lipid class analyzed
in the targeted studies is the endocannabinoids. The endocanabinoids are derived from
polyunsaturated fatty acids and have roles in lipid signaling which, in turn, has broad
potential effects on processes ranging from inflammation to cognition [82]. The endocanbi-
noid system is highly complex in its composition, regulation, and interactions and has been
studied in the pathogenesis of schizophrenia and bipolar disorder [83–85]. Further studies
targeting this system will reveal further information on its role in antipsychotic treatment.

4.4. Limitations of the Review and Current Literature

One limitation of the current review and literature is the lack of a quantitative synthesis
(i.e., a meta-analysis of the results). The primary reason for this is due to the non-complete
results presented in the included studies. In most instances, studies present only those
metabolites (or lipids) that are statistically significant, and this is especially true for untar-
geted approaches or approaches that use multivariate statistical methods. Going forward,
either data transparency or presentation of all metabolite statistics, regardless of signif-
icance, should be presented in supplementary files or uploaded to repositories such as
the Metabolomics Workbench. This will allow for meta-analytic approaches that will not
be biased to only capture significant associations that are generally published. Despite
this limitation, the current review was thorough and extensively summarized 42 studies.
Another limitation of the current literature is the heterogeneous study type, antipsychotic
type, and metabolomics approach. Nevertheless, the summary provided above aims to
provide future metabolomics research with a foundation for the design of experiments
based on past findings. Another limitation of this review is that it covers many metabolite
and lipid classes, which is potentially not useful to those studying or treating mental illness
holistically and not at the molecular level. We hope that one may identify a subset of studies
or metabolite classes of interest that will allow the reader to go more fully in-depth using
other reviews or the studies themselves. Finally, the quality of the included studies was
mixed, and only one study was a randomized controlled trial of high quality. To strengthen
associations, future study designs should rely on causal designs.
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5. Conclusions

The current literature regarding the metabolomic and lipidomic changes associated
with antipsychotic use is highly varied and complex. Nevertheless, certain metabolites
and lipids such as neurotransmitters, carboxylic acids, and acylcarnitines have garnered
repeated associations across studies, yet, at this time, no single metabolite or lipid has
shown enough evidence for application clinically. Going forward, it will be critical that
metabolomic and lipidomic studies carefully design their studies to achieve causality and
fully report all metabolite or lipid associations, including non-significant statistics, thus
allowing quantitative synthesis and more objective summarizations of the field. Further
investigations will allow for panel development that could lead to biomarker utility with
antipsychotic treatment or the development of novel therapeutics that can be coupled with
antipsychotic treatment.
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//www.mdpi.com/article/10.3390/biomedicines11123295/s1, Figure S1: Prisma Flow Diagram;
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Table S4. Detailed Findings of Targeted Metabolomic Studies; Table S5. Detailed Findings of Targeted
Lipidomic Studies; Table S6. Quality Assessment of Cross-Sectional Studies using NHLBI Quality
Assessment Tool; Table S7. Quality Assessment of Case-Control Studies using NHLBI Quality
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Author Contributions: Conceptualization, K.J.B., P.R.B. and K.M.W.; methodology, K.J.B., P.R.B.,
K.M.W. and M.K.; software, K.J.B.; validation, K.J.B., P.R.B., K.M.W. and M.K.; formal analysis, K.J.B.,
P.R.B. and K.M.W.; investigation, K.J.B., P.R.B., K.M.W. and M.K.; data curation, K.J.B., P.R.B., K.M.W.
and M.K.; writing—original draft preparation, K.J.B., P.R.B., K.M.W. and M.K.; writing—review and
editing, K.J.B., P.R.B., K.M.W. and M.K.; supervision, K.J.B. and P.R.B.; funding acquisition, K.J.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by grants from NIH/NIDDK K23DK118199 (KB) and
L30DK110823 (KB).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data for this systematic review was extracted from published
literature and, as such, can be found in the referenced studies.

Conflicts of Interest: The authors declare no conflict of interest.

References
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