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Abstract: Previously, it was shown that both blood flow and angiogenesis in the ischemic hind limb
of diabetic rats were increased upon CO2 treatment for 4 weeks. In the present study, we have
compared the effects of 6 weeks CO2 therapy in diabetic rats with or without peripheral ischemia.
Diabetes was induced in rats by a tail vein injection of streptozotocin (65 mg/kg body weight),
whereas peripheral ischemia was produced by occluding the femoral artery at 2 weeks of inducing
diabetes. Both diabetic and diabetic-ischemic animals were treated with or without CO2 water-bath
at 37 ◦C for 6 weeks (30 min/day; 5 days/week) starting at 2 weeks, after the induction of ischemia.
CO2 treatment did not affect heart rate and R-R interval as well as plasma levels of creatine kinase,
glucose, cholesterol, triglycerides and high density lipoproteins. Unlike the levels of plasma Ox-LDL,
MDA and TNF-α, the levels of NO in diabetic group were increased by CO2 water-bath treatment.
On the other hand, the levels of plasma Ox-LDL and MDA were decreased whereas that of NO
was increased without any changes in TNF-α level in diabetic-ischemic animals upon CO2 therapy.
Treatment of diabetic animals with CO2 increased peak, mean and minimal blood flow by 20, 49
and 43% whereas these values were increased by 53, 26 and 80% in the diabetic-ischemic group by
CO2 therapy, respectively. Blood vessel count in diabetic and diabetic-ischemic skeletal muscles was
increased by 73 and 136% by CO2 therapy, respectively. These data indicate that peripheral ischemia
augmented the increase in blood flow and development of angiogenesis in diabetic skeletal muscle
upon CO2 therapy. It is suggested that greater beneficial effects of CO2 therapy in diabetic-ischemic
animals in comparison to diabetic group may be a consequence of difference of changes in the
redox-sensitive signal transduction mechanisms.

Keywords: diabetic complications; peripheral artery disease; CO2 water-bath therapy; skeletal
muscle angiogenesis

1. Introduction

Diabetes is a chronic metabolic disorder manifested by hyperglycemia and if left
untreated or improperly managed, it may result in complications such as heart disease [1].
Diabetes is also known to produce atherosclerosis leading to occlusive disease of the
hind limbs, which is commonly referred to as peripheral artery disease (PAD) [2]. The
advanced stage of PAD is characterized by chronic limb-threatening ischemia with very
high morbidity and mortality rates [3–6]. It has also been shown that diabetes is a significant
PAD risk factor in addition to hypertension, chronic kidney disease, hyperlipidemia, and
smoking [7]. PAD begins early in diabetic patients and progresses rapidly but remains
mostly asymptomatic, which makes it difficult to detect. However, strict management
conditions for PAD in diabetes have been reported to promote early diagnosis and reduce
progression [7]. Although several medical therapies such as antidiabetic, antiatherosclerotic,

Biomedicines 2023, 11, 3250. https://doi.org/10.3390/biomedicines11123250 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11123250
https://doi.org/10.3390/biomedicines11123250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://doi.org/10.3390/biomedicines11123250
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11123250?type=check_update&version=1


Biomedicines 2023, 11, 3250 2 of 11

antithrombotic, antihypertensive and vasodilatory drugs as well as surgical procedures
are available for the treatment of PAD [7–13], none of these interventions are entirely
satisfactory. It is also pointed out that more than 200 million patients all over the world are
affected by PAD [14] and thus there is an urgent need to find solution for this health hazard.

Bathing in naturally enriched carbon dioxide (CO2) spring waters known as bal-
neotherapy, has been used as a traditional method, for over a century, for health promotion
and prevention of PAD as well as treatment and rehabilitation of patients suffering from
various diseases [15–18]. Such beneficial effects of balneotherapy are considered to be due
to marked vasodilatory and anti-inflammatory actions of CO2. In fact, both clinical and
experimental investigations have revealed that CO2 therapy improves blood flow in the
ischemic limb in PAD [4,19–28]. Due to the microcirculation promoting effect of CO2, an-
giography using CO2 has been employed to monitor immediate response to endovascular
therapy of PAD [29–32]. Since CO2 water-bathing induces marked changes in body surface
temperature, thermal imaging has also been used to measure the actions of CO2 treatment
in augmenting blood flow in patients with PAD [33]. Thus, CO2 has not only been used
as a therapeutic intervention for promoting blood flow but has also been exploited as a
diagnostic tool for the detection and progression of PAD.

In view of higher incidence of ulcers in patients with diabetes, bathing in CO2-enriched
water has been reported to accelerate healing of foot ulcers [28]. We have also observed
that 4 weeks of CO2 therapy augmented the blood flow and angiogenesis in the skeletal
muscle of 6 weeks diabetic-ischemic hind limb of rats [25]. Since the effects of CO2 water-
bath therapy on blood flow as well as angiogenesis in diabetic animal hind limb without
ischemia have not been examined, this study was undertaken to compare the effectiveness
of CO2 water-bath therapy in diabetic and diabetic-ischemic hind limb in promoting blood
flow and angiogenesis. Diabetic animals with or without peripheral ischemia also received
water-bath treatment in the absence or presence of CO2 to examine changes in some
biomarkers for inflammation and oxidative stress.

2. Materials and Methods
2.1. Induction of Diabetes and Hind Limb Ischemia

Diabetes was induced in male Sprague-Dawley rats (175–200 g) by a tail vein injection
of streptozotocin (65 mg/kg body mass) according to the procedure used in our labora-
tory [34,35]. The animals were divided into 6 groups as shown in Figure 1. Two weeks after
the induction of diabetes, 3 groups of animals were anesthetized with 1–5% isoflurane in
oxygen at a flow rate of 2 L/min, for the induction of hind limb ischemia according to the
method described earlier [24,25]. Inguinal artery in the left thigh was occluded by ligation
using 3-0 surgical silk [36]. The wound was closed and the animals were allowed to recover
in their cages. Animals with no infection at the surgical site and the wounds completely
healed were used for experiments.

2.2. CO2-Enriched Water-Bath Therapy

Two weeks after the hind limb ischemia or four weeks after inducing diabetes, ani-
mals were subjected to no water-bath or water-bath treatment at 37 ◦C for 30 min daily
(5 days per week) for 6 weeks as described in Figure 1 [25]. Two groups were subjected
to CO2 water-bath (diabetic and diabetic-ischemic with CO2 mixing), whereas other two
groups were exposed to water-bath without CO2 mixing (diabetic and diabetic-ischemic
without CO2 mixing). Another two groups were not exposed to any water-bath treatment
(diabetic and diabetic-ischemic). Although other investigators have used four weeks for
CO2 treatment [21,23], in this study we used 6 weeks treatment in order to assess if pro-
longed treatment results in improved effects in comparison to our earlier 4 weeks treatment
study [25]. Carbothera, a therapeutic footbath unit (Mitsubishi Rayon Engineering, Tokyo,
Japan) containing a multi-layered composite hollow-fiber membrane, was used for dissolv-
ing CO2 in tap water [37]. The CO2 concentration was 1000–12,000 ppm (pH 4.5–4.6) and
temperature of the bath was kept constant at 37 ◦C. The animals were kept in a Plexiglas
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plastic rat restrainer with several large perforations underneath, and the hind limb was
immersed in the water-bath. At the end of 6 weeks treatment, the animals were anes-
thetized with ketamine/xylazine (90/9 mg/kg body weight). Blood was collected from the
abdominal aorta, and serum was used for biochemical analysis. Left leg skeletal muscle
was also dissected at the ischemic site and stored at −70 ◦C for analysis.
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Figure 1. Diabetic rat groups showing time periods for inducing ischemia in diabetic rats followed
by treatment with (+) or without (−) CO2 water-bath for 6 weeks.

2.3. Measurements of Blood Flow

Blood flow to the hind limb was measured after femoral artery ligation as well as at
6 weeks after CO2 treatment using a Pulse Wave Doppler System (Indus Instruments, Web-
ster, TX, USA) [38,39]. Anesthetized rats were tied in a supine position on the ECG board
(THM100, Indus Instruments). Blood flow was measured using a 20-MHz pulsed Doppler
probe. Data analysis was carried out with an Indus Instruments Doppler Signal Processing
Workstation whereas Doppler spectrogram analysis software was used for calculating the
heart rate and R-R interval. The methods were same as described previously [24,25].

2.4. Assessment of Angiogenesis

Skeletal muscle tissue above the femoral artery ligation was fixed with 10% formalin
for 24–48 h and embedded in paraffin [24]. About 10–15 sections of each sample at 5 µm
were taken using a Shandon, Finesse 325 microtome. After staining with Hematoxylin
and Eosin, all tissue sections were examined under light microscope. Blood vessels were
visualized using Image ProPlus digital system Version 7.0 [40]. The analysis of angiogenesis
was carried out by a technician blinded to the animal protocol. It is mentioned that the
data are expressed per tissue section, although the area examined in all groups was not
the same.

2.5. Serum Analysis

Serum analysis was carried out with the Roche Cobas 6000 module c501 (Roche
Diagnostics GmbH, Mannheim, Germany) automated system as suggested earlier [25].
Enzymatic–colorimetric assays were used for the measurement of cholesterol, triglycerides,
and high density lipoproteins (HDLs). Glucose was measured with a hexokinase UV
method whereas creatine kinase (CK) was estimated using N-acetyl cysteine-activated
UV assay. Serum tumor necrosis factor α (TNF-α) and NO (nitric oxide) were measured
using methods developed by R&D Systems, Minneapolis, MN, USA and Enzo Life Sci-
ences, Farmingdale, NY, USA, respectively. Malondialdehyde (MDA) as well as oxidized
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low-density lipoproteins (Ox-LDLs) (Zeptometrix Corporation, Buffalo, NY, USA) were
estimated using specific ELISA kits according to procedure by the manufacturer.

2.6. Data Analysis

Each value is expressed as mean ± standard error (SE). The statistical analysis was
carried out using Origin Version 6 software (Microcal Software Inc., Northampton, MA,
USA). The results from the same group were analyzed using one-way analysis of variance
(ANOVA) whereas those from different groups were analyzed using Student’s t test and
p value < 0.05 was considered significant.

3. Results
3.1. Characteristics of Animal Models with or without CO2 Therapy

The data in Table 1 show the values for body weight, heart rate, R-R interval and
plasma creatine kinase levels in both 4 weeks diabetic and diabetic-ischemia rats subjected
to no water-bath, water-bath without CO2 and CO2 water-bath treatments for a period
of 6 weeks. There was no difference in these parameters with or without the water-bath
treatments for both diabetic as well as diabetic-ischemic animals. Furthermore, the values
for plasma glucose, cholesterol, triglycerides and high density lipoproteins in both diabetic
and diabetic-ischemic animals were not affected by treatments with water-bath with or
without CO2 mixing. These results did not show any difference between diabetic and
diabetic-ischemic animals with respect to cardiac function and metabolic status (Table 2).

Table 1. Effect of CO2 treatment for 6 weeks at 37 ◦C on body weight, heart rate, R-R interval and
plasma creatine kinase levels in 4 weeks diabetic and diabetic- ischemic rats.

Groups Body Weight
(g)

Heart Rate
(beats/min)

R-R
Interval

(ms)

Creatine
Kinase (U/L)

(a): Diabetic rats
No water bath 407 ± 13 286 ± 12 211 ± 9 387 ± 36

Water bath − CO2 443 ± 11 295 ± 14 211 ± 9 397 ± 69
Water bath + CO2 426 ± 22 299 ± 15 205 ± 5 492 ± 77

(b): Diabetic-ischemic rats
No water bath 383 ± 28 286 ± 13 213 ± 13 482 ± 92

Water bath − CO2 382 ± 21 292 ± 16 208 ± 11 398 ± 70
Water bath + CO2 422 ± 14 284 ± 8 213 ± 6 496 ± 66

Values are mean ± SE of 6 animals in each group. Values for heart rate, R-R interval and plasma creatine kinase
levels in diabetic animals were not significantly (p > 0.05) different from those for the control rats.

Table 2. Effect of CO2 treatment for 6 weeks at 37 ◦C on plasma glucose and lipid levels in 4 weeks
diabetic and diabetic-ischemic rats.

Groups Glucose
(mM)

Cholesterol
(mM)

Triglycerides
(mM)

High Density
Lipoproteins

(U/L)

(a): Diabetic rats
No water bath 34.2 ± 1.4 2.88 ± 0.31 9.51 ± 4.99 0.91 ± 0.20

Water bath − CO2 35.0 ± 1.2 2.28 ± 0.37 5.99 ±1.78 1.28 ± 0.11
Water bath + CO2 34.0 ± 0.2 2.98 ± 1.06 9.55 ± 4.11 1.30 ± 0.24

(b): Diabetic-ischemic rats
No water bath 37.0 ± 1.9 2.78 ± 0.34 5.35 ± 3.84 1.60 ± 0.23

Water bath − CO2 38.8 ± 1.1 2.78 ± 0.44 6.34 ± 3.50 0.98 ± 0.19
Water bath + CO2 36.0 ± 1.9 2.10 ± 0.14 5.27 ± 1.94 1.30 ± 0.10

Values are mean ± SE of 5 to 6 animals in each group. Plasma levels of glucose, cholesterol and triglycerides
in diabetic animals were about 100%, 80% and 50% higher than those in control rats, respectively, without any
difference in the levels for high density lipoproteins.
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In order to test the effects of peripheral ischemia in diabetic animals, peak blood flow,
mean blood flow and minimal blood flow were measured in diabetic and diabetic-ischemic
animals without any treatment with water-bath. Peak, mean and minimal blood flow in
diabetic-ischemic animals were 16, 55 and 34% lower than those in the diabetic animals
(Figure 2). However, the vessel counts in the hind limb skeletal muscle of the diabetic and
diabetic-ischemic groups were not different from each other (Figure 2). These results show
that the effects of peripheral ischemia for depression in the blood flow in diabetic rats were
not associated with any changes in the density of small blood vessels in the skeletal muscle.
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Figure 2. Peak (a), mean (b), and minimal (c) blood flow in hind limb skeletal muscle in 10-week
diabetic as well as diabetic-ischemic rats without any water bath treatment. Values are means ± SE
of 5 animals per group. *—p < 0.05 vs. respective diabetic group. Representative hind limb skeletal
muscle sections of diabetic (d), diabetic-ischemic (e) and their blood vessel count (f) are also shown.
Scale bars = 200 µm. Arrows indicate the location of blood vessel.

3.2. Influence of CO2 Therapy on Blood Flow

Figure 3 shows the effect of CO2 therapy on blood flow in the hind limb of both diabetic
and diabetic-ischemic rats. The values for peak, mean and minimal blood flow were 20, 40
and 43% higher in diabetic animals upon treatment with CO2 water-bath in comparison to
those with water-bath without CO2 mixing. On the other hand, the values for peak, mean,
and minimal blood flow were 53, 26 and 80% higher in diabetic-ischemic group upon CO2
therapy in comparison to those with water-bath without CO2 mixing. These results show
that increase in both peak and minimal blood flow values in diabetic-ischemic animals
due to CO2 therapy were greater than those observed in the diabetic group. Although the
increase in the mean blood flow in the diabetic-ischemic group due to CO2 treatment was
not higher than that in the diabetic animals, such results may be due to a relatively high
increase in minimal blood flow values in these animals.

3.3. Influence of CO2 Therapy on Angiogenesis in Skeletal Muscle

CO2 treatment of diabetic animals was observed to decrease the blood vessel count by
about 27% in comparison to that seen in the skeletal muscle upon treatment with water-bath
with no CO2 mixing. On the other hand, blood vessel count in the diabetic-ischemic group
was increased by about 136% due to CO2 treatment. These results (Figure 4) indicate that
the development of angiogenesis in diabetic-ischemic animals was markedly augmented
by CO2 therapy.
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Figure 4. Representative hind limb skeletal muscle sections of diabetic without CO2 (a), diabetic with
CO2 (b), diabetic-ischemic without CO2 (d), and diabetic-ischemic with CO2 (e) water-bath therapy
at 37 ◦C. Bar graphs in (c,f) show their respective blood vessel count. Values are means ± SE of
6 animals per group. *—p < 0.05 vs. respective group without CO2. Arrows indicate capillaries and
small vessels in the tissue sections. Scale bars = 200 µm.
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3.4. Effects of CO2 Therapy on Plasma Biomarkers

It was interesting to observe that the values of plasma Ox-LDL, MDA, NO and TNF-α
in diabetic animals upon water-bath without CO2 mixing were significantly lower than
those without water-bath treatment (Figure 5). On the other hand, the values of plasma Ox-
LDL and TNF-α were decreased whereas those for plasma MDA and NO were increased in
the diabetic-ischemic group upon water-bath without CO2 treatment (Figure 5). Although
the exact reason for this differential effect of water-bath without CO2 treatment in diabetic
and diabetic-ischemic groups with respect to these biomarkers is not clear at present, the
involvement of some stress-induced changes cannot be ruled out. It can be argued that
Ox-LDL/LDL and MDA/LDL ratios are more sensitive biomarkers of oxidative stress than
Ox-LDL and MDA levels per se but we did not measure plasma LDL levels in this study
and thus values for these indices are not given.
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It should be noted that therapy of diabetic animals with CO2 was observed to increase
the plasma levels of NO, unlike plasma levels for Ox-LDL, MDA and TNF-α. Furthermore,
plasma levels of Ox-LDL and MDA were significantly decreased whereas that for plasma
NO was increased without any changes in TNF-α level in the diabetic-ischemic group with
CO2 therapy. These results indicate that CO2 therapy improved plasma level of NO in
diabetic animals whereas in diabetic-ischemic group plasma NO level was further increased
and plasma levels of Ox-LDL and MDA were significantly depressed.
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4. Discussion

In this study, peak, mean and minimal blood flow in the hind limb of diabetic rats
were increased by 20, 49 and 43% due to CO2 therapy for a period of 6 weeks. On the
other hand, these parameters in the hind leg of normal rats were increased by CO2 therapy
by 2 to 4 folds under similar conditions [24,26]. Attenuated responses of diabetic animals
to CO2 water-bath therapy in comparison to normal rats may be due to differences in
the modification of both extrinsic and intrinsic factors, which are known to regulate the
peripheral blood flow [4,6,11]. In this regard, it is pointed out that diabetes has been
shown to induce marked alterations in Ca2+- handling as well as metabolism in the skeletal
muscle [34,35,41]. Although changes in the sympathetic activity due to CO2 therapy have
been suggested to explain the improved blood flow [42], this mechanism cannot account
for the observed increase in blood flow because no difference for various indices, such as
heart rate, R-R interval and plasma creatine kinase levels in diabetic animals, was seen
between water-bath treatments with or without CO2 mixing. Furthermore, alterations in
blood viscosity cannot be considered to explain the difference in blood flow [4], because the
levels of plasma cholesterol, triglycerides, high density proteins and glucose in the diabetic
animals with water-bath treatments in absence or presence of CO2 mixing were similar.
Although development of angiogenesis by CO2 therapy has been reported to result in
promoting the blood flow in skeletal muscle [24], this may not be the case in this condition
because the blood vessel count in diabetic skeletal muscle was decreased upon CO2 therapy.
Since plasma levels of NO, a well known vasodilator, were increased by CO2 treatment of
diabetic animals, it appears that the observed increase in blood flow under this condition
may be a consequence of increase in the plasma level of NO.

In contrast to diabetic animals, diabetic-ischemic group showed greater increase in
peak, mean and minimal blood flow (53, 26 and 80%, respectively) and a marked increase
(136%) in the skeletal muscle blood vessel count upon CO2 treatment. These observations
support the view that peripheral ischemia augments the increase in blood flow as well
as the development of angiogenesis due to CO2 therapy and are in agreement with our
early report [25]. Such beneficial effects of CO2 therapy in diabetic-ischemic group were
associated with significant depressions in the level of plasma Ox-LDL and MDA levels
as well as further increase in the level of plasma NO. The observed alterations in plasma
biomarkers indicate that the effects of CO2 may be related to reduction in the degree
of oxidative stress in the diabetic-ischemic skeletal muscle as well as direct action of
NO on the peripheral vasculature. In this regard, it is pointed out that several studies
have shown that CO2 is an antioxidant gaso-transmitter [43–45] and NO is involved in
promoting angiogenesis in the different organs including hind limb [36,46,47]. Furthermore,
CO2 has been demonstrated to increase cyclic nucleotides and prostanoids for vascular
regulation [48]. Thus, it is likely that the modification of both blood flow and angiogenesis
in the hind limb of diabetic-ischemic animals by CO2 therapy may be mediated through
different mechanisms including redox-sensitive signal transduction pathway.

Although in this experimental study we have shown improvement in peripheral blood
flow in diabetic-ischemic animals upon treatment with CO2 water-bath at 37 ◦C, it is pointed
out that such a beneficial effect of this mode of therapy in normal-ischemic animals has
been demonstrated to be dependent upon temperature of the water-bath [26]. Furthermore,
in view of our observations in this study as well as previous investigation [25], it appears
that the effectiveness of CO2 water-bath therapy is influenced by the duration of diabetes.
Thus, extensive work needs to be carried out to optimize this technique by employing the
diabetic-ischemic animals before this therapy can be considered for clinical application.
Since diabetes is associated with several risk factors including hypertension for inducing
vascular complications, it would be valuable to examine the effectiveness of CO2 water-
bath therapy by employing diabetic-hypertensive animals. Nonetheless, a preliminary
study in diabetic patients with foot ulcers has shown some promising results with CO2
water-bath treatment [28], and it is hoped that a large clinical trial will be undertaken to
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establish the beneficial effects of CO2 therapy for the treatment of vascular complications
in diabetic patients.

5. Conclusions

This study has demonstrated that CO2 water-bath therapy improves blood flow and
increase plasma level of NO in diabetic rats. Furthermore, peripheral ischemia in diabetic
animals was observed to augment the effects of CO2 treatment on blood flow and induce
angiogenesis in the hind limb. It is proposed that the beneficial effects of CO2 therapy
on peripheral blood flow and angiogenesis in diabetic-ischemic animals may be elicited
through the involvement of redox-sensitive and NO-related signal transduction pathways.
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