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Abstract: Gout results from elevated serum urate (SU) levels, or hyperuricemia, and is a globally
widespread and increasingly burdensome disease. Recent studies have illuminated the pathophysi-
ology of gout/hyperuricemia and its epidemiology, diagnosis, treatment, and complications. The
genetic involvement of urate transporters and enzymes is also proven. URAT1, a molecular ther-
apeutic target for gout/hyperuricemia, was initially derived from research into hereditary renal
hypouricemia (RHUC). RHUC is often accompanied by complications such as exercise-induced acute
kidney injury, which indicates the key physiological role of uric acid. Several studies have also
revealed its physiological role as both an anti-oxidant and a pro-oxidant, acting as both a scavenger
and a generator of reactive oxygen species (ROSs). These discoveries have prompted research in-
terest in SU and xanthine oxidoreductase (XOR), an enzyme that produces both urate and ROSs, as
status or progression biomarkers of chronic kidney disease and cardiovascular disease. The notion
of “the lower, the better” is therefore incorrect; a better understanding of uric acid handling and
metabolism/transport comes from an awareness that excessively high and low levels both cause
problems. We summarize here the current body of evidence, demonstrate that uric acid is much more
than a metabolic waste product, and finally propose the novel disease concept of “dysuricemia” on
the path toward “normouricemia”, or optimal SU level, to take advantage of the dual roles of uric
acid. Our proposal should help to interpret the spectrum from hypouricemia to hyperuricemia/gout
as a single disease category.

Keywords: monosodium urate (MSU); crystal formation; pro-oxidative effects; anti-oxidative effects;
neurodegenerative diseases (NDs); Parkinson’s disease (PD); Alzheimer’s disease (AD); chronic
kidney disease (CKD); cardiovascular disease (CVD); bucket-and-balls theory

1. Introduction

The novel disease concept of “dysuricemia” was proposed for the first time as our
symposium title in 2019 [1] to help interpret the spectrum from hypouricemia to hyper-
uricemia/gout as a single disease category.

Uric acid, which is ionized as urate in serum, tends to be regarded as simply a
metabolic waste product since uric acid is the end metabolite of purine bodies in hu-
mans [2,3]. It has a pathogenic effect on gout flare, caused by the formation of monosodium
urate (MSU) crystals after prolonged hyperuricemia, that is, an elevated serum urate (SU)
level [4,5]. The conventional wisdom tends to be “the lower, the better”, similar to advice
on low-density lipoprotein (LDL) cholesterol levels [6].

However, uric acid is also known to have a dual role in oxidative stress in humans:
both an anti-oxidative protective effect and a pro-oxidative and/or a harmful crystal-
forming effect [7]. Indeed, a hereditary disease, renal hypouricemia (RHUC), is sometimes
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accompanied by exercise-induced acute kidney injury (EIAKI), which is estimated to
be caused by not-scavenged oxidative stress [8]. Figure 1 shows why the concept of
“dysuricemia”, which consists of hyperuricemia and hypouricemia, is necessary.

Disease risk
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Figure 1. Disease concept of dysuricemia. The horizontal axis indicates serum urate (SU) level.
The vertical axes on the left side and right side, respectively, indicate the disease risks and harm-
ful/protective effect sizes of uric acid (ionized as urate in serum). Because uric acid has a dual role
(providing an anti-oxidative protective effect and a pro-oxidative and/or crystal-forming harmful
effect), both of these effect sizes increase as a function of rising SU level. The harmful effects increase
more steeply with increasing SU level than the increase in protective effect due to the formation
of monosodium urate crystals, which are deposited due to the low solubility (6.8 mg/dL, or ap-
proximately 400 µmol/L) of urate in human serum. There are three typical patterns of disease risk
associated with SU level. In the “gout pattern”, increasing SU results in a higher disease risk of gout
due to crystal formation, while neurodegenerative diseases (NDs) such as Parkinson’s disease show
the “ND pattern”, indicating a lowered disease risk with rising SU level due to its neuroprotective
effects. The risks for chronic kidney disease (CKD) and cardiovascular disease (CVD) generate a
J-curve due to the combination of gout and ND patterns, the “CKD & CVD pattern”. As shown here,
“dysuricemia” includes both hyperuricemia and hypouricemia. To reduce the burdens of several
common diseases, the dual nature of uric acid should be exploited by maintaining normouricemia,
with the optimal SU level being 4 < SU ≤ 7 mg/dL (240 < SU ≤ 420 µmol/L) for males and 3 < SU ≤
6 mg/dL (180 < SU ≤ 360 µmol/L) for females.

As described below, considerable research on the relationship between SU level and
several common disease risks has revealed characteristic patterns. We broadly classify them
here into three patterns in connection with the dual effects of uric acid. In the first pattern,
the “gout pattern”, increased SU causes a higher disease risk caused by the formation
of monosodium urate crystals due to the low solubility (6.8 mg/dL; approximately 400
µmol/L) of uric acid in human serum [9]. With the second pattern, the “neurodegenerative
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disease (ND) pattern”, the disease risk is lower, as a high SU level increases the neuropro-
tective effect of uric acid. Neurodegenerative diseases, including Alzheimer’s disease (AD)
and Parkinson’s disease (PD), are common disorders that can result in dementia, and their
risk patterns are similar to those seen with SU. Thirdly, there is the “chronic kidney disease
(CKD) and cardiovascular disease (CVD) pattern”, in which disease risks follow J-curves in
parallel with the SU level. This is likely because both CKD and CVD are vascular-related
diseases and are affected by the dual effect of uric acid, that is, of the above-described gout
and ND patterns.

As shown in Figure 1 and described below, “dysuricemia”, which includes both
hyperuricemia and hypouricemia, influences several diseases in humans. In short, “the
lower, the better” is incorrect; the ideal is to maintain normouricemia, or optimal SU level,
to reduce the burdens of several common diseases with dysuricemia.

In this review, the dual role of uric acid is described with its benefits and drawbacks
to support our rationale for having created this novel disease category of “dysuricemia”.

2. History of Dysuricemia

Gout is one of the oldest disease concepts. First identified by the Egyptians in 2640 BC,
“podagra”, or gout, was later recognized by Hippocrates in the fifth century BC [10]. He
reported that the risk factors of gout are being male, advanced age, obesity, and alcohol
consumption [11]. Six centuries later, Galen added heredity as a gout risk [10]. In 1679,
Antonie van Leeuwenhoek used his microscope to observe needle-shaped crystals taken
from a gouty tophus [10,12], of which the components were later revealed by Wollaston
in 1797 to be uric acid [13]. Garrod showed elevated SU concentration in gout patients in
1848 [14], and hyperuricemia has since been established as the cause of gout. Although
primary gout was in the past seen mostly in a few wealthy people, it is increasingly
a globally common and challenging disease [15]. Population-based studies from Asia,
Europe, and North America have reported its incidence to range between 0.6 and 2.9 per
1000 person-years and a prevalence of 0.68–3.90% in adults [4,5]. Indigenous Asian and
Pacific people such as Taiwanese and Māori are reported to have a much higher prevalence,
partly and possibly due to the protective effect of uric acid against malaria [16]. The
Japanese population is reported to have experienced genetic selection pressure for gout
susceptibility over the last 2000–3000 years [17].

The first case study of a patient showing hypouricemia [8] was reported by Praetorius et al.
in 1950 [18]. Although there was a misunderstanding about the effect of pyrazinamide
in a report by Greene et al. [19], they reported a case study on the characteristics of
hereditary disorders of urate reabsorption at the renal tubules in 1972; three years later,
Akaoka et al. [20] first reported it in Japan. Ishikawa et al. [21] named the concomitant
kidney injury with RHUC as “ALPE” (Acute renal failure with severe Loin pain and Patchy
renal ischemia after anaerobic Exercise) from its symptoms and have since researched it in
detail. More recently, ALPE is also being called “EIAKI”. Although it is a rare hereditary
disease worldwide, it is relatively frequent in Japanese, Korean, and Eastern European
Roma populations [8,22–24] and is also observed in Chinese and Jewish populations [22,25].
Approximately 0.3% of the Japanese population is estimated to have hypouricemia caused
by RHUC [8,26]. The few causal variants of RHUC that are widely shared in Japanese pa-
tients can be explained by the “founder effect”, i.e., most of the present Japanese population
is descended from a very small ancestral population with RHUC variants [27].

It is of interest that research on patients with RHUC has provided new insights into
uric acid handling and has resulted in the identification of therapeutic molecular targets
for gout and hyperuricemia [28].

3. Production of Uric Acid and Dysuricemia

In humans, xanthine oxidoreductase (XOR) is chiefly expressed in the liver and in-
testine [29] and is the rate-limiting enzyme in uric acid production [30], catalyzing the
oxidation of hypoxanthine to xanthine and xanthine to uric acid in the purine metabolism
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pathway (Figure 2). Although urate is then catalyzed by uricase, also known as urate
oxidase (UOX), to allantoin in most mammals, uric acid is the end product of purine
metabolism in humans due to two dysfunctional variants in the UOX gene [2,3] and is
considered a cause of hyperuricemia and gout in humans.

The XOR protein is a homodimer consisting of a subunit composed of three domains
linked by hinge regions: two unequal iron–sulfur clusters (2Fe/S) in the N-terminal do-
main, a flavin adenine dinucleotide (FAD) cofactor in the intermediate domain, and a
molybdopterin cofactor containing a molybdenum atom (Moco) in the C-terminal domain.

XOR activity in the liver has been reported to be higher in gouty patients with over-
production of uric acid [31], and XOR is a therapeutic target for the treatment of patients
with hyperuricemia and gout caused by overproduction of uric acid [32]. Recent studies
have shown that plasma XOR activity is higher in males, obese individuals, and those
with insulin resistance and is also positively associated with SU levels, suggesting that
increased XOR activity may contribute to the hyperuricemia often seen in these individuals
via increased production of uric acid [33–35].

Xanthinuria, which was first described by Dent and Philpot in 1954 [36], is another
asymptomatic primary hypouricemia caused by a genetic defect in xanthine dehydrogenase
(XDH/XOR) [37] for xanthinuria type 1 (XAN1; Mendelian Inheritance in Man (MIM)
278300) [38], or of the molybdenum cofactor sulfurase (MOCOS) for xanthinuria type 2
(XAN2; MIM 603592) [39]. Xanthinuria is characterized by marked hypouricemia and
reduced urinary excretion of uric acid in addition to increased urinary excretion of xanthine
as a result of reduced XOR activity, but its frequency is very low, with somewhat more
than 150 cases reported worldwide. Xanthine has low solubility and can form xanthine
stones, but patients have no other serious symptoms [37], possibly due to the decreased
pro-oxidative and anti-oxidative effects of XOR and urate.
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Figure 2. Production of uric acid. At the end of the purine metabolic pathway, uric acid is produced
from hypoxanthine and xanthine by xanthine oxidoreductase (XOR). Uric acid is an end product in
humans due to a defect in urate oxidase (UOX) and is excreted from the kidney and intestine. Along
this pathway, XOR produces reactive oxygen species (ROSs) as a pro-oxidative effect. Uric acid has
both anti-oxidative and pro-oxidative effects against ROS. Slightly soluble uric acid, which has low
solubility in human serum, occasionally forms crystals before being excreted from the body.
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XOR is an enzyme that is involved not only in the production of uric acid but also
in ROS. XOR is a constitutive NAD+-dependent xanthine dehydrogenase (XDH) that can
be reversibly converted to xanthine oxidase (XO) by oxidation of two cysteine residues or
irreversibly by partial proteolysis of the fragment containing these cysteine groups [40].
The XO form produces superoxide ion (O2•−) and hydrogen peroxide (H2O2) by mono-
valent and divalent electron transfer to O2, respectively, whereas the XDH form produces
these ROSs at the FAD site by acting as a nicotinamide adenine dinucleotide hydrate
(NADH) oxidase [7]. Plasma XOR activity has been reported to affect blood pressure [41],
glycemic control [42], renal function [43], coronary artery spasm [44], vascular endothelial
function [45], and carotid atherosclerosis [46], suggesting that ROS production by XOR is
involved in these pathologies.

Urate has shown both anti-oxidative and pro-oxidative properties in vitro by scav-
enging and the production of ROSs [47,48], and both hypouricemia and hyperuricemia,
or dysuricemia, appear to contribute to CKD and CVD due to an imbalance between
pro-oxidant, crystal formation, and anti-oxidant characteristics as described below. In
addition to these effects of urate, the impact of XOR-mediated ROS production requires
further investigation.

4. Urate Transporters and Dysuricemia

Urate, the end metabolite, is then transported to and excreted from the kidney and
intestine. This results in stronger pathophysiological effects by transporters than by
metabolic effects on dysuricemia when compared to those of dyslipidemia and diabetes mel-
litus. Figure 3 shows urate transporters encoded by URAT1/SLC22A12, GLUT9/SLC2A9,
ABCG2/BCRP, NPT1/SLC17A1, and OAT10/SLC22A13, all of which have been shown by
both genetic and functional studies to have pathophysiological roles in dysuricemia [49–53].
Of these, URAT1, GLUT9, and ABCG2 are characteristic transporters whose dysfunctional
variants strongly affect SU levels.

Urate transporters URAT1 and GLUT9 have been identified in RHUC patients [49,50].
RHUC is caused by dysfunction of urate reabsorption in the kidney, and RHUC patients
show low SU (typically ≤ 2 mg/dL or 120 µmol/L) and high fractional excretion of uric
acid (FEUA) [8]. RHUC itself is asymptomatic, as is hyperuricemia, but its complica-
tions, such as ALPE, also known as exercise-induced acute kidney injury (EIAKI), and
urolithiasis, are sometimes evident. Patients’ median onset age of EIAKI is reported to
be 19 years old, and the male-to-female ratio is 10:1 [28]. From the sequence similarity to
OAT4/SLC22A11, the URAT1/SLC22A12 gene was identified. It encodes the urate reabsorp-
tion transporter at the apical side of the renal proximal tubule cells, and its dysfunctional
variants, such as rs121907892 (p.W258X), cause RHUC type 1 (RHUC1; MIM 220150) [49].
The GLUT9/SLC2A9 gene encodes urate reabsorption at the basolateral side of the renal
proximal tubule cells, and its dysfunction causes RHUC type 2 (RHUC2; MIM 612076) [50].
Both RHUC1 and RHUC2 in patients with two nonfunctional variants cause severe to
moderate hypouricemia (SU ≤ 2.0 mg/dL or 120 µmol/L); however, RHUC2 cases have
higher FEUA (typically >100%) than that of RHUC1 patients (typically 25–90%) [54]. Selec-
tive URAT1 inhibitors such as dotinurad and lesinurad have recently been developed as
uricosuric agents to treat gout and hyperuricemia.

The common dysfunctional variants of the ABCG2/BCRP gene, rs72552713 (p.Q126X)
and rs2231142 (p.Q141K), have been identified as the main genetic cause of the common
form of the disease (that is, primary gout/hyperuricemia) [51,55] as well as early-onset
gout [56]. ABCG2 is a high-capacity urate exporter [51] and is expressed on the apical side
of the renal proximal tubule cells, enterocytes, and hepatocytes in humans [57]. Because
dysfunctional ABCG2 more strongly decreases extra-renal (intestinal) urate excretion than
renal excretion, ABCG2 dysfunction increases renal excretion overall, and it appears as an
overproduction of uric acid [58]. Based on this novel pathogenesis of hyperuricemia, Ichida
et al. [58] propose that the “overproduction type” be renamed “renal overload type,” con-
sisting of two subtypes, “extra-renal urate underexcretion” and genuine “overproduction”



Biomedicines 2023, 11, 3169 6 of 17

of uric acid (Table 1). Decreased intestinal excretion has been proven not only in Abcg2
knockout mice [58] but also in humans; indeed, both gastroenteritis and hemodialysis
patients showed decreased intestinal and renal urate excretion, respectively, in parallel
to their ABCG2 dysfunction levels [59]. In other words, dysfunctional ABCG2 variants
are the shared cause of hyperuricemia due to both renal overload and underexcretion of
urate [60]. NPT1/SLC17A1 is also a urate exporter that is located in the renal proximal
tubules in humans, and its common gain-of-function missense variant, rs1165196 (p.I269T),
causes gout with renal underexcretion [52] by increasing urate transport without chang-
ing its expression levels [61]. A dysfunctional missense variant rs117371763 (p.R377C) of
OAT10/SLC22A13, which encodes urate absorber, has also been shown to decrease both
gout risk and SU levels [53] by increasing FEUA [62]. Renal OAT10 inhibition might be
involved in the urate-lowering effect of losartan and lesinurad, which exhibit uricosuric
effects; losartan inhibits OAT10 more strongly than URAT1 [62].

Table 1. Diseases and factors that result in dysuricemia.

Uric Acid Production Urate Excretion Production and Excretion

Hyperuricemia

Renal overload type
(overproduction type and extra-renal
underexcretion type *)

Renal underexcretion type Combined type

â Purine rich diet
â Dysfunctional ABCG2 *
â Lesch-Nyhan

syndrome/Kelley-Seegmiller
syndrome

â Phosphoribosylpyrophosphate
synthetase (PRS) superactivity

â Glycogen storage disease type
VII (also known as muscle
phosphofructokinase (PFK)
deficiency, myogenic
hyperuricemia, and Tarui
Disease)

â Malignant neoplastic disease
â Non-neoplastic disease (e.g.,

psoriasis)
â Tumor lysis syndrome
â Rhabdomyolysis
â Hypothyroidism
â Drugs (e.g., theophylline)

â Dehydration
â Kidney disease (e.g., chronic

kidney disease, polycystic
kidney)

â Autosomal dominant
tubulointerstitial kidney disease
caused by mutation in UMOD
or REN [ADTKD-UMOD or
ADTKD-REN; formerly called
familial juvenile hyperuricemic
nephropathy (FJHN) or familial
juvenile hyperuricemic
nephropathy type 2 (FJHN2),
respectively]

â Hyperlactacidemia
â Drugs [e.g., diuretics (thiazide

and furosemide), antiphthisics
(pyrazinamide and ethambutol
hydrochloride), cyclosporin]

â Obesity
â Alcohol consumption
â Heavy exercise
â Pregnancy-induced

hypertension
â Severe traumatic injury,

burn injury
â Glycogen storage

disease type I
â Drugs [e.g., Vitamin B3

(niacin)]

Hypouricemia

Underproduction type Overexcretion type Combined type

â Xanthinuria (type I, type II)
â Molybdenum cofactor

deficiency
â Purine nucleoside

phosphorylase deficiency (PNP
deficiency)

â PRS hypoactivity
â Idiopathic urate

underproduction-type
hypouricemia

â Severe hepatic injury
â Drugs (such as allopurinol)
â Emaciation (malnutrition)

â Renal hypouricemia (RHUC
type I, type II)

â Fanconi syndrome
â Wilson’s disease
â Syndrome of inappropriate

secretion of antidiuretic
hormone (SIADH)

â Malignant tumor
â Diabetes mellitus
â Drugs (such as benzbromarone

and probenecid)
â Pregnancy
â Intractable diarrhea

â Combination of
underproduction and
overexcretion types

Adopted from [63] for hyperuricemia and from [8] for hypouricemia. * In ordinary urinary tests, urate overpro-
duction type is undistinguishable from extra-renal underexcretion type caused by dysfunctional ABCG2.
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Figure 3. Urate transporters. Serum urate (SU) level is regulated by maintaining a balance be-
tween uric acid production and urate transport (excretion and reabsorption) in the kidney and
intestine. The urate transporters shown here were identified by both genetic and functional studies:
URAT1/SLC22A12, GLUT9/SLC2A9, and OAT10/SLC22A13 genes encode transporters for urate
reabsorption, while ABCG2/BCRP and NPT1/SLC17A1 encode urate excretion transporters on the
renal proximal tubular cells. ABCG2 is also expressed in the intestinal epithelial cells as the main
urate exporter.

5. “Bucket-and-Balls” Theory for Hyperuricemia

Nakayama et al. [64] demonstrated that genetic factors from dysfunctional variants
of ABCG2 had a stronger effect on hyperuricemia progression in the Japanese population
than did typical environmental factors. In their study [64], the population attributable
fraction (PAF, also known as population attributable risk percent; PAR%) of ABCG2 dys-
function, which indicates the percentage of hyperuricemic patients originating from ABCG2
dysfunction in the population, was calculated to be 29.2%. This was much higher than
overweight/obesity (BMI ≥ 25.0; PAF = 18.7%), heavy drinking (>196 g/week (male) or
>98 g/week (female) of pure alcohol; PAF = 15.4%), and aging (≥60 years old; PAF = 5.74%).
It appears counterintuitive that the genetic contributors to a lifestyle-related disease have
greater effects than environmental factors. Here, we propose a “bucket-and-balls theory” to
explain this apparent contradiction for hyperuricemia progression (Figure 4). The SU level
in the human urate pool is regulated by the balance of uric acid production, extra-renal
excretion, and renal excretion. This can be compared to the water level (SU level) in a
bucket (urate pool) and faucets (uric acid production and excretion), as shown in Figure 4.
Genetic factors, including urate transporter genes that favor hyperuricemia, correspond
to changing faucet sizes—typically to smaller ones—which is equivalent to putting balls
in a bucket and results in an elevated water (SU) level (Figure 4A, left). The water (SU)
level will also be raised by environmental factors such as uric acid overproduction due to a
purine-rich diet (Figure 4A, right). Since certain individuals, such as Japanese and indige-
nous Pacific populations [16], have strong genetic factors or have more balls in the bucket,
their SU level will be higher than those with fewer genetic factors (Figure 4B, left); relatively
small environmental factors are therefore enough to elevate the SU level to >7 mg/dL
(>420 µmol/L), that is, to cause hyperuricemia (Figure 4B, right). This theory is useful not
only for explaining the results of Nakayama et al. [64] but also for gout and hyperuricemia
patient education to stress the importance of controlling environmental factors.
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Figure 4. “Bucket-and-balls” theory. Genetic factors from ABCG2 variants reportedly had a stronger
effect on the progression of hyperuricemia in the Japanese population than common environmental
factors. We propose here a “bucket-and-balls theory” to explain this apparent contradiction in the
progression of hyperuricemia. The serum urate (SU) level in the human urate pool is regulated by
the balance among uric acid production, extra-renal, and renal urate excretion. This can be compared
to the water level (SU level) in a bucket (urate pool) and faucets (uric acid production and excretion).
Genetic factors due to urate transporter genes that favor hyperuricemia correspond to changing
faucet sizes, typically becoming smaller, which is equivalent to putting balls in a bucket, resulting
in an elevated water (SU) level ((A), left). The water (SU) level will also be raised by environmental
factors such as the overproduction of uric acid due to a purine-rich diet ((A), right). Since Japanese
and indigenous Asia-Pacific populations carry strong genetic factors, equivalent to having more balls
in the bucket, their SU levels will be higher than those with fewer genetic factors ((B), left); relatively
small environmental factors are therefore enough to elevate the SU level to >7 mg/dL (>420 µmol/L),
that is, to cause hyperuricemia (HUA; (B), right). This theory is useful not only for explaining why
genetic factors show a stronger effect size than environmental factors but also for patient education
on gout and hyperuricemia, which stresses the importance of controlling environmental factors.

6. Genetic Factors That Favor Dysuricemia in the Japanese Population

Recent comprehensive genetic analyses such as genome-wide association studies (GWASs)
have identified many gout- and SU-associated loci. Multiple novel and significant loci were
revealed by GWASs of clinically defined gout patients [17,65–69] and by GWASs of SU in
ordinary populations [70–73]. As expected, many transporter genes such as URAT1/SLC22A12,
GLUT9/SLC2A9, ABCG2/BCRP, NPT1/SLC17A1, and OAT10/SLC22A13 were identified as
having an association with gout and SU in addition to several enzyme genes, including
the ALDH2 gene, which has a pivotal role in alcohol metabolism. It is a distinguish-
ing characteristic of gout-associated loci that their odds ratios (ORs) sometimes exceed
2.0, much higher than for loci of other common diseases, such as diabetes mellitus and
hypertension, whose ORs range from 1.1 to 1.5 [74]. Single-nucleotide polymorphism
(SNP)-based heritability of gout types was estimated to reach 35.5% [75]. With these facts
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taken together, Japanese populations have unique and remarkable characteristics with
respect to dysuricemia (Figure 5). Figure 5 displays the general relationship between the
allele frequency of disease-associated loci and their effect size [74,76]; the more common
the allele frequency, the less its effect size increases. GWASs of gout and SU in the Japanese
population, however, have revealed the “common disease-common variant” model to have
a much higher effect size than other common diseases. Furthermore, the founder effect in
the Japanese population causes relatively frequent RHUC, affecting approximately 0.3% of
its population [26]. RHUC is, therefore, a more frequent Mendelian disease with a high
effect size in Japanese, although it is a rare Mendelian disorder worldwide. The Japanese
population thus has an ideal genetic background for investigating the pathophysiology of
dysuricemia, as well as the physiology of uric acid and its handling.
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Figure 5. Strong and frequent genetic factors that favor dysuricemia in the Japanese population.
As the allele frequency increases, its effect size generally decreases (adopted from [74,76]). Genetic
studies of gout and hyperuricemia (HUA) in the Japanese population have revealed a “common
disease-common variant” model with a higher effect size than other common diseases. Further-
more, the founder effect in the Japanese population causes relatively frequent hereditary renal
hypouricemia (RHUC) with a higher effect size. Taken together, strong and frequent genetic effects
on serum urate levels result in unique distributions of dysuricemia (gout/HUA and RHUC) in the
Japanese population.

7. Secondary Dysuricemia

In addition to primary hyperuricemia and gout, as described above, patients with
secondary hyperuricemia/gout caused by pre-existing conditions (Table 1) [63] could
sometimes be observed. Increased cell cycle and proliferation by malignant tumors, as
well as decreased urate excretion by kidney dysfunction, could cause persistent secondary
hyperuricemia in addition to transient hyperuricemia caused by a purine-rich diet, alcohol
consumption, heavy exercise, and dehydration. Drugs such as diuretics (thiazide and
furosemide), antiphthisics (pyrazinamide and ethambutol hydrochloride), cyclosporin,
and theophylline can also induce secondary hyperuricemia. Tumor lysis syndrome by
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anticancer drugs could be regarded as another type of drug-induced hyperuricemia. As rare
Mendelian disorders, Lesch–Nyhan syndrome (LNS; MIM 300322), a type of autosomal
dominant tubulointerstitial kidney disease (ADTKD1; MIM 162000: previously called
familial juvenile hyperuricemic nephropathy: FJHN), and glycogen storage disease type
VII (GSD7; MIM 232800) are examples of hereditary secondary hyperuricemia and gout.

Except for RHUC and xanthinuria, almost all hypouricemia tends to be observed
as secondary hypouricemia that is caused subsequent to other pathological conditions,
diseases, and/or syndromes. As shown in Table 1 [8], the differential diagnosis should be
considered as one of the syndromes that include inappropriate secretion of antidiuretic
hormone (SIADH), Fanconi syndrome, and uricosuric agents in addition to starvation
or emaciation. Malignant tumors and diabetes could also cause hypouricemia due to
increased renal urate excretion. Uricosuric agents such as allopurinol, benzbromarone,
and probenecid can induce hypouricemia [8,77]. Other rare Mendelian diseases, such
as Wilson’s disease (WND; MIM 277900) and purine nucleoside phosphorylase (PNP)
deficiency (MIM 613179), could cause hypouricemia.

8. Relationship between Diseases and Dysuricemia

SU levels have been epidemiologically proven to be related to several common diseases.
Figure 1 is the summary of three patterns of such relationships between SU levels and other
diseases: gout pattern, ND pattern, and CKD and CVD pattern.

8.1. Gout Pattern: Crystal Formation and Pro-Oxidative Effects

Diseases showing gout patterns (Figure 1) cause the formation and deposition of
urate crystals. Because gout is caused by MSU crystal formation after prolonged hyper-
uricemia, the relationship between SU and gout is clearly high in the hyperuricemic area
(SU > 7 mg/dL, or 420 µmol/L) [5], which results from the low solubility (6.8 mg/dL, or
400 µmol/L) of uric acid in human serum [9]. In other words, the gout pattern will depend
upon the physical state of uric acid. This pattern appears to be the basis of the idea of “the
lower, the better”, but it is incorrect because there are two more patterns as described below.

8.2. ND Pattern: Anti-Oxidative Effects

In contrast to the gout pattern, the ND pattern (Figure 1) indicates a relationship of
“the higher, the better”, likely due to the anti-oxidative effect of uric acid. NDs such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common diseases that can result
in dementia. Two nationwide studies, from the U.K. and Taiwan, reported a lower incidence
of AD and non-vascular dementia, respectively, in patients with and without gout [78–80].
ABCG2 dysfunction indeed hastened gout onset but was also significantly associated with
later PD onset [81]. This report proposed a model in which ABCG2 dysfunction in the
blood–brain barrier (BBB) plays an important neuroprotective role against increased urate
levels in the central nervous system (CNS), together with higher SU levels due to ABCG2
dysfunction in the kidney and intestine [81]. In addition to a cohort study with over
18,000 males, which showed that high SU decreased PD risk [82], meta-analyses report
low SU to increase the risk of AD and PD with dementia but not vascular dementia [83].
Another meta-analysis revealed a significant relationship with a large effect size for lower
SU in amyotrophic lateral sclerosis (ALS) patients [84]. A prospective controlled inception
cohort study indicated that gout patients had a lower risk of death due to dementia [85].
Meta-analyses of cerebral stroke also showed the ND pattern [86,87]. Based on these and
other data, the European League Against Rheumatism (EULAR) recommended, in its
2016 gout management guideline, not to lower the SU level to <3 mg/dL (<180 µmol/L)
continuously for several years [88].

While these epidemiological reports prove the ND pattern to have neuroprotective
effects, not all studies reach this conclusion. For example, three Mendelian randomization
(MR) studies, which modeled randomized controlled tests (RCTs) using a genetic approach,
did not demonstrate any causality between SU or gout on the susceptibility of PD [89,90] or
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AD [91], respectively. An RCT of the effect of urate-elevating inosine on early PD progres-
sion did not result in a significant difference in the rate of clinical disease progression [92].
Further research is necessary to elucidate the effects of uric acid on NDs.

8.3. CKD and CVD Pattern: Combination with Gout and ND Patterns

The “CKD & CVD pattern” generates a J-curve or a U-curve (Figure 1), which indicates
“the more normal, the better”. This pattern results from a combination of gout and ND
patterns, that is, a balance between crystal formation and the pro- and anti-oxidative effects
described above. Vascular-focused common diseases such as CKD and CVD tend to follow
this pattern, probably because the XOR function as described below has effects on and
around the vascular endothelium: (1) XOR produces ROSs as a pro-oxidant (Figure 2);
(2) uric acid reduces ROSs, acting as an anti-oxidant (Figure 2); (3) the nitrite reductase activ-
ity of XOR generates nitric oxide (NO), which contributes to vasodilation and regulation of
blood pressure [7]; (4) the NADH oxidase activity of XOR produces ROSs [7]; and (5) urate
crystals can be deposited in blood vessels, possibly acting as a component of atherosclerotic
plaque [93]. There are, however, some inconsistent reports on the harmful effects on the
vascular system via XO, which produces ROSs. For example, Kusano et al. [94] produced
XDH-stable and XO-locked knock-in mice and found no noticeable difference in survival
rates between XOR mutant mice and wild-type mice. Further studies will be needed on
this point.

Nevertheless, Nardi et al. [93] also revealed the increasing risk of cerebrovascular
events with rising SU levels, suggesting that the deposition of urate crystals in carotid
plaques could participate in the mechanism of stroke. Indeed, Konta et al. [95] reported all-
and CVD-caused mortality to show a J-shaped association with SU level using a Japanese
nationwide database of 500,511 subjects, followed up for seven years. J-curve results were
also obtained from the PIUMA Study of 1720 CVD patients with hypertension [96] and
from a nationwide community-based cohort study of 2081 nonfatal strokes in 155,322 sub-
jects [97]. Nakayama et al. [98] identified both high and low SU levels as risk factors for
CKD incidence in a sample of 138,511 middle-aged men and women. Kuwabara et al. also
showed hypouricemia to be associated with a history of kidney disease in males, using
90,143 Japanese outpatients [99].

The CKD and CVD pattern might be predictive of mortality. With a South Korean
cohort of 375,163, Cho et al. found a U-shaped association between all-, CVD-, and cancer
mortality [100]. In addition to these mortalities, Hu et al. also revealed a similar association
in respiratory-disease mortality from 9118 U.S. adults in the National Health and Nutrition
Examination Survey (NHANES) dataset [101]. Hyperuricemia is reportedly a risk factor
for cardiovascular and all-cause mortality in addition to kidney dysfunction in patients at
cardiovascular risk [102], suggesting that CKD, together with hyperuricemia, might raise
the risk of CVD progression.

It is of interest that a U-shape was also generated for COVID-19 severity, i.e., the risks
inherent in invasive mechanical ventilation, in 1523 Japanese patients [103]. However,
MR studies revealed the causality of SU and gout on COVID-19 in the Japanese popula-
tion but not in Europeans, suggesting a difference in genetic backgrounds between these
ancestries [104]. Further analyses will be necessary.

8.4. Range of Normouricemia as Optimal SU Level

Considering these patterns above, how should we range normouricemia or “optimal
SU”? From the viewpoint of “gout pattern”, the definition of hyperuricemia is set at SU of
>7.0 and >6.8 mg/dL (>420 and >400 µmol/L), irrespective of gender in the Japanese [63]
and American College of Rheumatology (ACR) [105] guidelines, respectively, due to the
low solubility (6.8 mg/dL, or 400 µmol/L) of uric acid in human serum [9]. From the “ND
pattern”, maintaining SU at ≥3 mg/dL (≥180 µmol/L) would be better, as EULAR recom-
mends [88]. Research on the “CKD & CVD pattern” [95–98,100,101] indicates that the SU
range at the lowest disease risks depended on sex and was estimated to be approximately
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4–7 mg/dL (240–420 µmol/L) for males and 3–6 mg/dL (180–360 µmol/L) for females, al-
though set SU ranges differed in each study and were impossible to integrate. Furthermore,
the RHUC guidelines strongly recommend that individuals with an SU of ≤2.0 mg/dL
(120 µmol/L) should be considered to have RHUC from epidemiological evidence [8], and
an additional genetic and epidemiological report [26] suggests that males and females with
SU of ≤3.0 and ≤2.0 mg/dL (≤180 µmol/L and ≤ 120 µmol/L), respectively, should be
considered to have RHUC.

Taken together, we propose that 4 < SU ≤ 7 mg/dL (240 < SU ≤ 420 µmol/L) for
males and 3 < SU ≤ 6 mg/dL (180 < SU ≤ 360 µmol/L) for females should be regarded as
normouricemia, or optimal SU, to take best advantage of both the roles played by uric acid
(Figure 1).

9. Conclusions with Future Research/Clinical Questions on Dysuricemia

In this review, the dual roles of uric acid, that is, an anti-oxidative protective effect
and a pro-oxidative and/or a harmful crystal-forming effect, are described to support our
proposition of this novel disease category, “dysuricemia”. However, there are still many
research and clinical questions on dysuricemia to be answered in future research. Below
are example questions.

â What causes EIAKI in RHUC patients? One hypothetical mechanism of EIAKI sug-
gests that lowered anti-oxidative effect in RHUC patients causes renal vasopressin
by exercise-induced ROSs from XOR; based on this hypothesis, some case studies
report the effectiveness of allopurinol or febuxostat (XOR inhibitors) administration
in preventing EIAKI [106–109]. However, convincing evidence for their efficacy is
lacking [8];

â While some epidemiological studies on NDs support the “ND pattern”, several other
studies (described above) do not. Research into the effects of low SU against NDs
should be conducted to elucidate the effects of urate on NDs;

â Which comes first, dysuricemia, CKD, or CVD? It is also possible that SU is simply
a marker of these diseases. Further investigation of their causality by SU should
be determined from the viewpoint of the anti-oxidative, pro-oxidative, and crystal-
forming effects of urate;

â Why are females more vulnerable to SU? It is known that female hormones decrease
SU levels [5]. Our previous studies do, in fact, reveal sex differences in SU in the order
of 1–1.5 mg/dL (60–90 µmol/L) [26,54]. The optimal SU range differs between the
sexes by 1 mg/dL (60 µmol/L), so females can be concluded to be more vulnerable to
SU at the same SU level as males.

Dysuricemia, like dyslipidemia and diabetes mellitus, is a disorder of energy home-
ostasis. Here, we again propose the novel disease concept of “dysuricemia” to prevent
pathogenesis from excessively high or low SU and suggest that its spectrum be interpreted
as a single disease category to be able to take optimal advantage of the dual nature of
uric acid.
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