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Abstract: Structural variations (SVs) play a key role in the pathogenicity of hematological malignan-
cies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization
(FISH), which have been employed globally for the past three decades, have significant limitations
in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed,
respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect
clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical
genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all
classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither
cultured cells nor amplification of DNA, addressing the limitations of culture and amplification
biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) ac-
cording to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different
hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes),
18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was
extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total
of 215 datasets, including replicates, were generated, and analyzed successfully. Sample data were
then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are
known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility
were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were
run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM
found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes
of SVs at higher resolution. The results of this validation study demonstrate the superiority of
OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various
hematological malignancies.

Keywords: optical genome mapping (OGM); structural variation (SV); copy-number variation (CNV);
standard of care (SOC)

1. Introduction

Hematological malignancies refer to a distinct group of neoplastic diseases of hematopoi-
etic and lymphoid tissues and are broadly divided into myeloproliferative neoplasms,
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myelodysplastic neoplasms, leukemias, lymphomas, and plasma cell neoplasms. Histori-
cally, these malignancies have been genetically characterized for diagnosis, classification,
prognostication, and therapeutic decision making [1–3]. In the past decade, the genetic
testing of these malignancies has dramatically evolved with the advancement of genomic
technologies, particularly molecular characterization, due to the advent of next-generation
sequencing (NGS) technology [4–6]. Although there have been significant improvements
in molecular characterization of such blood tumors with NGS, the evolution of cytogenetic
analysis has lagged comparatively, still relying on traditional methods, including kary-
otyping (KT); fluorescence in situ hybridization (FISH); and, in some cases, chromosomal
microarray (CMA).

Karyotyping, which is currently the “gold-standard” cytogenetic method for the detec-
tion of single-cell genome-wide structural variation (SV), suffers from several limitations:
(1) low resolution of aberration sizes (10–20 Mbp), (2) cryptic translocations that remain
undetected, and (3) a lack of metaphase cells in certain malignancies, resulting in failed
KT (e.g., CD138+ cells in plasma cell myeloma and lymph-node single-cell suspension in
lymphoma) [7,8]. Targeted FISH assays are often performed alongside KT or in isolation
(for CD138+, lymph-node single-cell suspension or disease monitoring) to capture a limited
number of SVs. CMA has seen limited adoption for hematological malignancies; despite its
usefulness for copy-number variation (CNV) detection, it fails to detect insertions, balanced
SVs (translocations and inversions), or fusions [9]. The aforementioned limitations of these
cytogenetic/cytogenomic methodologies necessitate the use of multiple assays to obtain a
reasonable cytogenetic profile in the majority of these cases [3,10,11]. Recently, NGS has
been explored as a method to detect cytogenetic aberrations [12], but the intrinsic limitations
involving repetitive sequences of the genome result in limited resolution and the inability
to detect many SVs [13]. NGS performs well for the detection of small variants such as
SNVs and indels of clinical relevance but requires multiplexing, complex bioinformatics,
and high depth of coverage and is associated with high costs for utility in detection of
cytogenetic aberrations. For instance, whole-genome sequencing was recently used to find
cytogenetic aberrations in myeloid acute myeloid leukemia (AML) and myelodysplastic
syndromes (MDS). The results were promising, but they only considered recurrent SVs
and CNVs of at least 5 Mbp, excluding smaller CNVs and additional translocations; the
results were also generated through extensive bioinformatic analysis [12]. Therefore, NGS
is restricted to the sequencing of gene panels in hematologic malignancies as a complement
to cytogenetic techniques in most labs.

Recently, multiple studies have demonstrated that optical genome mapping (OGM)
is a powerful modern cytogenomic technology that provides a streamlined workflow at a
high precision for the detection of all classes of SV at a genome-wide level [14–17]. These
studies have shown ~100% concordance of OGM with classical cytogenetic methods (KT,
FISH, and CMA) in most hematological malignancies [18–24]. In addition, OGM has
demonstrated the ability to detect additional clinically relevant SVs missed by SOC, owing
to its significantly higher sensitivity and resolution (~10,000× compared to KT), indicating
that OGM is a viable alternative to traditional cytogenetic tests.

In this multisite, institutional review board (IRB)-approved study on hematologi-
cal malignancies, a clinical validation of OGM was conducted for the development of a
laboratory-developed test (LDT) in CLIA certified laboratories (Clinical Laboratory Im-
provement Amendments (CLIA) provide standards and have the authority to regulate
certain clinical testing). The samples were evaluated for concordance, reproducibility, and
assay robustness, and protocols were established for analysis and interpretation using
guidelines-based targeted variant assessment, in addition to a whole-genome analysis. The
unique ability of OGM to detect all classes of balanced and unbalanced SV at high resolu-
tion and increased sensitivity holds promise for its acceptance as a first-tier cytogenomic
test for all hematological malignancies. This is in line with multiple published studies
demonstrating the reproducibility and robustness of the OGM workflow, as it simplifies
the operations of the clinical testing laboratory.
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2. Materials and Methods
2.1. Cohort Design

Multiple U.S.-based laboratories contributed to this double-blinded observational
study for sample recruitment, data collection, and variant analysis. The study protocol
was approved through multiple institutional review boards (IRBs) and included consent
provided by individuals with newly collected samples or waived authorization for use
of deidentified samples. All protected health information (PHI) was removed, and data
were anonymized (coded and double-blinded) before accessioning for the study. Samples
were given anonymous aliases used in this study (e.g., BNGOHM-xxxxxxx). All clinical
samples (peripheral blood or bone marrow aspirate) were referred for clinical cytogenetic
testing due to a suspicion of a hematological malignancy, and SOC test results including KT,
FISH, and/or CMA were available. For the deidentified cases, clinical indications, genetic
test results, and additional demographic information were collected as available. Control
specimens included either established cell lines, peripheral blood, or bone marrow samples
from healthy adults.

2.2. OGM Assay Workflow (DNA Isolation, DNA Labeling, Chip Loading, and Data Collection)

Frozen aliquots of cells, bone marrow aspirate (BMA), and/or peripheral blood (PB)
were subjected to DNA isolation using manufacturer protocol of the OGM DNA Isolation
Procedure, v3.0 (Bionano Genomics Inc., San Diego, CA, USA). Briefly, frozen sample
vials were thawed in a 37 ◦C water bath; then, counted for number of cells was using a
HemoCue WBC Analyzer (Fisher Scientific, Waltham, MA, USA). A total of 1.5 million
cells per sample were transferred to Protein Lo-Bind microfuge tubes (Eppendorf, Enfield,
CT, USA) for centrifugation. Cell pellets were resuspended and washed with stabilizing
buffer. Washed cell suspensions were enzymatically digested and lysed, and isopropanol
was used to precipitate ultra-high-molecular-weight (UHMW) DNA in the presence of a
nanobind disk. Long DNA strands bound to nanodisks were washed, transferred to clean
tubes, and subsequently released from the nanodisk using elution buffer.

Following the procedure outlined in Bionano Prep Direct Label and Stain (DLS) pro-
tocol (Bionano Genomics Inc., San Diego, CA, USA), approximately 500 ng–750 ng of
solubilized UHMW DNA was labeled enzymatically, conjugating fluorophores to the target
6-base sequence motif, CTTAAG. Long, labeled DNA strands were then counterstained
with an intercalating dye, homogenized in buffer to allow for flow through a nanochannel
device, and loaded into the flow cells of Saphyr G2.3 chips (Bionano Genomics Inc., San
Diego, CA, USA). The chips were run on a Saphyr instrument (Bionano Genomics Inc.,
San Diego, CA, USA) to a target throughput >1500 Gbp per sample (OGM Saphyr Chip
Loading and Data Collection Procedure, v3.0).

2.3. Assay QC

The completed datasets were then assessed for the following analytical quality control
metrics: 320X effective coverage of GRCh38, with ≥70% of molecules ≥ 150 kbp aligning
(“map rate”) at an N50 of ≥230 kbp. Additionally, the Bionano Access 1.7 EnFocusTM

(Fragile X) pipeline was run for a subset of samples chosen randomly to assess post-
analytical QC pass/fail metrics (CNV noise and stable region analysis) and to infer the
gender for each case. N50 is defined as the length of the shortest molecule for which
the sum of the lengths of the longer molecules is greater than 50% of the total length of
all molecules.

2.4. SV Detection Using Rare Variant Pipeline

The Bionano Solve (version 3.7) rare variant pipeline was used for genome-wide SV
detection. The rare variant pipeline enables the detection of SVs occurring at low allelic
fractions. Molecules were aligned to the GRCh38 reference, and clusters of molecules
(≥3) indicating SVs were used for local assembly. Local consensus assemblies have high
accuracy and are used to make final SV calls by realignment to the reference genome. SV
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calls were finally compared against known genes and against SVs in an OGM control SV
database with 179 population controls.

Separately, an analysis based on relative read depth, a copy-number profile that can
identify gains and losses, was used. Putative copy changes were segmented, and calls were
generated and similarly annotated with positional information from the original reference.
Entire chromosomal aneusomies were likewise defined in the CNV algorithm.

2.5. Post-Analytical SV Curation and Classification

An SV filtering and curation protocol was devised and implemented using Bionano
Access (version 1.7.2). An overview of the subsequent curation and classification procedure
is shown in Figure 1. For the concordance part of the study, a set of filters was applied
to include variants with a variant allele fraction (VAF) of 0.02–1 and present in 0% of
controls (built in the control SV database). SVs meeting these criteria were then curated for
manual review and classification. The analyst remained blinded until the classification was
performed. SVs were classified using a tiering system based on the ACMG/CGC guide-
lines adopted for OGM. Briefly, the four-tiered evidence-based SV classification followed
professional recommendations for interpretation, variant classification, and reporting of
genomic findings in neoplastic disorders [25], which were, in turn, informed by guidelines
resourced form the World Health Organization (WHO), the National Comprehensive Can-
cer Network (NCCN), and the National Health Service (NHS, UK). For all samples used in
the concordance, specificity, intersite replication parts of the study, curation and classifica-
tion were performed in four successively applied filtering steps: disease subtype-specific
classification (first, when applicable; most stringent filter), pan-hematological malignancy
classification, pan-cancer classification, and remaining variant classification (last and most
permissive filter) (Figure 1).
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Figure 1. Overview of the analysis and interpretation workflow. The curation and classification
process consists of four steps: (1) Disease-specific: Several organizations, such as the World Health
Organization (WHO), the National Health Service (NHS), and the National Comprehensive Cancer
Network (NCCN), have published guidelines for assessing clinically relevant genomic regions for
hematological malignancies. The analysts apply a filter to select for variants overlapping with known
loci associated with the disease of the sample (e.g., AML), then classify the selected SVs as Tier 1A
or 3. (2) Pan-hematological cancers: The analyst removes the first filter and applies another filter
to select for SVs seen in hematological cancers and classifies them as Tier 2 or 3. (3) Pan-cancer:
SVs overlapping other cancer-associated genes are selected and classified as Tier 1B, 2, 3, or 4.
(4) Remaining variants: All remaining fusion SVs or SVs >200 kbp are classified as Tier 1B, 2, 3, or 4.

Following validation, cases were run and analyzed according to a standardized pro-
cedure in an end-to-end exercise. In these cases, after variant analysis and preliminary
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classification, draft reports were reviewed by board-certified pathologists or laboratory
directors for final classification, interpretation, and determination of readiness for future
reporting. Directors proceeded through classified variants in the curated list, upholding
and/or revising analyst classification as needed. Upon completing their reviews of the
curated/classified variant list, the directors finalized case summary statements regarding
somatic variants and defined the genomic complexity status (defined as normal if no large
(≥5 Mbp) aberrations were detected, simple if fewer than three were detected, and complex
for cases containing at least three aberrations for diseases other than acute lymphocytic
leukemia (ALL) and for ALL cases containing at least five aberrations).

2.6. Concordance with SOC

Concordance analysis was performed between SVs detected using SOC testing and
OGM data. Most of the samples had KT or KT plus FISH SOC results, and a subset
had CMA data. If the same SV was observed by more than one SOC method, it was
considered a single SV for concordance purposes. An SV was scored as concordant if the
chromosome and band matched. Any difference in size of break points was attributed to
technique differences and the higher resolution of OGM. Additionally, if multiple OGM
calls supported one SOC variant, it was treated as a single concordant event. In addition
to the concordance assessment, each case was evaluated for additional pathogenic/likely
pathogenic (tier 1 and 2, respectively) findings that were not detected by SOC. Orthogonal
methods were used to confirm a subset of these additional SVs detected by OGM.

2.7. Intersite Replication

Concordance between replicates generated in different sites was performed on Tier 1
and 2 variants for cases and on the lack of Tier 1 and 2 variants for controls.

2.8. Reproducibility

UHMW DNA from four hematological malignancy BMA samples was labeled in
different batches by different operators using multiple reagent lots and instruments. Repro-
ducibility for each individual SV was calculated as the number of replicates where the SV
was detected divided by the total number of replicates. Reproducibility for each SV type
was calculated by considering the mean value across all variants for each type.

2.9. Limit of Detection

The limit of detection (LOD) was determined using two acute myelogenous leukemia
(AML) cell lines from the ATCC: KG-1 and MV4-11 (labelled as BNGOHM-0000319 and
BNGOHM-0000315, respectively, in this study). The DNA of each cell line was blended
with GM12878 (normal control cell line, Coriell Institute) to create serial dilutions that
ranged from undiluted to 1:24 dilution. Combined samples were gently mixed over the
course of one week to ensure uniform mixing of DNA molecules. Six replicates of each
blend were run through OGM with a target of >1500 Gbp of DNA and analyzed with the
rare variant pipeline.

3. Results

In this study, samples from 60 cases with hematological malignancies (with various
heme subtypes), 2 cancer cell lines, and 18 controls were used (n = 80, Figure 2). From these
clinical cases, cell lines, and controls, 215 total datasets were generated. The molecular N50,
map rate, and effective coverage were recorded as analytical quality metrics, averaging
263 kbp, 87%, and 434×, respectively (Table S1).
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Figure 2. A breakdown of clinical indications of the cases used in validation for concordance
assessment (n = 60; the two cell lines are not included).

3.1. Concordance with SOC and Increased Yield

Concordance with SOC testing results was conducted based on 77 datapoints, and
OGM demonstrated 100% concordance. Detailed concordance results can be found in
Table S2.

OGM was assessed for its ability to identify known gains and losses impacting genes
associated with hematologic neoplasms. In the complex genome of a case (BNGOHM-
0000191) with myelodysplastic syndromes (MDS), OGM detected a 392.8 kbp tandem
duplication on chr7, resulting in the duplication of KMT2C, GALNTT11, and GALNT5
(Figure 3a). Increased GALNT11 expression has been reported for leukemia, and KMT2C
has been associated with tumorigenesis. Furthermore, both the map-based OGM SV
algorithm and the coverage-based CNV algorithm detected an 18.8 Mbp heterozygous
deletion on chr20 in a myeloproliferative neoplasms (MPN) genome (BNGOHM-0000176),
impacting multiple genes associated with myeloid neoplasms, such as L3MBTL1 and SGK2
(Figure 3b). In an ALL case (BNGOHM-0000172), a gain of chromosome Y was detected
with the depth-of-coverage aneuploidy algorithm (Figure 3c). Although a gain of Y may be
associated with constitutional disorders, OGM was able to confirm the sex chromosome
aneuploidy detected by SOC.

In addition, OGM achieved 100% concordance in more complicated aberrations, such
as translocations and inversions (Table S2). For instance, in the BNGOHM-0000138 sample
(MDS), an unbalanced t(2;7) translocation was called where the map captured the translo-
cation breakpoint, while the depth-of-coverage profiles indicated a gain in 2p and a loss in
7q (Figure 3d). Also, in MDS sample BNGOHM-0000191, OGM called a t(2;15) followed by
an 168.9 kbp inversion, whose breakpoint interrupted BUB1B, a kinase gene involved in
spindle checkpoint function (Figure 3e). The ability to resolve the local structure of these
two neighboring SVs was made possible by OGM’s ultra-long molecules.

Moreover, OGM resolved structures in complex genomes. For example, OGM, in
combination with KT and FISH, confirmed that acute lymphocytic leukemia (ALL) case
BNGOHM-0000333 carried multiple whole-chromosome duplications (4, 6, 8, 10, 12, 14, 16,
17, 18, and X), as well as a triplication of chromosome 21 (Figure 3f). These events indicate
hyperdiploidy, which has been observed in ALL genomes. Also, OGM resolved a complex
case of ALL (sample = BNGOHM-0000243) with higher resolution than KT and FISH. The
loss of chr9 could be the result of a series of DNA segments translocated into other regions
on chromosomes 4, 9, 12, and 21 via inter- and intrachromosomal fusions. In addition,
CMA had previously captured multiple interstitial deletions. OGM not only recalled the
deletions, but it also found translocations at the break points (Figure 3g). Therefore, these
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DNA losses were the results of unbalanced translocations. Therefore, OGM effectively
consolidated the results of three orthogonal technologies.
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1.0. The two red arrows indicate the two copies of the duplicon on the assembled map. (b) A 18.8 Mbp
deletion with a VAF of 0.44 was observed in MPN genome BNGOHM-0000176. Note that both the
coverage-based copy-number algorithm and the map-alignment-based algorithm captured the dele-
tion. (c) In ALL sample BNGOHM-0000172, a whole-genome duplication of chromosome Y was
observed. (d) OGM captured an unbalanced t(2;7) in the MDS genome of sample BNGOHM-0000138.
The blue and red lines indicate the translocation break points, which coincide with a copy-number
gain on chr2 and a loss on chr7. The VAF of the translocation was 0.28. (e) A 168.9 kbp inversion
adjacent to a t(2;15) translocation was captured by a long genome map. The events occurred at
a VAF of 0.27, and the BUB1B gene was interrupted by the inversion break point. (f) A hyper-
diploid genome in ALL genome BNGOHM-0000333 as seen in OGM’s whole-genome coverage view.
(g) OGM resolved the structure of a complex ALL genome of sample BNGOHM-0000243.

Finally, in addition to confirmation by SOC, OGM identified additional novel Tier 1
and 2 variants not previously reported by SOC in 17 out of 60 (28%) cases; a subset of these
variants was subsequently confirmed by orthogonal methods (Table S3). In one case of
a myeloid neoplasm, BNGOHM-0000149, OGM was able to uniquely identify a mosaic
deletion of 3q13.31 to 3q22.3 overlapping GATA2, a gene associated with myelogenous
leukemia and an inclusion criterion for at least one clinical trial (NCT01861106), as well as
complex rearrangements on 17p1, consisting of amplifications and deletions that impacted
YWHAE, MNT, TP53, and MAP2K4 (Figure 4a). In a second case with biphenotypic
leukemia (AML/ALL) indicated at the time of collection, i.e., BNGOHM-0000335, OGM
detected a translocation between chromosomes 16 and 12 (t(12;16)(p13;p13)) not reported
by SOC. This translocation resulted in the CREBBP-ZNF384 fusion gene, which is an
abnormality reported in ALL (Figure 4b).
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Figure 4. OGM captured additional novel Tier 1 and 2 findings not detected by SOC methods.
(a) Complex rearrangements that consist of a deletion of the GATA2 gene on 3q13.31 to 3q22.3 and
multiple variants on 17p13 seen in the case of BNGOHM-0000149. The Circos plot and coverage
profiles of chromosomes 3, 9, 12, and 17 are shown, all of which are associated with the 17p rearrange-
ments. (b) The CREBBP-ZNF384 fusion (top) and its reciprocal translocation (bottom) captured by
OGM in the case of BNGOHM-0000335. The first picture shows the conjoining of chr16 with chr12
such that CREBBP would be fused with ZNF384, and the second shows the reciprocal fusion point.

3.2. Intersite Replication

There were 53 datapoints used to assess the intersite reproducibility of the assay and
workflow. Among the 53 datapoints, 22 were controls with no reported rearrangements
across sites. Among the remaining cancer datapoints, we evaluated the reproducibility of
56 Tier 1 or 2 variants: 54 (96.4%) were concordant, 1 (1.8%) was partially concordant, and 1
(1.8%) was discordant (Table S4). The one partially concordant locus and one discordant
locus both originated from one case, where the replicate had suboptimal copy-number
quality metrics. For the partially concordant locus, the poorer quality replicate only called
a low-level partial 16q arm loss, whereas the initial test called a whole arm loss. As for the
discordant locus, the replicate test failed to identify a very low-level loss of 20p.

3.3. Specificity

All incidental SVs that were detected in 18 healthy donor blood samples were com-
pared to both a list of 206 targets/types recommended for testing by medical associations
(NCCN, WHO, and NHS (Table S5)) and a comprehensive list of cancer genes. Overall, Tier
1 or 2 heme-associated variants were only found in two of the healthy donor samples. A
loss of Y was detected in BNGOHM-0000076, and a 71 kbp deletion detected in 9p24.1 im-
pacting the PDCD1LG2 gene was identified in another donor (anonymized ID: 1000107245).
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Both variants were subsequently confirmed by CMA as true-positive calls. In summary,
based on this analysis, there were no false-positive SVs detected in the genomes of healthy
donors, indicating 100% specificity (for Tier 1 and 2 SVs).

3.4. Reproducibility

Reproducibility for each SV was determined by calculating the fraction of replicates
(N ≥ 6) in which each variant was accurately identified (Table S6). Overall, the reproducibil-
ity assay included an aggregate of 227 SVs (14 aneusomies, 46 duplications, 33 insertions,
58 deletions, 12 inversions, 32 intrachromosomal fusions, and 32 interchromosomal translo-
cations). In total, there was 96% reproducibility among replicates for all SVs, CNVs, and
aneuploidies. A total of five variants were not detected across all replicates: two dupli-
cations, two insertions, and one inversion. The lack of detection was attributed to one of
the following: SV residing in regions with segmental duplications, SV having low variant
confidence score, or SV residing in high complexity regions.

3.5. Limit of Detection

Two cell lines (BNGOHM-0000319 and BNGOHM-0000315) were used to evaluate
the limit of detection (LOD) of OGM. Two deletions, three translocations, an inversion,
and two trisomies were assessed in a dilution series with six replicates at each dilution
level. In summary, at the current coverage of >1500 Gbp, map-based SV calling can detect
deletions at ≥5% VAF, inversions at ≥5% VAF, translocations at ≥5% VAF, and trisomies at
a fractional copy number of 2.25 (Figure 5).
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Figure 5. Limit-of-detection of aberrations of SVs estimated from serial dilution of two cancer cell
lines: (a) deletion; (b) translocation; (c) inversion; (d) trisomy.

4. Discussion

Medical guidelines provided by professional societies such as the NCCN, WHO, NHS,
etc., recommend testing for SVs as part of the workup of suspected hematologic malignan-
cies to establish diagnosis, monitor disease progression, and direct management. Current
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laboratory practices rely on several complementary cytogenetic techniques to accomplish
recommended testing, but these methods suffer from the limitation of low resolution, there-
fore missing actionable SVs in some cases. Cytogenetic/cytogenomic testing laboratories
often have customized testing algorithms depending on the preliminary diagnosis and
disease stage. Physician preferences and institutional testing and reimbursement policies
often determine the types and extent of diagnostic testing. These decades-long disparities
typically lead to different combinations of FISH and/or KT testing depending on the labo-
ratory infrastructure, instrumentation, and availability of trained cytogenetics laboratory
professionals. There is a need for innovative technologies that can overcome the challenges
of traditional SOC testing and introduce a comprehensive, uniform combination of tests
being performed on a routine basis. This study demonstrates that OGM can be easily
implemented in the clinical setting and can substantially reduce operational complexity
and improve the detection rate by providing a reproducible and robust alternative to the
three predominant cytogenetic methods (KT, FISH, and CMA) in routine workup of most
hematological malignancies.

A wide variety of hematologic malignancies and SVs detected by multiple SOC
methods were included during this LDT validation process, and OGM detected 100% of
these variants. OGM was validated for different SV classes, such as deletions, inversions,
and translocations, all performing at or above the 5% VAF threshold. Importantly, the
detection of novel, actionable, clinically significant SVs solely by OGM in a significant
fraction of cases (17 out of 60 cases = 28%) highlights the substantial diagnostic benefits of
OGM testing. One important feature of a robust assay is reproducibility; OGM detected
over 96% of variants across all replicates within and between runs, as well as amongst
test sites.

The OGM technique involves the bulk analysis of the somatic variants, and parsing
out subclonal information may be more difficult to ascertain compared with KT. However,
OGM not only has very high sensitivity as compared to KT but also provides the variant
allele fraction (VAF) of each variant to better understand the various abnormalities in
these somatic samples. Although KT is a method that can consider individual clones,
it fails to reveal cryptic translocation and is unable to ascertain the identity of marker
chromosomes or additions on terminal arms of chromosomes and cannot define the break
points involving oncogenes in complex abnormalities. OGM is unable to detect balanced
centromeric translocations; however, professional societies such as the WHO and NCCN
do not recommend such translocations for assessment in hematological malignancies. Our
findings are in line with previous publications recommending OGM as a first-tier test for
heme malignancies. In cases of complex genomes detected by OGM, KT might serve as a
potential reflex test to assess disease-causing subclonal variants for a more comprehensive
assessment of the cancer genome.

Another unique feature of the OGM assay involves the uniform preanalytical and ana-
lytical steps, irrespective of the disease subtype, which allow for workflow standardization
and scalability for single or multiple hematologic malignancy subtypes. The incorporation
of guideline-driven, disease subtype-specific target variants into the analytical process
allows for semiautomated and easy classification and reporting of variants. Additionally, if
there is ambiguity in the clinical symptoms of a heme malignancy subtype at the time of the
physician consult, a “pan-heme” genomic analysis can still be conducted simultaneously in
a disease-agnostic fashion.

Multiple studies, including the present study, demonstrate that OGM overcomes
multiple limitations of SOC testing [11,14]. In agreement with recently published studies,
this study demonstrates increased detection of clinically relevant SVs by OGM compared
to SOC in 28% of cases (Tier 1 or Tier 2 SVs that were missed by SOC). Additionally,
OGM provides a standardized data acquisition and analysis process with a software
solution that allows for seamless and systematic implementation and adoption across
multiple laboratories.
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This clinical validation is the second published study in the USA according to CAP/CLIA
guidelines [22]. After the validation was completed, a representative report template was
created with Tier 1A variants highlighted on page 1 and Tier 1b/2 variants listed on page 2
(Figure 6). Section A is analogous to a FISH panel, with present/absent indicated for each
abnormality. Section B represents a whole-genome analysis and displays the SVs detected
on a chromosome-by-chromosome basis (analogous to a KT).
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summary of test results reports whether any variant was detected (positive/negative) and if the
genome was simple or complex. Section A shows the defined Tier 1A abnormalities as a panel, and
section B shows the whole-genome profile from chromosomes 1-22, X, and Y.

5. Conclusions

OGM is a viable alternative to multiple methods, such as, KT, FISH, and CMA, ad-
dressing several lacunae of the traditional methods. The OGM workflow provides an
end-to-end solution, from DNA isolation to downstream SV analysis and interpretation,
using analysis software to facilitate adoption in a clinical laboratory. Since the OGM assay
does not require culturing of the clinical specimens, the typically observed culture biases
in a cytogenetic laboratory are eliminated. OGM also allows for a sample to answer to be
obtained in 4–5 days, which is extremely beneficial for the management and treatment of
these patients. OGM not only detects all classes of SVs but provides the highest resolution
attained to date by any cytogenetic method in clinical use. The ability of OGM to detect
both recurrent SVs and novel fusions positions it as a first-tier test for the detection of all
classes of SVs in potentially all hematological malignancies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11123263/s1, Table S1: Summary of molecular quality
statistics for 215 data points; Table S2: Concordance of Tier 1 and 2 findings between OGM and KT,

https://www.mdpi.com/article/10.3390/biomedicines11123263/s1
https://www.mdpi.com/article/10.3390/biomedicines11123263/s1
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FISH, and CMA platforms; Table S3: OGM detects additional novel Tier 1 and 2 findings not seen in
SOC platforms. This table contains a list of the disease-associated findings of KT, FISH, chromosomal
microarray, and OGM. Novel OGM findings were confirmed by orthogonal methods. The OGM
Circos plots show an overview of somatic SVs identified in the tumor genomes. KT variants annotated
as “add” could not be compared for concordance because of insufficient information. * OGM ISCN
entries with an appended asterisk indicate that a microarray was run for confirmation, and OGM
variants with asterisks were confirmed; Table S4: Intersite replication results; Table S5: List of unique
NCCN, WHO, and NHS structural variants across hematological malignancies that were assessed as
part of the review process; Table S6: Reproducibility by SV type.
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