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Abstract: Acute myeloid leukemia (AML) is a rare subtype of acute leukemia in the pediatric
and adolescent population but causes disproportionate morbidity and mortality in this age group.
Standard chemotherapeutic regimens for AML have changed very little in the past 3–4 decades,
but the addition of targeted agents in recent years has led to improved survival in select subsets of
patients as well as a better biological understanding of the disease. Currently, one key paradigm
of bench-to-bedside practice in the context of adult AML is the focus on leukemia stem cell (LSC)-
targeted therapies. Here, we review current and emerging immunotherapies and other targeted
agents that are in clinical use for pediatric AML through the lens of what is known (and not known)
about their LSC-targeting capability. Based on a growing understanding of pediatric LSC biology, we
also briefly discuss potential future agents on the horizon.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that affects
just over 4 per 100,000 adults and 7 per 1 million children in the United States each year [1,2].
In adults, AML incidence increases with advancing age [1], and the clonal expansion of im-
mature myeloid-lineage blasts is thought to be secondary to the sequential accumulation of
multiple mutations that collectively confer a growth/proliferation advantage over normal
hematopoietic populations [3]. In children, the genetic drivers of AML are fewer in number
and tend to be sufficient to generate an acute leukemia phenotype as stand-alone mutations,
suggesting biological differences between adult and pediatric disease [4]. However, in both
age groups, outcomes for AML remain suboptimal. Despite intensive treatment regimens
including high-dose chemotherapy and at times allogeneic stem cell transplant (SCT),
approximately 30–40% of children and young adults and over 80% of elderly adults will
relapse [1,2]. Relapsed AML is a scenario where the prognosis is particularly poor and for
which additional treatment options including novel agents are a relatively unmet need [5,6].
A better understanding of the pathophysiology and mechanistic drivers of the disease will
help guide future therapeutic advances.

Leukemia stem cells (LSCs) have been implicated in the origination, chemo-resistance,
and relapse of both adult and pediatric AML. There has been a general drive among
translational researchers and clinicians to better characterize these cells to understand which
aspects of their biology might be targeted for therapeutic purposes. The general hypothesis
is that LSC-targeting agents, as an integral part of AML treatment, will improve event-free
and overall survival for patients. While our knowledge of adult LSCs is substantial and
growing constantly, research into pediatric LSCs is relatively nascent. The purpose of this
review is to provide an overview of the pediatric LSC literature, within the framework of
what is already known about adult LSCs, and identify which novel agents are thought to
have the highest likelihood of successfully eradicating these leukemia-initiating cells.
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2. Discovery and Evolving Knowledge of Stem Cells in Adult AML
2.1. Functional Definitions and Immunophenotype

The concept of a myeloid LSC first took shape in the mid-1960′s [7] and was further
delineated in the 1980′s, when it was seen in clonogenic assays and murine engraftment
models that there was a relatively rare population of AML cells that could recapitulate the
phenotypic diversity of the disease [8,9]. Early studies of LSCs in adult AML showed the
presence of functionally defined leukemia-initiating cells exclusively in the CD34+CD38-
phenotypic compartment, irrespective of the patient immunophenotype, and correlated the
frequency of this compartment in patient samples with survival outcomes [10,11]. More
recent evaluations of the CD34+CD38- LSC phenotypic assumption have correlated the
abundance of the CD34+CD38- compartment at diagnosis with post-treatment survival
in patients having achieved remission and demonstrate that the quantitation of the abun-
dance of LSC in this way can supplement a more conventional assessment of measurable
residual disease (MRD) [12]. CD123 has also been demonstrated to be highly expressed
on LSCs but, unlike CD34, generally has minimal or variable expression on hematopoietic
stem cells (HSCs), raising the possibility of a therapeutic window for therapeutic target-
ing [13]. Incidentally, CD123 has also been shown to be a marker of stem cells in high-grade
myelodysplastic syndrome (MDS), which carries a significant risk of transformation to
AML [14].

Additional seminal studies have sought to more precisely quantify LSC frequency
through limiting dilution experiments in immunodeficient mice; these studies highlighted
the diversity of AML immunophenotypes in primary patient samples and revealed that
LSC activity was not restricted to the CD34+CD38- cells, nor even to those lacking lineage
markers [15]. Not only has interpatient heterogeneity been shown, but within individual
patients, LSCs can have multiple immunophenotypes [16,17], and LSC surface marker
expression even changes after chemotherapy in many cases [16]. Therefore, while many
cell surface proteins have been proposed as LSC markers [13,17–23], their fidelity across
the breadth of AML patients as well as through therapy for a single patient remains
questionable.

2.2. LSC Transcriptional Signatures

An alternative approach to the identification and study of LSCs has been the devel-
opment of LSC gene expression signatures. Eppert et al. published one of the first LSC
gene signatures by comparing gene expression microarray data of sorted populations of
functionally validated LSCs to populations of non-LSC blasts [24]. This group identified
42 genes whose expression was enriched in LSCs, confirmed that many of these genes
were also expressed in normal HSCs, and correlated high expression levels of these genes
with poor survival outcomes in three independent adult AML cohorts [24]. One of the
most frequently cited LSC gene expression signatures is the LSC17 signature developed by
Ng and colleagues in 2016 [25]. It was developed based on sorted cell populations from
87 adult AML patients that were functionally evaluated for the presence or absence of
LSC activity. The most upregulated genes in the LSC+ populations compared to the LSC-
populations underwent sparse regression analysis in order to identify the minimal gene list
that was still prognostic of survival outcomes in a training cohort of adults with AML [25].
These 17 genes were further validated in three additional cohorts of patients, with high
LSC17 scores associated with poor event-free and overall survival [25].

In 2015, investigators also published a DNA methylation signature based on function-
ally validated LSC and non-LSC populations from 15 adults with AML [26]. The majority
(91%) of the over 3000 differentially methylated regions were hypomethylated in LSCs
compared to non-LSCs, representing differential expression of 71 genes [26]. Only 6 of
these 71 genes were described in the previous LSC gene expression signatures [26]. It was
found that many HOXA cluster genes were upregulated in LSCs, irrespective of genetic
driver mutations [26]. Expression of this LSC epigenetic signature was also correlated with
outcomes in multiple patient cohorts [26]. Epigenetic dysregulation is a recurring theme
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in the adult LSC literature [27–33], with several potential therapeutic targets identified,
including protein arginine methyltransferase (PRMT6) [28], vitamin D receptor (VDR) [31],
and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) [33], to name a few.

2.3. LSC Metabolism, Microenvironment, and Drug Resistance

Additional characterization of LSCs in adult AML has involved the evaluation of
metabolic and other functional vulnerabilities of these cells. One seemingly unifying
feature of functionally validated myeloid LSCs is that they have lower levels of reactive
oxygen species (ROS) compared to bulk blasts—a feature that has been used to isolate
and study these cells irrespective of their immunophenotype [34,35]. In addition, LSCs in
general have a greater dependence on oxidative phosphorylation (OXPHOS), with limited
flexibility in transitioning to glycolysis or other energy sources, at least in chemotherapy-
naïve cells [34,36]. In chemo-resistant LSCs, which are typically enriched at relapse, both
amino acid metabolism [37–39] and fatty acid oxidation and transport [28,40–43] have been
shown to play roles in greater metabolic resilience.

Interactions of LSCs with the surrounding niche have also been shown to play a role
in their survival and propagation of AML. LSC-homing to the bone marrow is facilitated by
CXCR4/CXCL12 interactions, which are promoted by AML-associated mutations such as
TET2 deletions through epigenetic modifications [27]. LSCs utilizing the CXCR4/CXCL12
axis to hide in the bone marrow have been shown to be more resistant to FLT3 inhibitors
such as quizartinib [44]. Similarly, LSCs that had adapted to an adipose niche were shown
to be resistant to conventional chemotherapeutic agents [42]. The microenvironment also
plays a role in the immune evasion of LSCs [45].

Another feature of LSCs is their ability to directly eliminate chemotherapeutic agents
through drug efflux pumps [46–48] or to upregulate autophagy in response to a variety of
insults [49–52]. Autophagy inhibitors have shown preclinical utility in combination with
epigenetic and metabolic agents [49,50] but may have antagonistic activity against certain
kinase inhibitors [51].

As the breadth of LSC literature grows, additional options for LSC-targeting therapies
are expected to come to light. Figure 1 provides a broad overview of LSC vulnerabilities,
which have also been adeptly reviewed by others [53–56].
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conjugates (ADCs) or chimeric antigen receptor T cells (CAR-T); the crucial role of oxidative phos-
phorylation in metabolism; the use of other energy sources such as fatty acids and amino acids
(particularly in resistant disease); protection from antineoplastic agents due to niche interactions with
the bone marrow or adipose tissue microenvironments; immune evasion through downregulation
of NKG2DL; increased expression of drug efflux pumps; overexpression or increased reliance on
antiapoptotic proteins; and upregulation of autophagy in LSCs. In addition, alteration of the LSC gene
expression program through hypomethylating agents and other epigenetic modifiers may contribute
to LSC-targeting. Created with BioRender.com.

3. LSC Biology in Pediatric Myeloid Disease

With the upswell of interest and translational research focus on isolating and therapeu-
tically targeting the myeloid LSC in adult medicine, it is not surprising that the literature
on pediatric AML stem cells has also seen rapid growth in the past decade. Much of what
has been published about pediatric AML stem cell biology borrows heavily from certain
foundational tenets of adult AML stem cells, which can at times create limitations in the
data. For example, many of the pediatric LSC studies base their investigation of pediatric
LSCs on CD34+CD38- sorted populations of cells, which in most cases is enriching for
LSCs in the context of adult AML but may miss the LSC heterogeneity that we now know
is present [57–62]. With those caveats in mind, the findings from these studies could still
prove to be therapeutically and prognostically interesting.

3.1. Immunophenotype

Potential immunophenotypic targets for pediatric LSCs have largely been explored in
the context of comparing expression levels of published adult LSC markers in pediatric
HSCs from healthy controls to CD34+CD38- populations from AML samples. Chavez-
Gonzalez et al. demonstrated increased expression of both CD123 and CD96, but not CD117
or CD90, in putative LSCs versus normal HSCs [57]. Petersen et al. likewise confirmed
increased expression of CD123, as well as CLL and IL1RAP, in primitive populations from
AML patients versus healthy bone marrow donors, but noted that IL1RAP, CD93, and
CD25 expression was not restricted to populations harboring AML-associated genetic muta-
tions [58]. In retrospective analyses, both CD123 and CD200 expression have demonstrated
a correlation with inferior survival and other poor prognostic features (high-risk genetics,
persistent MRD) [60,63]. CD200 has been shown to play a role in immune evasion in both
adult [64] and pediatric [65] AML, in part through decreasing STAT3-dependent cytokine
secretion and reducing OXPHOS in T cells [64]. Another putative LSC marker, CD69, was
identified as upregulated in LSCs from pediatric patients who failed to achieve remission
with conventional chemotherapy [66].

3.2. LSC Transcriptional Signatures

The bulk of the existing investigation into pediatric LSCs has involved the validation
of LSC-enriched gene expression signatures, building off of the adult literature. Duployez
et al. initially evaluated the prognostic relevance of the LSC17 gene signature in two large
retrospective pediatric AML data sets, finding that high expression of these 17 genes was
strongly associated with inferior event-free and overall survival, including in multivariate
analyses [67]. Elsayed et al. applied a least absolute shrinkage and selection operator
(LASSO) Cox regression model to 32 of the 47 genes originally identified by Ng et al. and to
survival data from the St. Jude AML02 trial and identified a “pLSC6” gene signature that
was most discriminatory of survival outcomes in that patient cohort [68]. They then showed
a superior association with the survival of pLSC6 compared to the LSC17 signature [68].
Most recently, Huang et al. reviewed all of the previously published LSC gene signatures
in the context of RNA-seq data from 1503 diagnostic samples banked through four large
Children’s Oncology Group (COG) trials [69]. This study showed that the larger LSC47
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gene signature, from which the LSC17 signature was derived [25], was actually the most
prognostic of outcomes within genetic risk groups compared to either LSC17 or pLSC6 [69].
The prognostic value of LSC47 was then validated in an independent cohort of 212 patients
from St. Jude [69]. Together, the transcriptional data from large clinical cohorts provide
corroborating evidence of the importance of LSC biology for childhood AML.

3.3. LSC Metabolism, Microenvironment, and Drug Resistance

Although metabolic and functional vulnerabilities of pediatric LSCs are relatively
understudied, a growing body of literature is rapidly filling this knowledge gap. Alterna-
tive splicing events were identified in a small cohort of pediatric LSC samples that were
subjected to single-cell proteogenomic analysis in parallel with normal HSCs [59]. Exon
skipping was prominent in LSCs but not HSCs and included alternative splicing of CD47,
which led to upregulation of this immune evasive molecule [59]. The exon skipping phe-
notype was also associated with increased transcript levels of MCL1-L and BCL2-L splice
variants, both of which are pro-survival [59]. Rebecsinib, a splicing modulator compound,
was shown to reduce viability and colony formation of pediatric LSCs but not cord blood
HSCs [59], suggesting that this agent still in preclinical testing could have utility in treating
pediatric AML. Rebecsinib has also been proposed as an LSC-targeting therapy in adult
AML [70].

Another study compared single-cell RNA-seq data in paired pre- and post-chemotherapy
bone marrow samples from 13 children with AML, using enrichment of chemo-resistant
transcriptional signatures as a surrogate for LSC activity [66]. Traditional LSC signa-
tures were seen in hematopoietic stem cell-like populations, while oxidative phosphoryla-
tion (OXPHOS) signatures were upregulated in progenitor populations, particularly from
patients with more monocytic AML [66]. Gene set enrichment analysis also identified
ribosome biology as upregulated in LSCs [66]. Furthermore, compared to LSCs from
pre-chemotherapy samples, paired post-chemotherapy LSCs showed activation of genes
responsive to reactive oxygen species and heme metabolism and maintained their LSC or
OXPHOS gene signatures [66]. These metabolic features at baseline and in response to
chemotherapy may inform the selection of adjunctive therapies for pediatric AML in the
future. Similarly, analysis of large adult and pediatric transcriptional data sets showed
that high RNA levels of the ATP-binding cassette (ABC) transport protein ABCA3 strongly
correlated with leukemia-free survival as well as expression of the LSC17 gene signa-
ture [71], suggesting that LSCs, in particular, have enhanced drug resistance compared
to bulk AML blasts and warrant careful consideration of their unique vulnerabilities to
bypass this resistance.

With respect to the microenvironment, mouse studies suggest that inherent differences
in niche crosstalk and stromal composition contribute to differences in self-renewal capacity
and fitness between HSCs and LSCs, with neonatal marrow favoring normal HSC develop-
ment and adult marrow favoring LSC propagation [72]. Introducing cells to the marrow of
differently aged mice completely reversed the differences seen in phenotypes, suggesting
that interactions with the bone marrow niche have significant implications for leukemo-
genesis [72]. Less is known about the contribution of the adipose niche in pediatric AML
development and chemo-resistance, with conflicting data as to the relationship between
body mass index (BMI) and outcomes in children. One meta-analysis of 11 articles includ-
ing 2922 patients showed a significant correlation between higher BMI (≥ 85%) and both
event-free and overall survival [73]. However, another multi-national study of 867 pediatric
patients with newly diagnosed AML found no relationship between BMI and relapse risk,
treatment-related mortality, or overall survival [74]. Additional preclinical and clinical
studies are needed to better understand the contributions of different microenvironmental
interactions toward pediatric LSC survival. Figure 2 summarizes what is known about
pediatric LSC biology.
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immunophenotypes, with some but not complete overlap with adult LSCs, can be targeted with
antibody-drug conjugates (ADCs) or chimeric antigen receptor T cells (CAR-T). Similar to adult LSCs,
pediatric LSC gene expression profiles can be altered through epigenetic modifying agents such
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4. Immunotherapies

As preclinical and clinical knowledge around LSC immunophenotypes has grown,
so has the interest in immune-based therapies. Immunotherapies differ significantly from
chemotherapy in that they aim to stimulate a patient’s pre-existing immune system to pref-
erentially target and kill the malignant cell population while minimizing harm to healthy
cells. Cell membrane surface targets have been the main interest for the development
of leukemia-directed immunotherapies, with a particular focus on antibody-based and
cell-based therapies. While the landscape of acute lymphoblastic leukemia (ALL) therapy
has changed completely as a result of immunotherapies, unfortunately, immunotherapy
advances have not been as successful to date in the treatment of pediatric AML. When
it comes to specifically eradicating the AML LSC population, an ideal target for an im-
munotherapeutic approach is highly and universally expressed on LSCs but absent in other
normal cells and HSCs.

As previously discussed, research efforts to differentiate between the immunophe-
notypic profile of LSCs compared to HSCs are immense in order to identify and develop
new immunotherapies that have an optimal therapeutic window. For AML, few targets
have been identified that are exclusive to LSCs; many surface markers that are enriched
on LSCs are also found on HSCs, thus the therapeutic window is relatively narrow. CD33
and CD123 are two of the most commonly pursued surface antigens as clinical targets
but, unfortunately, many clinical trials for these antigens have seen unfavorable toxicity
profiles. The off-target effects and prolonged myelosuppression that have been observed
further emphasize the ongoing hurdles that need to be overcome in order to develop AML-
selective and especially myeloid LSC- immunotherapies. What follows is a brief review of
the immunotherapy agents that are recently or currently under investigation for pediatric
AML and what is known about their LSC-targeting capabilities. Currently, active clinical
trials that include pediatric patients are summarized in Table 1.
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Table 1. Select immunotherapy clinical trials for pediatric patients with AML.

Class/Target Agent Study Population Details NCT # Phase Enrolling?

ND secondary or R/R + Liposomal Daunorubicin and Cytarabine NCT04915612 I Yes
CD33 ADC

Gemtuzumab
ozogamicin

ND COG AAML1831; + SOC chemo or
CPX-351 + GO NCT04293562 III Yes

CD33CART R/R Lymphodepletion with Fludarabine and
Cyclophosphamide NCT03971799 I/II Yes

CD33 CAR T cells
SC-DARIC33 CAR T
cells R/R Intermittent oral rapamycin which

activates DARIC NCT05105152 I Yes

Tagraxofusp R/R & CD123+
monotherapy or + Fludarabine/Cytarabine
or + Dexamethasone/Vincristine or +
Azacitidine

NCT05955261 I Yes
CD123-toxin fusion protein

R/R + Gemtuzumab Ozogamicin NCT05716009 I Pending

CD123xCD3 DART Flotetuzumab R/R COG PEPN1812 NCT04158739 I Completed

CD123/NK cell engager SAR443579 R/R Monotherapy; B-ALL and high-risk MDS
also eligible NCT05086315 I/II Yes

CD123-CAR T R/R & CD123+ Lymphodepletion with Fludarabine and
Cyclophosphamide NCT04318678 I Active, not recruiting

CD123 CAR T cells
CART123 R/R Lymphodepletion with Fludarabine and

Cyclophosphamide NCT04678336 I Active, not recruiting

Checkpoint inhibitors Nivolumab R/R + Azacitidine NCT03825367 I/II Active, not recruiting

FOLR1-CDC ELU001 R/R & CBFA2T3::GLIS2+ Monotherapy NCT05622591 I Pending

ADC = antibody-drug conjugate; ND = newly diagnosed; R/R = relapsed/refractory; COG = Children’s Oncology Group; SOC = standard of care; CAR = chimeric antigen receptor;
DART = dual-affinity retargeting protein; NK = natural killer; B-ALL = B-cell acute lymphoblastic leukemia; MDS = myelodysplastic syndrome; FOLR1 = folate receptor alpha;
CDC = C’Dot drug conjugate.
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4.1. CD33

CD33 is a transmembrane receptor that is expressed highly on the majority of AML
cells. It was identified early as a potential cell-surface therapeutic target, and its expression
on AML LSCs exceeds that of HSCs [75,76]. Gemtuzumab ozogamicin (GO) is a CD33-
targeting antibody-drug conjugate (ADC) consisting of a fully humanized CD33 antibody
with a calicheamicin payload [77]. GO received Food and Drug Administration (FDA)
approval in 2000 on the basis of early adult studies that demonstrated that GO could induce
remissions in relapsed/refractory (R/R) AML [78]. However, due to toxicities including
prolonged cytopenias and increased rates of veno-occlusive disease of the liver, as well
as efficacy concerns in which the benefit of GO in R/R AML could not be confirmed in
subsequent studies, GO was withdrawn from the market in 2010 [79]. These concerning
toxicity profiles were likely due to higher GO dosing than what is currently used, as succes-
sive larger clinical trials confirmed demonstrable clinical benefits and more manageable
toxicities with lower doses of GO [80–85]. Therefore, GO was reapproved by the FDA in
2016 for adults with relapsed and newly diagnosed AML and for children with relapsed
AML [86].

The COG AAML0531 phase III clinical trial demonstrated that GO in combination
with standard chemotherapy resulted in improved outcomes for certain subsets of pediatric
patients with AML [81]. High CD33 surface expression was associated with inferior
outcomes in children with de novo AML treated on AAML0531, and several studies
have suggested that the benefit of GO is directly correlated with higher CD33 surface
expression [81,87].

Recently, significant efforts have been made to optimize the potency of ADCs targeting
CD33. Vadastuximab talirine is one such ADC that was found to be more effective at killing
AML cells compared to GO but with significant hematologic toxicities described due to its
small therapeutic window [88–90]. The phase III CASCADE study investigating this ADC
in older patients with de novo AML was discontinued early due to substantial adverse
events suggesting that normal HSCs as well as AML LSCs were being affected.

Lintuzumab-Ac225 is an alternative approach to CD33-targeting and consists of a
radiolabeled anti-CD33 antibody. It delivers high-energy radiation over a short radius to
CD33-expressing cells. Lintuzumab has been studied as a monotherapy and in combination
with chemotherapy in adults with AML and has demonstrated significant antileukemic
activity with high response rates, even in patients with high-risk and heavily pretreated
disease [91]. More clinical trials of Lintuzumab are underway for adults but, it has not yet
been tested in the pediatric population.

Bi-specific antibodies consist of two distinct antigen-binding domains to interact with
two disparate cell surface proteins. Typically, these are designed to be able to recruit
lymphoid cells to interact and kill malignant cells. Bi-specific T cell-engagers (BiTEs)
have shown promising efficacy for the treatment of R/R ALL, and as a result of this
success, there has been an increase in focused efforts to develop BiTEs for AML [92–94].
Specifically, these bi-specific antibodies for AML are constructed with a CD3 antibody
moiety to employ T lymphocytes to recognize a cell surface target on the AML cells (e.g.,
CD33) causing T-cell mediated destruction. CD33 BiTEs have demonstrated effective LSC
killing preclinically [95]. Several studies of AMG 330 have demonstrated safety and efficacy
in the treatment of adult patients with AML, but this agent has not yet been investigated in
children [93,95,96].

Chimeric antigen receptor (CAR) T cells have been extensively investigated with
promising response rates in the context of R/R lymphoid malignancies. They are now
being progressively pursued to treat several other types of malignancies. Unfortunately,
in the setting of AML, CAR T cell therapies have not progressed as rapidly as they did
for lymphoid malignancies, again due to difficulty in identifying target antigens that are
restricted to the leukemia cells and LSCs.

CD33 has been one of the most studied antigen targets for AML CAR T cells. Preclinical
research has demonstrated potent leukemia killing of CD33 specific CAR T cells and several
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clinical trials are ongoing investigating CD33 CAR T cells in both the adult and pediatric
populations (NCT03927261, NCT03971799). To date, there are case reports of patients who
have had promising responses to CD33 CAR T cells and have been successfully bridged
to SCT [97]. Additionally, dual targeting CD33/CLL-1 CAR T cells are in clinical trials in
China (NCT03795779, NCT05248685) in an effort to optimize efficacy and AML specificity of
cytotoxic killing. One significant barrier to the success of CAR T cells in this context is that
CAR T persistence is often associated with prolonged cytopenias without full hematopoietic
recovery. Given the propensity for patients to become aplastic following these therapies,
CD33 CAR T cells are largely being investigated as a bridge to SCT. This is in contrast to
ADCs and BiTEs, which may be able to induce sustained remissions with less myelotoxicity.
To combat the off-target effects seen with CD33-directed CAR T cells, research on the
possibility of genetically inactivating CD33 in HSCs to permit CD33 CAR T cell-mediated
cytotoxicity with increased specificity for leukemic blasts and LSCs is ongoing [98].

4.2. CD123

CD123 (the interleukin-3 [IL3] receptor alpha) was the first antigen that was identified
to be specific to LSCs. Studies of mouse AML xenograft models established that the
CD34+/CD38-/CD123+ population of AML cells held all of the detectable engraftment
potential [13]. However, while CD123 is highly expressed on myeloid leukemic blasts in a
majority of patients, it is also present on HSCs as well as more differentiated myeloid and
lymphoid cells [99]. While the therapeutic window for CD123-directed therapies is narrow
for this reason, interest in CD123 as a potential cell-surface therapeutic target persists [63].
Overall, clinical investigations of anti-CD123 immunotherapies have generally shown
limited efficacy and unfavorable safety profiles due to the off-leukemia effects of CD123
targeting. As more trials have been developed and more patients treated with different
CD123-directed therapies, it has been observed that patients with high CD123 benefit most
from these immunotherapies [63,100].

While the IL3 signaling pathway is important for normal hematopoietic differenti-
ation from HSCs, it has also been shown to be essential for LSCs [100]. In the efforts
to develop agents that will be effective in killing AML LSCs, one approach has been to
conjugate a cytotoxic drug to the IL3 ligand for the IL3 receptor CD123. Tagraxofusp is
an IL3/diphtheria toxin fusion protein that is FDA-approved for the treatment of blastic
plasmacytoid dendritic cell neoplasm (BPDCN), a rare malignancy that has high levels of
CD123 expression [101]. In addition to normal HSCs, Tagraxofusp has shown potent cyto-
toxicity against AML LSCs in preclinical studies [102]. In initial trials in adults, clinically
meaningful responses were observed after treatment with Tagraxofusp in a small subset of
patients with R/R AML that received multiple lines of prior therapy, suggesting promising
LSC-targeting [103]. Trials in both adult and pediatric patients with R/R AML are cur-
rently underway or in development to further evaluate the efficacy and toxicity profile of
Tagraxofusp (NCT05476770, NCT05233618, NCT04342962, NCT05720988, NCT05716009).

IMGN632 is an ADC consisting of a CD123-targeting antibody and a DNA-alkylating
payload, which, in preclinical studies, has demonstrated compelling antileukemic activ-
ity [104]. IMGN632 has been studied in early-phase clinical trials both as a single agent and
in combination with chemotherapy in adults with AML with promising activity against
AML with tolerable safety profiles (NCT04086264) [105,106]. Studies in adults are ongoing,
but trials involving IMGN632 have not yet expanded to children.

Bi-specific engagers have also been investigated to target AML LSCs through CD123.
These strategies include the CD123/CD3 dual-affinity retargeting protein (DART) flote-
tuzumab, the CD123-targeting bi-specific antibody XmAb14045, and the CD123/CD3
bi-specific IgG1 antibody JNJ-63709178. In early-phase clinical trials in adults with R/R
AML, 30% of patients treated with flotetuzumab achieved responses, with the toxicity
profile mostly including cytokine release syndrome (CRS) and infusion reactions [107,108].
Based on this data, a clinical trial is ongoing investigating flotetuzumab for the treatment
of children with R/R AML (NCT04158739).
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Given that significant CRS has been observed with CD123-targeted T cell engagers,
the focus for cytotoxic antibody-directed therapies has shifted towards natural killer (NK)
cells. SAR443579 is a trifunctional NK cell engager that targets CD123 while co-engaging
NKp46 and CD16a on NK cells. In preclinical mouse and primate models, SAR443579
had potent antitumor effects through NK cell activation in the presence of AML blasts
with a tolerable toxicity profile and minimal cytokine secretion [109]. In a first-in-human
phase I/II trial of SAR443579 for adult patients with R/R AML, 3/23 total patients (13%)
achieved a complete remission (CR), with the highest response rates at higher dose levels
(3/8 patients, 37.5%) [110]. The most common adverse events were nausea and infusion
reactions, with only two cases of low-grade CRS [110]. This first-in-human study of
SAR443579 recently opened a pediatric arm enrolling patients greater than 1 year of age
with R/R AML (NCT05086315).

Lastly, CAR T cells targeting CD123 are also in development with active CD123
CAR T cell trials enrolling adult and pediatric patients with R/R AML (NCT04265963,
NCT04272125, NCT04318678, NCT04678336). Early reports from some of the pivotal
CD123 CAR T cell trials have identified few significant off-leukemia effects, including
minimal myeloablative toxicities, but with some myelosuppression and limited CAR
persistence [111]. For these reasons, and similar to the approach for CD33 CAR T cells,
CD123 CAR T cells are primarily being investigated as a bridge to SCT.

4.3. Checkpoint Inhibitors

Immune checkpoint antigen expression has been described in both bulk AML blasts
and LSCs, and treatment concepts have been developed with the goal to block checkpoint
molecules and thereby overcome immune evasion [112,113]. PD-L1 expression in AML
LSCs is hypothesized to be due to (1) oncogenic mutations in key proteins that are part of
the JAK-STAT and MYC pathway signaling cascades in LSCs and (2) cytokine production
from AML cells leading to cytokine-induced expression of PD-L1 [114–116]. Additionally,
certain drugs used in the treatment of AML, like hypomethylating agents, can promote
increased expression of PD-L1 in AML blasts and LSCs [117]. Checkpoint inhibitors in
combination with these chemotherapy medications have been evaluated in clinical trials
for adult patients with AML. In a phase II study of azacitidine and nivolumab for R/R
AML, 70 patients were treated with an overall response rate of 33% and overall survival
of 19% [118]. A phase I/II study of the azacitidine/nivolumab combination is currently
underway to evaluate safety and efficacy in children with R/R AML (NCT03825367). In a
phase II clinical trial assessing the efficacy of nivolumab as a maintenance therapy for adults
with high-risk AML in remission who were not being considered for SCT, 15 patients were
enrolled, of whom 9 patients (60%) had detectable minimal residual disease (MRD) at time
of enrollment [119]. The recurrence-free survival was 57.1%, and two of the nine patients
with detectable MRD at the time of enrollment cleared their MRD while on treatment with
nivolumab. This study showed only a modest effect on MRD eradication and survival when
nivolumab was used as a single agent but has provided the basis for subsequent clinical
trials investigating immune checkpoint blockade in combination with chemotherapy as a
maintenance therapy in adults with high-risk AML.

4.4. CD47

CD47 is another immune checkpoint antigen that plays a role in how leukemia evades
the immune system and has been found to be amply and invariably expressed on both AML
LSCs and normal HSCs [120]. The CD47 antigen is also known as the ‘don’t eat me’ signal
that mediates the escape of AML LSCs from phagocytosis by macrophages; blocking this
signal can induce an immune response resulting in the killing of leukemic cells [121,122].
Magrolimab is an anti-CD47 antibody that induces tumor phagocytosis and eliminates
LSCs in AML preclinical models through CD47 blockade. Magrolimab has also shown
promising results in early-phase clinical trials in adults with newly diagnosed AML when
combined with azacitidine, which has been shown to enhance CD47 expression [123]. In
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16 evaluable AML patients treated with magrolimab and azacitidine on a phase Ib clinical
trial, 11/16 (69%) had an objective response [124]. Additionally, CD34+CD38- identifiable
LSC populations were measured by flow cytometry, and complete LSC elimination was
observed in 10/16 (63%) of patients with myelodysplastic syndrome or AML that had a
clinical response. This LSC eradication suggests the potential for durable responses in these
patients, and clinical trials further investigating magrolimab efficacy are ongoing. Trials
investigating magrolimab for the treatment of AML in the pediatric population have not
yet been initiated.

4.5. Folate Receptor 1/Folate Receptor-Alpha

CBFA2T3::GLIS2 translocations are associated with a particularly high-risk subtype of
pediatric AML that is associated with megakaryoblastic phenotype in young non-Down
syndrome patients [125]. This subtype of AML has proven to be highly chemo-refractory,
and survival rates with traditional chemotherapeutic regimens and SCT are quite poor [125].
Transcriptional analysis of cells from patients with CBFA2T3::GLIS2 AML has revealed high
expression of the folate receptor-alpha gene (FOLR1), which correlates with prominent
surface expression of the FOLR1 protein in the majority of patients [126]. Although no
formal validation of FOLR1 as an LSC marker has been undertaken, preclinical modeling
of STRO-002, an antibody-drug conjugate (ADC) against FOLR1 [126] and, separately, a
FOLR1-specific chimeric antigen receptor T cell (CAR-T) [127], showed promising anti-
tumor efficacy. Limited clinical experience with the use of STRO-002 for pediatric AML
has been presented in an abstract form in which 16 total patients were treated with this
ADC alone or in combination with other chemotherapeutic agents, with 7 (44%) achieving
complete remission (CR) [128]. Updated clinical data are expected to be shared at the
American Society of Hematology 2023 annual meeting.

An alternative FOLR1-targeting agent, ELU001, has also demonstrated preclinical
efficacy in MV4-11 cells engineered to overexpress FOLR1 [129]. ELU001 is a C’Dot drug
conjugate (CDC), a nanoparticle-based drug delivery system with 21 exatecan molecules
per nanoparticle as a payload. A phase I clinical trial of ELU001 for children with R/R
CBFA2T3::GLIS2 AML is expected to open to enrollment in 2024 (NCT05622591).

5. Other Novel Agents

As has been noted above, immunophenotype is not the only or even the most consis-
tent feature of myeloid LSCs in the pediatric or adult literature. Stem cell transcriptional,
signaling, and metabolic programs have proven to be targetable features of LSCs as well.
Figures 1 and 2 highlight a few of the relevant aspects of LSC biology that have been ex-
plored for therapeutic intent. Below and in Table 2, we summarize non-immunotherapeutic
agents that have been or will soon be in clinical trials for pediatric AML and their relevance
to the concept of LSC eradication.
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Table 2. Non-immunotherapy agents in clinical trials for pediatric patients with AML.

Class/Target Agent Study Population Details NCT # Phase Enrolling?

Gilteritinib ND COG AAML1831; + SOC chemo or CPX-351 + GO NCT04293562 III Yes

Gilteritinib R/R + FLAG NCT04240002 I/II Yes

Quizartinib R/R + Fludarabine/Cytarabine/Etoposide NCT03793478 I/II Yes

Pexidartinib R/R Monotherapy (National Cancer Institute) NCT02390752 I Yes
FLT3 Inhibitors

MRX-2843 R/R Monotherapy NCT04872478 I Yes

R/R, KMT2A-r + chemo (FLAG for AML) NCT05761171 II Pending

R/R + decitabine/cedazuridine (ASTX727) + venetoclax
(SAVE trial, MD Anderson) NCT05360160 I/II YesRevuminib

R/R, KMT2A-r, NPM1-m monotherapy NCT04065399 I/II Yes

Ziftomenib R/R expanded access on case-by-case basis NCT05738538 n/a Available

Menin Inhibitors

JNJ-75276617 R/R, KMT2A-r, NPM1-m, NUP98-r + chemo (FLAG for AML), orally bioavailable NCT05521087 I Pending

Venetoclax

ND + conventional chemo (AML23, St. Jude) NCT05955261 II Yes

R/R + FLA + GO; azacitidine (HMA) or ven/aza maintenance
if unable to proceed to HSCT (PedAL/EuPAL) NCT05183035 III Yes

R/R + idasanutlin (or idasanutlin + chemo) NCT04029688 I/II Yes

R/R + azacitidine (HMA) + vorinostat (HDACi) +
Fludarabine/Cytarabine/G-CSF NCT05317403 I Yes

BCL2 Inhibitors

R/R + Selinexor (XPO1 inhibitor) + FLAG (SELCLAX, St. Jude) NCT04898894 I Yes

NF-kB Inhibitor, CREB
Inhibitor Niclosamide R/R monotherapy NCT05188170 I Yes

E-selectin Antagonist Uproleselan ND or 1st R/R + HSCT conditioning NCT05569512 I/II Yes

PARP Inhibitors Talazoparib R/R POE22-01; + topotecan/gemcitabine NCT05101551 I Yes

IDH2 Inhibitor Enasidenib R/R COG ADVL18P1; monotherapy NCT04203316 II Yes

NEDD8 Inhibitor Pevonedistat R/R COG/PEP-CTN (ADVL1712); + azacitidine + FLA NCT03813147 I Active, not
recruiting

ND = newly diagnosed; R/R = relapsed/refractory; COG = Children’s Oncology Group; SOC = standard of care; GO = gemtuzumab ozogamicin; HSCT = hematopoietic stem cell
transplant; FLA(G) = fludarabine/cytarabine(/G-CSF); HMA = hypomethylating agent; HDACi = histone deacetylase inhibitor; CREB = cAMP response element binding protein.
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5.1. FLT3 Inhibitors

Fms-like tyrosine kinase 3 (FLT3), also known as CD135, is a receptor tyrosine kinase
that is expressed on HSCs and has functions in normal hematopoiesis [130]. Activating
mutations in FLT3 such as the internal tandem duplication (ITD) or tyrosine kinase domain
(TKD) mutations are common in both adult and pediatric AML [4,131]; FLT3 ITD mutations,
in particular, confer a poor prognosis [131]. Tyrosine kinase inhibitors (TKIs) that target
FLT3 have generally improved survival both alone and in combination with conventional
chemotherapy in adult clinical trials [132–138]. Safety and preliminary efficacy of FLT3
inhibitors quizartinib and sorafenib have also been demonstrated in pediatric early-phase
trials [139,140]. In the COG trial AAML1031, the addition of sorafenib for FLT3-mutant
AML prolonged event-free and disease-free survival and lowered relapse risk compared to
historical cohorts of patients with FLT3-mutant AML (COG AAML0531) [141]. An ongoing
phase III trial is evaluating the addition of gilteritinib to chemotherapy for all patients with
FLT3 ITD or TKD mutations, including a maintenance phase of gilteritinib monotherapy
for patients proceeding to SCT. Whether FLT3 is an important survival mechanism for LSCs
is an open question. While multiple studies (adult and pediatric) have demonstrated the
presence of FLT3 mutations in the phenotypic LSC compartment [142,143], it is notable
that FLT3 mutations generally are considered a “late” stage modification in the evolution
of adult AML [144], and approximately 50% of patients who relapse or progress on FLT3
inhibitor therapy lose their ITD mutations [145]. In one preclinical study, the FLT3 in-
hibitor sorafenib alone was insufficient to block LSC functionality in serial transplantation
experiments of leukemia into mice, but the addition of all-trans-retinoic acid (ATRA) to
sorafenib abrogated transmission of leukemia to secondary recipients [146], suggesting that
there are combination therapies that can effectively eradicate LSCs. In addition to ongoing
pediatric trials evaluating established FLT3 inhibitors, there are two phase I trials of newer
agents pexidartinib [147] and MRX-2843 [148], both of which are active against common
TKI resistance mutations such as the “gatekeeper” F691 mutation.

5.2. Menin Inhibitors

Translocations in the KMT2A gene, a master hematopoietic regulator, are associated
with both acute lymphoblastic and myeloid leukemias and generally confer poor progno-
sis [4,131,149]. The LSC in KMT2A-rearranged leukemias is transformed by the KMT2A
translocation in isolation and generally arises from a granulocyte-macrophage progenitor
(GMP) rather than from the HSC [150]. KMT2A rearrangements activate a transcriptional
program characterized by upregulation of HOXA genes and MEIS1, which are associated
with lineage-inappropriate expression of stemness markers [149,150]. The N-terminus
of KMT2A, which is conserved in leukemogenic fusion proteins, recruits transcription
elongation complexes to target genes in a manner that is dependent on its interacting
protein, menin [151,152]. VTP50469 was the first small-molecule inhibitor of the menin-
KMT2A interaction; treatment of KMT2A-rearranged leukemia cell lines and primary
samples with this agent led to downregulation of the classic KMT2A gene signature and
prolonged survival (even cures) in mice [153]. Similar gene expression signatures and
similar benefits from menin inhibition have been shown in preclinical studies for NPM1-
mutant AML [154,155], NUP98-rearranged AML [156], and UBTF mutated AML [157,158].
Revumenib has been the first menin inhibitor in clinical trials for AML; the first-in-human
phase I monotherapy results were recently published. Of 60 evaluable patients with R/R
KMT2A-rearranged or NPM1-mutant AML, 18 (30%) achieved a composite complete remis-
sion (CRc), with complete cytogenetic remission in 64% of patients with KMT2A-rearranged
AML who had clearance of bone marrow blasts [159]. Preclinical support for the utility
of another menin inhibitor, ziftomenib, has been published for both adult and pediatric
AML [160,161]. In the adult study, percentages of phenotypically defined stem/progenitor
cells were reduced after ziftomenib treatment [160]. Preliminary data from KOMET-001,
the phase I/II trial of ziftomenib in adult R/R AML, were presented in abstract form in
2022. At the phase Ib dosing of 600 mg, CRc was 33%, with 75% of these patients achieving
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MRD negativity; the overall response rate (ORR) was 42% for the entire cohort and 75%
in patients experiencing differentiation syndrome [162]. Additional combination therapy
trials of ziftomenib and revumenib are ongoing in the adult age group. For pediatric
patients, ziftomenib is currently available only through expanded access, but revumenib
and another compound, JNJ-75276617, are open or soon-to-be-open in combination therapy
trials (Table 2).

5.3. Venetoclax

Venetoclax is a BCL-2 inhibitor that was designed as a BH3 mimetic compound to
block interaction between BCL-2 and pro-apoptotic proteins [163]. While initially showing
clinical promise in chronic lymphocytic leukemia (CLL) [164], venetoclax in combination
with low-intensity therapies has revolutionized the care of elderly patients with AML, many
of whom do not have intensive therapy options and are not medically fit for SCT [165,166].
It has also shown promise in younger adults in combination with both high- and low-
intensity chemotherapeutic regimens [167,168]. BCL-2 has been shown to be expressed
at high levels in canonical myeloid LSCs and to be associated with a dependence on
OXPHOS [34]. Although there is literature to suggest that the canonical pro-apoptotic role
of venetoclax is its primary mechanism [169], there is also a wealth of metabolic data that
suggest that mitochondrial respiration in LSCs is affected and plays at least some role in
the efficacy of venetoclax [36]. Both pathophysiologic hypotheses assume that venetoclax
acts as a priming agent for AML cell death and so is most effective when combined with
other agents. Resistance to venetoclax has been associated with metabolic switching of
LSCs to alternative energy sources such as amino acid or fatty acid metabolism [39,40,43].
Phenotypically, this has been associated in adult AML with the presence of non-canonical
monocytic LSC biology [35,170].

Multiple retrospective single-center studies [171–174] and one multi-center study [175]
have evaluated the efficacy of venetoclax combinations in R/R pediatric AML, with ORR
ranging from 12.5% to 75% and a significant number of patients reported as able to bridge
to SCT. Venetoclax in combination with daratumumab and myeloablative preparatory regi-
mens led to an 85% MRD-negative CR rate in pediatric patients proceeding to transplant
with active disease and resulted in a 2-year EFS of 44% and OS of 65% [176]. A phase I trial
combining venetoclax with high-dose cytarabine and idarubicin identified the RP2D as
360 mg/m2 and reported the total cohort ORR as 69%, with 70% CRc at the RP2D [177].
Although little is known about LSC-targeting capability or metabolic effects of venetoclax
in pediatric AML, a recent single-cell analysis including five pediatric primary specimens
confirmed that four out of five pediatric AML specimens had venetoclax-resistant subpop-
ulations with unique metabolic features [178]. This suggests that at least some of the trends
seen in adult AML may hold true in pediatric disease as well. Based on accumulating data
about venetoclax resistance mechanisms, new rational combination therapies are being
explored in preclinical [179] as well as adult clinical trial settings. Multiple combination
regimens are currently in early-phase pediatric trials as well (Table 2).

5.4. PARP Inhibitors

Poly (ADP-ribose) polymerases (PARPs) are enzymes that catalyze the addition of poly-
merized ADP-ribose onto substrates, thereby modifying their function or stability [180,181].
They are primarily implicated in DNA damage response pathways [180,181]. PARP in-
hibitors such as olaparib or talazoparib combined with DNA damaging agents such as
anthracyclines or topoisomerase inhibitors tend to show synergy because of impaired
DNA repair in tumor cells [181]. This is the premise of the current phase I pediatric
trial of talazoparib combined with topotecan and gemcitabine (POE22-01), which is not
known to be LSC-targeting. However, in one adult study of LSCs, the lack of cell surface
expression of natural killer group 2 member D (NKG2D) ligands was noted to be a consis-
tent feature of these cells and mediated escape of immune surveillance by NK cells [20].
PARP inhibitors were found to induce NKG2D ligand expression on LSCs and enhance
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immune clearance [20]. Therefore, future trials may explore this mechanism in pediatric
AML to ascertain the potential synergy between PARP inhibitors and immunotherapies,
for example.

5.5. Epigenetic Modifiers

Given that altered methylation is a key feature of adult LSCs [26], it is logical to antici-
pate that epigenetic modifiers such as DNA methyltransferase inhibitors (e.g., decitabine),
hypomethylating agents (decitabine or azacitidine), or histone deacetylase inhibitors (e.g.,
vorinostat) might add a benefit to combination regimens against pediatric AML. To that
end, a phase I feasibility study of epigenetic priming with decitabine followed by standard
induction chemotherapy in newly diagnosed pediatric patients with AML was conducted.
It enrolled 25 patients and showed no difference in CR rates, MRD negativity rates, or
DFS between decitabine priming and standard-of-care arms, although it was not powered
for efficacy endpoints [182]. Methylation changes were seen in the decitabine arm, which
is consistent with pharmacodynamic goals [182]. A larger phase I dose expansion trial
of decitabine and vorinostat in combination with FLAG chemotherapy was conducted
through the TACL (Therapeutic Advances in Childhood Leukemia & Lymphoma) con-
sortium. This trial enrolled 37 patients with a median age of 8.4 years who had R/R
AML [183]. The regimen was shown to be safe with no dose-limiting toxicities at the
decitabine RP2D of 10 mg/m2 [183]. The ORR in 35 evaluable patients was 54% of which
90% were MRD-negative and 84% were able to be bridged to SCT [183]. Two-year OS was
75.6% for patients who became MRD-negative with therapy versus 17.9% for those who
remained MRD-positive after treatment [183]. Real-world data from six centers, including
28 patients who were treated off-study but with the same regimen, showed similar safety
and efficacy with an ORR of 63% and 93% of responders able to proceed to SCT [184].
Given the relative success of this regimen in a heavily pretreated population and the
promise of venetoclax combination regimens, there is now an open trial adding venetoclax
to azacitidine, vorinostat, and FLAG (NCT05317403) in hopes of demonstrating safety and
enhanced efficacy.

5.6. Selinexor

Selective inhibitors of nuclear export (SINEs) are compounds that inhibit the protein
exportin-1 (XPO1) [185], which has numerous ramifications in the context of cancer. Tumor
suppressors are expected to be retained in the nucleus and thereby re-activated [185]. Mu-
tant NPM1, a commonly mutated protein in adult AML, requires cytoplasmic localization
for its leukemogenic activity, which is inhibited by treatment with SINE compounds such
as selinexor or its more potent second-generation relative, eltanexor [186]. Selinexor has
been shown to potentiate DNA damage induced by both cytotoxic chemotherapy [187] and
venetoclax [188]. Furthermore, through the reduction of MCL1 protein levels in treated cells,
eltanexor further potentiates the antileukemic effects of venetoclax [189]. Preclinical studies
have shown that both selinexor and to a greater degree eltanexor target LSCs, as demon-
strated by limiting dilution engraftment experiments in mice [190,191]. While selinexor
monotherapy led to only a 14% response rate in R/R adult AML [192], combination trials
with chemotherapy have shown more favorable response rates of 42–50% [185,193,194],
aside from one study in elderly AML that showed worse outcomes with the addition
of selinexor to standard chemotherapy [195]. A phase I trial combining selinexor with
fludarabine and cytarabine in 18 pediatric patients with R/R AML demonstrated XPO1
target inhibition and led to an ORR of 47% [196]. Another phase I trial of these agents plus
the addition of venetoclax is ongoing at multiple U.S. sites (Table 2).

5.7. Niclosamide

Niclosamide is an anti-parasitic agent that shows antineoplastic activity through inhi-
bition of NFkB and cAMP-response element binding protein (CREB) as well as through
upregulation of reactive oxygen species (ROS) [197,198]. A cell line CRISPR/Cas9 library
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screen identified mitochondrial metabolic pathways as significantly altered after exposure
of AML cells to niclosamide—in particular OXPHOS, glycolysis, and mitochondrial mem-
brane potential—suggesting effects on pathways essential to LSCs [199]. Indeed, preclinical
studies showed decreased viability of CD34+CD38- cells and decreased colony-forming
potential in AML primary samples, both of which suggest a selective reduction in the
LSC compartment after niclosamide treatment [197]. There are minimal to no clinical data
on niclosamide in AML; however, a phase I monotherapy trial is actively recruiting for
pediatric patients with R/R AML (Table 2).

5.8. Uproleselan

Interaction of leukemia cells, including LSCs, with the microenvironment is thought
to be protective against chemotherapy toxicity by a variety of mechanisms. LSCs in
adults have been shown to express E-selectin ligands, which enhance binding to the bone
marrow niche [200]. The E-selectin antagonist uproleselan showed preclinical efficacy
in sensitizing AML cells to standard chemotherapeutic agents [200], and a recent phase
I/II study in adults with R/R AML and elderly patients with newly diagnosed (ND)
AML (phase II only) was recently published [201]. A total of 91 patients were enrolled,
approximately 2/3 of which were R/R to prior therapies. Overall response rates were
41% in the R/R cohort and 72% in the ND cohort, with over half of responders achieving
MRD negativity. Responses were correlated with E-selectin ligand expression on bulk
blasts and on immunophenotypically defined LSCs (CD34+CD38-CD123+) [201]. Based on
these data, the COG Cellular Therapies for AML Task Force is conducting a phase I/II trial
of uproleselan combined with myeloablative preparatory regimens for allogeneic SCT in
pediatric patients with AML (NCT05569512). The primary endpoint is to identify the RP2D
of uproleselan with standard transplant conditioning regimens, and secondary endpoints
include 12-month leukemia-free survival (LFS) and 2-year CIR and OS.

5.9. Enasidenib

Mutations in the isocitrate dehydrogenase-2 (IDH2) gene occur in 10–15% of adult
AML [202] but only 2% of pediatric AML [203]. Mutations in IDH2 affect cytoplasmic and
mitochondrial metabolism and have also been shown to have epigenetic effects leading to
differentiation arrest [204]. A selective small-molecule inhibitor of mutant IDH2, enasidenib,
has been developed and tested in adult AML in both R/R and newly diagnosed patients.
In the R/R setting, response rates for enasidenib monotherapy average 40% but with a
response duration of only 5.8 months [205,206]. In propensity-matched cohorts, a survival
benefit of ~33% was cited over conventional care (low-dose chemotherapy or supportive
management) [207]. Response rates in the up-front setting in combination with azaciti-
dine [208] or intensive chemotherapy [209] were higher—74% for enasidenib + azacitidine
versus 36% for azacitidine alone and 63% for enasidenib + conventional chemotherapy. The
drug appears to induce the differentiation of leukemic blasts into neutrophils in responding
patients [202]. The role of LSC-targeting in the mechanism of action of enasidenib remains
inadequately characterized.

5.10. Pevonedistat

The NEDD8-activating enzyme regulates the degradation of proteins involved in
essential processes such as cell cycle progression and DNA damage repair [210]. A novel
NEDD8-activating enzyme inhibitor, MLN4924 or pevonedistat, was developed to target
cancer cells that rely heavily on protein turnover for these cellular processes. In vitro analy-
sis of pevonedistat demonstrated inhibition of NFkB, increased ROS generation [210], and
depletion of intracellular nucleotide pools contributing to increased DNA damage [211].
Co-treatment with pevonedistat and cytarabine in vitro led to increased incorporation of
cytarabine into DNA synthesis and decreased colony formation of AML cell lines and
primary samples [211]. The LSC-targeting capability of pevonedistat has not been well-
characterized. However, clinical trials involving pevonedistat have not had the hoped-for
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success. Dose-limiting toxicities, particularly hepatotoxicity and multi-organ failure, are
common [212]. Phase II and III studies randomizing between pevonedistat and azaciti-
dine versus azacitidine alone have not demonstrated significant benefit to the addition of
pevonedistat [213,214]. A phase I/II study of pevonedistat in combination with venetoclax
and azacitidine showed similar CRc rates to venetoclax + azacitidine alone [215]. Early
data from the phase I pediatric trial of pevonedistat, azacitidine, fludarabine, and cytara-
bine again suggest high rates of dose-limiting toxicities (25%), with only 3 of 12 patients
achieving CR with incomplete count recovery [216]. Data maturation will be needed to
determine whether this agent moves forward in later-phase pediatric trials.

6. Future Targets
6.1. Immunotherapies

Although not a comprehensive list, below are some potential immunotherapy targets
for pediatric myeloid LSCs that may see future clinical development:

• CD70 is a tumor necrosis factor receptor ligand that is not normally expressed in
normal tissues or on HSCs during hematopoiesis. It is upregulated on immune cells
upon activation but not on resting B or T lymphocytes [217]. It has been demonstrated
that CD34+ AML cells and LSCs express CD70 and its receptor CD27, that CD70/CD27
signaling in AML cells activates stem cell expression programs, and that the promoter
for CD70 is sensitive to methylation [218,219]. For these reasons, blocking CD70/CD27
signaling in conjunction with hypomethylating agents is being considered as a poten-
tial treatment concept for AML. Currently, a CD70-targeting antibody, cusatuzumab,
in combination with azaciditine or venetoclax, remains under clinical investigation
with promising initial responses but short follow-up of treated patients to date [220].

• Surface expression of CD69 was enriched on LSCs from patients whose disease proved
chemoresistant in one study, and CD69 expression in transcriptional data from large
retrospective cohorts of pediatric patients correlated with poor outcomes [66]. There-
fore, CD69 could represent a future LSC-targeting strategy for pediatric AML, although
CD69 expression on regulatory T cells and other specialized T cell subsets may indicate
unwanted side effects of immune dysregulation with CD69-targeting [221].

• CD200, because of its high expression on pediatric LSCs [60] and its association with
immune evasion [65], may also be a future immunotherapy target.

6.2. Other Novel Agents

Although not a comprehensive list, below are some potential novel non-immunotherapy
targets for pediatric myeloid LSCs that may see future clinical development:

• A 2021 study evaluated AML transcriptional data from 284 pediatric patients and
found that high expression of calcitonin receptor-like receptor (CALCRL), a G-protein
coupled receptor with roles in proliferation, apoptosis, and inflammation, was as-
sociated with inferior 5-year EFS and OS compared to those with low expression of
CALCRL [222]. Antibody- or small molecule-based targeting of the CALCRL ligand
calcitonin gene-related peptide (CGRP) are currently being investigated for migraine
(NCT03432286, NCT05217927) and may warrant investigation as novel agents for both
adult and pediatric AML. As noted above, given the association of LSCs with alterna-
tive splicing and exon skipping [59], a splicing modulator such as rebecsinib might
be of future clinical interest in pediatric AML, particularly combined with anti-CD47
agents and/or pro-apoptotic agents such as venetoclax.

• Telomerase activity has been postulated to be a dependency in adult LSCs, and genetic
deletion of an RNA template subunit (TERC) in mouse models of leukemia significantly
impaired LSC functionality [223]. While children with AML tend to have lower
telomerase activity on average than adults, those with higher telomerase activity had
worse outcomes in a retrospective analysis [224]. Pre-treatment of six pediatric patient-
derived xenograft (PDX) samples with the telomerase inhibitor imetelstat, alone or
in combination with azacytidine- or cytarabine-based chemotherapy, reduced LSC
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viability, prolonged survival in primary murine recipients, and reduced engraftment
into secondary recipients [225]. These data suggest that imetelstat could be an LSC-
targeting therapy that should be prioritized for combination regimens. There is
currently an ongoing clinical trial for adult MDS and AML that is enrolling participants
at multiple Australian sites (NCT05583552).

There is substantial evidence in adult AML and mounting evidence in pediatric
AML that these diseases arise as a result of a leukemia-initiating population of LSCs.
Identification of phenotypic, metabolic, and other vulnerabilities of these cells is the most
direct path forward toward the development of more effective and less toxic therapies for
patients of all ages with AML. Prioritization of immunotherapeutic and other novel agents
for which there is strong preclinical and/or adult clinical data for LSC-targeting should be
standard practice for pediatric clinical trial design.
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