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Abstract: Prostate cancer (PCa) remains a significant global health concern, being a major cause of
cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is
needed. Prostate inflammation caused by external or genetic factors is a central player in prostate
carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly
understood. This review dissects the diagnosis methods for PCa and the pathophysiological mecha-
nisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes
in promoting tumour development and spread. It provides updates on recent advances in elucidating
and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in
PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with
their synergistic potential when combined with conventional treatments, offer promising prospects
for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based
nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and
metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to
increased understanding of the disease and stimulate further research into the role of polyphenols
and polyphenol-based nanoparticles in its management.

Keywords: prostate cancer; inflammation; immune response; leukocytes; polyphenol compounds;
polyphenol-based nanoparticles

1. Introduction

The prostate, a walnut-shaped gland in males, plays a vital role in the production of
seminal fluid, which serves to nourish and transport sperm [1]. Several risk factors includ-
ing age, ethnicity, genetic predisposing, infection, obesity, and diet, have been linked to
the development of prostate malignancies, subsequently leading to prostate inflammation
and carcinogenesis [2]. Prostate cancer (PCa) stands as a significant cause of morbidity
and cancer-related deaths among men [3]. As the population ages and the prevalence of
food processing, coupled with poor dietary habits, continues to rise, there is an anticipated
increase in the absolute number of PCa cases [4,5]. However, it is crucial to note that
the association between a high-fat diet and obesity as risk factors for PCa development
remains a subject of controversy, a topic that will be explored in the following sections.
Inflammation is a pivotal player in the development of prostate carcinogenesis. Dysregu-
lation in the mechanisms governing the production and activation of inflammatory cells
contributes to abnormal damage within the prostate tissue. Furthermore, the prostate
tumour microenvironment hosts highly heterogeneous and plastic cell populations, which
leads to patient resistance to therapies and heightened disease recurrence [6]. PCa cells
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may be modulated into different phenotypes in response to different signals. Consequently,
immune cells such as neutrophils, basophils, eosinophils, mast cells, macrophages, and
B and T lymphocytes within the tumour microenvironment can be activated into either
pro-tumoral or anti-tumoral phenotypes. The precise roles of each immune population
in PCa progression, as well as the controversial aspects surrounding the inflammatory
mediators they produce, remain subjects of debate in the literature. In most reviewing
articles available, the primary focus is on immune populations with higher prevalence in
PCa and their roles in promoting cancer progression through pro-inflammatory mediators.
However, it is crucial to recognize the importance of other immune populations that influ-
ence the phenotype of tumour-associated infiltrates. Additionally, the specific mechanisms
governing cytokine and chemokine production from distinct immune populations, along
with their roles in particular pathways, are areas where gaps in knowledge persist.

Recent investigations have explored the role of polyphenol compounds and their in-
corporation into nanoparticles in the context of PCa [7–9]. Data suggests that their capacity
to scavenge free radicals and act as antioxidants could hold promise for improving PCa
therapies. This article seeks to delve into the roles of various leukocyte populations, their
production of inflammatory mediators, and their relationships with PCa progression. It
will also provide a comprehensive exploration of the role of polyphenols in PCa develop-
ment and progression, shedding light on potential avenues for their incorporation into
nanoparticles. This innovative approach aims to enhance polyphenol delivery to target
cells, thereby increasing the effectiveness of current therapies while reducing side effects
and therapy resistance.

2. Epidemiology of Prostate Cancer

According to the World Health Organization (WHO) [10] the global incidence of PCa
was 1,414,259 cases in 2020, with 375,304 reported deaths. PCa incidence varies significantly
across different geographic regions and among ethnic groups. Incidence rates range from
6.3 to 83.4 cases per 100,000 people worldwide [11]. The countries with the highest PCa
incidence are Northern Europe, Western Europe, and the Caribbean, while the highest
mortality rates are observed in the Caribbean, Middle Africa, and Southern Africa [10].
Notably, Black men are more susceptible to PCa than White men, with a higher risk of
aggressive carcinogenesis and mortality. These disparities may be attributed to factors such
as mistrust of the healthcare system, lack of education, information, and access to diagnosis
and treatment, as well as societal stigma associated with the disease [12]. Conversely, the
high PCa incidence rates observed in developed countries can be attributed to proactive
diagnosis and prevention measures established within healthcare systems. This includes the
widespread practice of prostate-specific antigen (PSA) testing for screening [13]. Looking
ahead to the next decade, the aging global population is expected to drive an increase in
PCa cases to an estimated 1.7 million new cases and 499,000 deaths [14].

3. Diagnosis of Prostate Cancer

PCa is typically asymptomatic, which means that by the time it is clinically detected,
it has usually reached an advanced stage and often metastasized to other organs. Conse-
quently, clinical therapies tend to be ineffective at this stage, resulting in high mortality
rates associated with PCa. Given this scenario, there was a pressing need to implement
screening measures for this disease to diagnose it at a treatable stage. This need led to
the discovery of the of PSA [15]. After its clinical implementation, the PSA test allowed
for the detection of more cases of PCa, leading to an increase in its incidence [16,17]. In
fact, the European Randomized Study of Screening for Prostate Cancer (ERSPC) reported
a 20% reduction of PCa mortality following PSA screening. However, this screening also
led to overdiagnosis, causing increased anxiety due to false positive PSA tests, as well as
complications related to further biopsies and hospitalizations [18].

According to the National Comprehensive Cancer Network (NNCN) Foundation,
the clinical approach and guidelines for patient diagnosis depend on the stage of the
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disease [19]. If PSA levels are higher than normal for a patient’s age, it is recommended to
perform additional imaging tests, biopsies, or genetic tests.

PSA, a serine protease produced in the prostate epithelium and overexpressed in PCa
tissues, is widely used as a screening test for PCa diagnosis [20]. Normal PSA levels also
vary with age. NNCCN defines normal PSA ranges as 0.0–2.5 ng/mL, 2.5–3.5 ng/mL,
3.5–4.5 ng/mL, and 4.5–6.5 ng/mL for patients between 40 and 49 years, 50 and 59 years,
60 and 69 years, and 70 and 79 years, respectively. In clinical practice, the PSA test is the
most common screening method for PCa. If PSA levels are elevated but the patient exhibits
no other symptoms of PCa, a second PSA test is recommended. Another used screening
method is the digital rectal exam (DRE), which is a straightforward way to assess the size
and texture of the prostate. Typically, this test is used in conjunction with the PSA test,
taking into consideration factors such as age, race, or family history of PCa. If PSA levels
are higher than normal or if patients have risk factors such as a family history, race, or age,
suggesting a potential case of PCa, additional diagnostic tests become necessary (Figure 1).
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Figure 1. Diagnostic methods of prostate cancer (PCa) taking in consideration prostate-specific
antigen (PSA) levels by age. The information represented in black, pink, orange, and blue correspond
to patients between 40–49, 50–59, 60–69 and 70–79 aging, respectively.

PCa stages and cell patterns are defined by Gleason Patterns, which are used to
estimate the tumour’s Gleason Score. According to the Gleason Score, the tumour’s
classification is translated into a tumour grade group that estimates the risk of PCa. The
Gleason Pattern ranges from 3 to 5, where 3 resembles normal cells, and 5 is attributed
to cells with an abnormal pattern [21]. PCa cells exhibit significant heterogeneity, so the
Gleason Pattern considers a primary pattern related to the pattern of cells found in the
largest area of the tumour and a secondary pattern accounting for the second largest
area [19]. The Gleason Score is the sum of these primary and secondary Gleason Patterns.
Gleason Scores ranging from 2 (1 + 1) to 5 (3 + 2) are considered benign, with only tumours
scoring 6 (3 + 3) or higher classified as malignant. A higher Gleason Score indicates that the
tumour is more likely to grow and spread rapidly. Prostate tumours assigned a Gleason
Score of 6 (3 + 3) or 7 (3 + 4 or 4 + 3) are considered low-grade and intermediate-grade,
respectively, while tumours with a score of 8 (4 + 4, 3 + 5, or 5 + 3), 9 (4 + 5 or 5 + 4), or
10 (5 + 5) are categorized as high-grade [22]. Following this, a Grade Group, numbered
1 to 5, is assigned based on the Gleason Score, reflecting tumour aggressiveness. Grade
Group 1 corresponds to a Gleason Score of 6 and represents the lowest score. Grade Group
2 (3 + 4) and 3 (4 + 4) correspond to a Gleason Score of 7 while Grade Groups 4 and 5
correspond to Gleason Scores of 8 and 9 or 10, respectively, representing the highest level
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of malignancy. Histologically, Grade Group 1 is characterized by individual, discrete,
and well-formed glands. Grade Group 2 has predominantly well-formed glands with a
few poorly-formed/fused/cribriform glands. Grade Group 3 has predominantly poorly
formed/fused/cribriform glands with lesser (5%) component of well-formed glands. Grade
Group 4 has only poorly formed/fused/cribriform glands (4 + 4), or predominantly well-
formed glands and lesser component lacking glands (3 + 5), or predominantly lacking
glands and lesser component of well-formed glands (5 + 3). Grade Group 5 has lack gland
formation (or with necrosis) with or without poorly-formed/fused/cribriform glands
(Table 1) [23].

Table 1. Histological characterization of prostate cancer biopsies by Gleason Score. Adapted from the
NCCN Guidelines for patients [19], Kweldam et al. (2019) [24], Ihamura et al. (2018) [25], and Avenel
et al. (2019) [26].

Gleason
Pattern

Gleason
Sore

Grade
Group Risk Histological Definition Histological

Image Prognosis

3 + 3 6 1 Low Individual, discrete,
well-formed glands
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Gleason Pattern 
Gleason 

Sore 

Grade 

Group 
Risk Histological Definition 

Histological 

Image 
Prognosis 

3 + 3 6 1 Low Individual, discrete, well-formed glands 

 

Low-grade 

Cancer 

3 + 4 7 2 
Low to in-

termediate 

Well-formed glands with a few poorly-

formed/fused/cribriform glands 

 
Intermedi-

ate-grade 

cancer 

4 + 3 7 3 
Intermedi-

ate 

Poorly formed/fused/cribriform glands with lesser 

(5%) component of well-formed glands 

 

4 + 4 

8 4 High 

Poorly formed/fused/cribriform glands 

 

High-grade 

cancer 
3 + 5 

Well-formed glands with a few areas lacking 

glands (or with necrosis) 

 

5 + 3 
Lack glands (or with necrosis) and a few well-

formed glands 
 

4 + 5
5 + 4
5 + 5

9 or 10 5 Very high

Lack gland formation (or
with necrosis) with or

without poorly-
formed/fused/cribriform

glands
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4. Pathophysiology of Prostate Cancer

The prostate comprises a central zone (CZ) that contains the ductal tube from the
seminal vesicle, the peripheral zone (PZ) located at the posterior region and where the
majority of cancer appear, and the transitional zone (TZ) placed below the bladder [1].
The prostate consists of organized layers with three types of epithelial cells—basal, lumi-
nal, and neuroendocrine cells—a fibro-muscular network, an endothelial membrane, and
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immune cells [27]. Basal cells constitute 40% of the epithelium and are characterized by
the expression of cytokeratin (KRT) 5, KRT14, KRT17, and p63. Luminal cells make up
60% of the total epithelium and express KRT8, KRT18, cluster of differentiation (CD) 26
and androgen-regulated secretory proteins such as kallikrein related peptidase 3 (KLK3).
Neuroendocrine cells are found in lower percentages in the basal lamina, approximately
1%, and express chromogranin A (CHGA) [27,28] (Figure 2a,b).
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Figure 2. Pathophysiological mechanisms of prostate cancer (PCa). (a) Physiology of the human
prostate; (b) Normal human prostate; (c) External or internal events can trigger an inflammatory
response leading to proliferative inflammatory atrophy (PIA). PIA is characterized by hyperpro-
liferation of epithelial cells, accompanied by an increase in glutathione S-transferase P1 (GSTP1),
p27Kip1, and B-cell lymphoma-2 (Bcl-2), and a decrease in NK3 homeobox 1 (NKX3.1) and phos-
phatase and tensin homolog (PTEN) levels; (d) The subsequent phase of the disease, known as
prostatic intraepithelial neoplasia (PIN), is marked by hyperproliferation of luminal cells, telomere
shortening, activation and differentiation of fibroblasts into myofibroblasts, dysregulation of ETS
transcription factor, speckle-type PO2 protein (SPOP) mutations, the presence of the transmembrane
serine protease isoform 2 (TMPRSS2)-ERG fusion gene and loss of NKX3.1; (e) These events ultimately
culminate in PCa, characterized by the loss of basal cells, activation of a pro-inflammatory phenotype,
activation of myofibroblasts towards a pro-fibrotic state, telomerase activation and loss of PTEN and
retinoblastoma 1 (RB1). Bcl-2: B-cell lymphoma-2, GSTP1: Glutathione S-transferase P1, NKX3.1:
NK3 homeobox 1, PCa: Prostate cancer, PIA: Proliferative inflammatory atrophy, PIN: Prostatic
intraepithelial neoplasia, PTEN: Phosphatase and tensin homolog, RB1: Retinoblastoma 1, SPOP:
Speckle-type PO2 protein, TMPRSS2: Transmembrane serine protease isoform 2. Adapted from
Packer et al. (2016) [1].

Disruptions in the epithelial lineages, alterations in the number and phenotype of
epithelial cells [29], along with mutations in tumour suppressors, oncogenes [30] and
external factors that induce inflammation [2] can result in the dysregulation of the prostate
environment. These events may lead to abnormal production of epithelial cells, including
an overproduction of luminal cells and a decreased production of basal cells, constituting
99% and 0.1% of tumours, respectively. Simultaneously, there is a breakdown of the
basement membrane, infiltration of immune cells, and increased stromal reactivity. Smooth
muscle cells are replaced by activated fibroblasts and myofibroblasts, contributing to the
heterogeneity and high plasticity of the tumour [27].

Firstly, an increase in the inflammatory response leads to proliferative inflammatory
atrophy (PIA) (Figure 2c), which is characterized by a hyperproliferative response of the
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epithelia. Repeated cycles of cell injury and regeneration result in increased oxidative stress
mediated by the inflammatory system [31]. These impact the increased levels of glutathione
S-transferase P1 (GSTP1) in response to oxidant stress [32]. PIA regions also show an
increased expression of p27Kip1 (also known as cyclin-dependent kinase inhibitor 1B or
CDKN1B), which inhibits the cell cycle, and B-cell lymphoma-2 (Bcl-2), which regulates
apoptosis [32]. However, there is downregulation of tumour suppressor genes, including
the transcription factor NK3 homeobox 1 (NKX3.1), which is essential for maintaining
prostate cell fate and suppressing PCa initiation, and the tumour suppressor phosphatase
and tensin homolog (PTEN) gene [33]. PIA has been proposed as a precursor of prostatic
intraepithelial neoplasia (PIN) and PCa (Figure 2d) [34]. The mechanisms underlying these
transitions are not fully understood, but evidence suggest that PIA is an intermediate state
to PIN [31]. This hypothesis is supported by the fact that PIA regions overlap with regions
of tumour tissue, recognizing the sequence of events that occur after inflammation-induced
prostate carcinogenesis [31].

PIN is characterized by luminal epithelial hyperplasia, reduction of basal cells, en-
largement of nuclei, increased proliferative markers, loss of NKX3.1, and alteration of
mitotic rates of the epithelial bilayer (Figure 2d) [35,36]. Studies have also demonstrated
that PIN tissue overlaps with tumour tissue, supporting the hypothesis that PCa originates
from this prostate state [37]. This phase of the disease is also characterized for telomere
shortening [38], increase of genomic instability, chromosome mutations [39], and telom-
erase activation to restore telomere length, avoiding replicative cell senescence [39,40].
Studies also demonstrated the involvement of the ETS transcription factor rearrangements
in PIN [41]. One of these mutations create a transmembrane serine protease isoform 2
(TMPRSS2)-ERG fusion gene, which increase the predisposition to tumour progression [42].
Additionally, missense mutations of the speckle-type POZ protein (SPOP) gene frequently
occur in this phase. SPOP is a tumour suppressor protein and substrate adaptor of the
cullin 3-RING-ubiquitin ligase (CUL3). SPOP mutations disrupt substrate binding and
ubiquitination, leading to increased expression of oncogenic substrates [43].

Continued elevation of the inflammatory response and genetic alterations cause cellu-
lar damage leading to cancer progression. Increased influx of T cell infiltrates [44], tumour
associated macrophages [45], and B cells [46] result in continuous damage to prostate tissue,
leading to the production of a reactive milieu of pro-inflammatory cytokines and growth
factors (Figure 2e). These events ultimately lead to the alteration of the epithelial niche
toward a pro-inflammatory phenotype [47]. Concurrently, there is luminal cell hyperpro-
liferation, loss of basal cells, and PTEN, and disintegration of the basement membrane,
allowing tumour and tumour microenvironment cells to invade surrounding tissues [48].
During this phase, aberrantly differentiated cells acquire a telomerase-positive signature to
maintain clonal heterogeneity and viability [49]. Additionally, there is a loss of the tumour
suppressor retinoblastoma 1 (RB1) [50].

5. Current Therapeutic Strategies Used in Prostate Cancer

The current therapeutic strategies for PCa encompass a range of approaches, including
active surveillance, surgery, radiation therapy, chemotherapy, hormonal therapy, and
immunotherapy, often in combination [19].

Active surveillance involves a tailored plan for each patient, considering specific needs.
Typically, this includes periodic PSA tests (once or twice a year), a DRE (once a year), and a
prostate biopsy (every 1 to 3 years). This decision is made by a team of clinicians, generally
for patients with lower-risk PCa, a life expectancy of 10 years or more, overall patient
health, tumour characteristics, and potential side effects [51]. Illness uncertainty could be a
potential adverse effect of this type of control.

Surgery aims to remove cancer and the type of procedure is determined by factors
such as tumour size, location, and metastasis. Radical prostatectomy, which removes the
entire prostate gland, is recommended for patients with local recurrence without metastasis
after treatments such as radiotherapy, brachytherapy, or cryotherapy. Nevertheless, surgery
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is often associated with significant morbidity, including erectile dysfunction, urinary incon-
tinence, and infertility [52].

Radiotherapy employs high-energy radiation, such as X-rays or gamma rays, to
eliminate PCa cells. It can be used as an alternative to surgery or after surgery to prevent
cancer recurrence. External beam radiation therapy delivers precise radiation to prostate
tissue, sparing healthy cells, and is considered effective for intermediate-risk and high-risk
PCa [53]. However, studies have shown that PCa cells can adapt to radiotherapy, increasing
the risk of disease recurrence [54]. Side effects may include high urinary frequency, dysuria,
diarrheal, proctitis, erectile dysfunction, and urinary incontinence [55]. Brachytherapy
involves the direct delivery of radiation into the prostate gland using seeds, injections, or
wires guided by transrectal ultrasounds. This technique can help preserve continence and
erectile function but requires anaesthesia and may raise the risk of urinary retention [56].

Chemotherapy employs anticancer drugs to inhibit the survival, proliferation, and
metastasis of tumour cells. Docetaxel is a common choice for PCa, acting by binding to β-
tubulin and inhibiting microtubule depolymerization, mitotic cell division, and promoting
apoptosis. Resistance to this drug may involve the upregulation of the multidrug resistance
(MDR) 1 gene, which encodes P-glycoprotein [57]. Cabazitaxel is a second-generation
therapy designed to counter docetaxel resistance, with low affinity for P-glycoprotein due
to an additional methyl group [58]. Enzalutamide, a second-generation androgen receptor
inhibitor, can act through competitive inhibition of androgen binding to the androgen
receptor, inhibition of nuclear translocation, co-factor recruitment, and inhibition of DNA
binding by the activated androgen receptor [59]. However, chemotherapy is associated
with severe side effects in patients, including anaemia, neutropenia, nausea, vomiting,
diarrheal, mucositis, ototoxicity, nephrotoxicity, pulmonary toxicity, and neurotoxicity [60].

Hormonal therapy, also known as androgen deprivation therapy, is commonly em-
ployed in advanced and metastasized PCa. It involves blocking hormone production,
including testosterone, leading to the inhibition of androgen and androgen receptor sig-
nalling. This can be achieved through the use of luteinizing hormone-releasing hormone
(LHRH) analogues or antagonists. LHRH analogues, like leuprolide, goserelin, triptorelin,
and histrelin, initially increase luteinizing hormone (LH) and follicle-stimulating hormone
(FSH) levels by stimulating pituitary receptors. Subsequently, these drugs downregulate
pituitary receptors, resulting in reduced LH and FSH levels and subsequent testosterone
inhibition. LHRH antagonists, on the other hand, block pituitary receptors, triggering
testosterone inhibition [61]. However, this therapy is associated with side effects such
as hyperlipidaemia, fatigue, hot flashes, a flare effect, osteoporosis, insulin resistance,
cardiovascular disease, anaemia, and sexual dysfunction [62].

Immunotherapy offers a promising approach to PCa treatment by manipulating the
immune system’s response to fight cancer cells. Sipuleucel-T was the first FDA-approved
immunotherapy for PCa. It involves collecting a patient’s immune cells, specifically den-
dritic cells, exposing them to a PCa protein, and then reinfusing these activated cells into
the patient. This treatment has shown potential in extending survival in some patients
with advanced PCa [63]. Checkpoint inhibitors, which block proteins like PD-1 and PD-
L1 that prevent immune cells from attacking cancer cells, have been successful in other
cancer types but have shown limited efficacy in PCa [64]. Chimeric antigen receptor T-cell
therapy (CAR-T) genetically engineers a patient’s T cells to target specific antigens on
cancer cells, and it is being explored as a potential treatment for advanced PCa, focusing on
antigens like prostate-specific membrane antigen [65]. Additionally, various vaccine-based
approaches for PCa, including dendritic cell vaccines and viral vector-based vaccines, are
under investigation to stimulate the patient’s immune system to recognize and combat PCa
cells [66].

6. Inflammation and Prostate Cancer

Around 20% of all cancers are related with inflammation [67]. Different studies have
suggested that inflammation plays a crucial role in prostatic carcinogenesis and tumour
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progression [68]. In fact, numbers have shown that inflammatory tissue is prevalent in
77.6% of prostate biopsy tissues and can even reach up to 80% in the general population [69].

Inflammation serves as a crucial immune response that occurs in the aftermath of
injury or infection. It functions as an essential defence mechanism responsible for clearing
pathogenic materials and debris from damaged tissues while also initiating the wound heal-
ing process [70]. Studies have demonstrated the role of neutrophils [71,72], B cells [73,74], T
cells, [75–77], and macrophages [45,78–80] in PCa [81]. Persistent tissue damage leading to
chronic inflammation or dysregulation of the inflammatory mechanisms promote increased
release of inflammatory mediators, cytokines recruitment, expansion of leukocytes, and
genomic instability [82]. Consequently, these processes can cause DNA damage in epithelial
cells, which accumulates DNA mutations [83].

The impact of inflammation on PCa has been demonstrated in a population-based
case-control trial [84]. This study revealed a 23% reduction in the risk of PCa associated
with non-steroidal anti-inflammatory drugs (NSAIDs) and an even stronger association
among patients treated with cyclooxygenase 2 (COX-2) inhibitors. Another study reported
that daily aspirin consumption led to a long-term reduction of 29% in PCa risk compared
to non-consumers [85]. Additionally, statins were found to be correlated with a reduced
risk of PCa by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) [86,87].
These results underscore the role of inflammation as a driver of prostate carcinogenesis.

Origins of Inflammation

The initial cause of prostatic inflammation is difficult to predict. It can arise from
the dysregulation of inflammatory pathways or by an external agent which drives in-
flammation. Environmental factors that have been identified as potential drivers of PCa
include bacterial infections including sexual transmitted infections [88], viral infections [89],
androgen and androgen receptor levels [90], diet and obesity [91], urine reflux [92], and
genetic predisposition [93]. Bacterial and viral infections can exacerbate inflammation in
the prostate, potentially leading to prostatitis. Notably, not all prostate infections progress
to PCa, and the contribution of these infections to PCa remains unclear and inadequately
covered in the literature, requiring further studies. The link between a high-fat diet and
obesity as risk factors for PCa development remains controversial. This correlation has
been explored due to variations in PCa incidence and mortality across different geographic
and cultural regions [94]. Furthermore, evidence indicates that obesity, weight gain, and
increased visceral fat are significantly associated with an elevated risk of biochemical re-
currence after primary prostatectomy, more aggressive disease, and increased PCa-specific
mortality [95]. Studies have also suggested that diets rich in red meat, charred meat, and
saturated fats are risk factors for PCa [91]. Urine reflux has been proposed as a cause of
chronic inflammation in the prostate due to chemical irritation resulting from the accu-
mulation of uric acid. Several studies have demonstrated that uric acid is the primary
chemical compound involved in this type of damage [96]. Notably, the hereditary risk
of PCa is greater than that of any other human cancer [93]. Genome-wide association
studies have identified genetic loci associated with PCa and emphasized the significance of
family history in PCa development [97,98]. The diversity of genetic abnormalities identified
suggest that there is no single dominant molecular pathway for prostatic carcinogenesis but
rather a combination of alterations [35,99]. The exact mechanisms involved in inflammation
driven PCa are not fully understood. Nevertheless, somatic genome alterations in genes
such as ribonuclease L (RNASEL), macrophage scavenger receptor 1 (MSR1), macrophage
inhibitory cytokine-1 (MIC-1), intercellular adhesion molecule (ICAM), and Toll-like re-
ceptors (TLR) are among the most well-identified factors [35]. Due to the complexity of
the process, hundreds of genes are implicated in the inflammatory response that leads
to PCa. Therefore, new technology platforms and approaches are urgently needed to
screen, identify, and correlate genes involved in the entire pathway. These advances could
be pivotal in predicting, early detecting, treating, and preventing PCa development and
progression.
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7. Role of Leukocytes in Prostate Cancer

Chronic inflammation is evident in malignant prostate tissue, with PCa samples
exhibiting a higher percentage of T lymphocytes and macrophages compared to neutrophils,
eosinophils, and B cells typically found in acute inflammatory responses [100]. A study
conducted in the UK Biobank found no correlation between white blood cells, including
neutrophils, eosinophils, basophils, monocytes, and lymphocytes, and PCa diagnosis.
However, a higher total white blood cell count, and neutrophil count were associated with
an increased risk of PCa-related mortality [101].

The use of the CIBERSORT method to examine the relative proportion of immune
cell populations in PCa revealed infiltrated T cells, CD8+ T cells, resting memory CD4+

T cells, and total macrophages counted, respectively, 39%, 13%, 20%, and 13% [102]. An
immunophenotypic analysis from isolated prostatectomy specimens demonstrated an
increase of CD11b+CD68+CD14+HLA-DRhigh monocytes and CD11b+CD68−CD16+HLA-
DRlow monocytes among the CD11b+ myeloid cells, a high fraction of CD8+ T cells within
total CD45+ immune cells in PCa tissues and an increase of CD4+ forkhead box subfamily
3+ (FOXP3+) in high-grade PCa compared to low-grade PCa [103].

The discrepancies observed in different studies may be attributed to the heightened
heterogeneity of PCa, leading to variations in immune subset phenotypes depending on
the tissue samples collected from each patient. Moreover, different immune populations
may express distinct immunophenotypic markers and be programmed toward either a
pro-tumoral or anti-tumoral phenotype (Table 2).

Table 2. Involvement of different leukocytes and their associated cytokines in cancer and prostate
cancer progression.

Leukocyte Inflammatory
Mediator Produced Effect Refs.

Neutrophils

MMP-9
MMP-9 produced by TANs and neutrophils degrade

ECM leading to cancer progression in human xenografts
and Mmp9-knockout mice

[104]

GM-CSF and CXCL8

KRAS stimulated the expression of GM-CSF and CXCL8
in neutrophils which modulates the tumour

microenvironment towards cancer progression in mouse
models of ovarian cancer

[105]

IL-8/CXCR2
Overexpression of CXCR2 in neutrophils promotes their
attachment in lung cancer regions in a K-RAS mutant

mouse model of lung cancer
[106]

NDE, ROS, RNE

NDE, ROS, and RNE release from neutrophils lead to
hMSH2-dependent G2/M checkpoint arrest and for the
presence of replication errors in a co-culture model that

mimics intestinal inflammation in ulcerative colitis

[107]

ARG-1

Release of ARG-1 from neutrophils inhibit
CD3-mediated T cell activation and proliferation
leading to cancer progression in classic Hodgkin

Lymphoma patients

[108]

NET
Increased neutrophil and NET formation intended

attenuate the rate of metastatic PCa in bones in vitro
and an in vivo mouse model

[71]

IL-1 IL-1RA from neutrophils leads to inhibition of
senescence promoting cancer progression [109]

TNF-α
TNFR1 KO mice with depletion of TNF receptor 1

developed smaller tumours with attenuated
proliferation and absence of metastasis

[110]
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Table 2. Cont.

Leukocyte Inflammatory
Mediator Produced Effect Refs.

Cathepsin G
Cathepsin G release from neutrophils increases cancer

cell adhesion, and aggregation, and metastasis in breast
cancer cells

[111]

Basophils

IL-4
Basophils from pancreatic ductal adenocarcinomas

secrete IL-4 which induce GATA-3 expression in Th2
cells in patient samples and Mcpt8Cre mice

[112]

CCL3
Basophils express CCL3 to negatively regulate the

normal hematopoietic process in MCPT8-DTR mice and
bone marrow samples from patients with CML

[113]

CCL3/CCL4

Basophil plays a role in tumour rejection by increasing
CD8+ T cell infiltration promoted by CCL3 and CCL4 in

HCmel12-, B16-, and 616-OVA-induced transgenic
FOXP3.LuciDTR-4 mice melanoma

[114]

VEGFA
Immunologic activation by VEGF-2 of basophils

induced the release of VEGF-A which induce basophil
chemotaxis

[115]

HGF HGF is expressed in CML basophils in KU812-induced
CML cell line [116]

ANGPT Basophils express ANGPT1 and ANGPT2 mRNAs [117]

Eosinophils

IL-2
IL-2 activate Tregs and Th17 cells involved in the

promotion of cancer in a mouse model of PCa, and
fibrosarcoma and head and neck human cancer tissues

[118]

IL-4
IL-4 production promotes tumour growth and

interaction with TAMs in a pancreatic-induced cancer
mouse model

[78]

IL-6 Increase of IL-6 correlated in patients with metastatic
PCa compared with localized PCa [119]

IL-5 and CCL17

Eosinophils increase after Sipuleucel-T treatment of
patients with metastatic castration-resistant PCa

correlated with increase of IL-5 and CCL17, survival and
maximal T-cell proliferation responses

[120]

IFN-γ IFN-γ induced CD4+ T cells to eliminate MHC
II-negative cancer cells [121]

TNF-α TNF-α correlated with increased extension of PCa in
samples from PCa patients [119]

TGF-α Overexpression of TGF-α decreased latency, increased
growth, and tumour size of bladder cancer rat model [122]

VEGF VEGF associated with poor prognosis of human
small-cell lung carcinoma [123]

GM-CSF
Expression of GM-CSF correlated with NF-κB activation
in bone-metastatic tumour tissues from individuals with

metastatic breast cancer
[124]
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Table 2. Cont.

Leukocyte Inflammatory
Mediator Produced Effect Refs.

Mast cells

Chymase Chymase released from human mast cell release latent
TGF-β-binding protein from the matrix [125]

Histamine

Histamine inhibition from mast cells inactivate EMT
and cholangiocarcinoma growth via inhibition of c-Kit
signalling in Mz-ChA-1-induced cholangiocarcinoma

mouse model and human Mz-ChA-1 cells

[126]

TNF-α
TNF-α released from mast cells amplifies and activates

the functionality of CD8+ dendritic cells in
Mcpt5-CreTNFfl/fl mice

[127]

IL-1β
Overexpression of IL-1β promoted tumour invasiveness
and metastasis by inducing the expression of angiogenic

genes and growth factors
[128]

IL1, IL-4, IL-6 Decreased cell growth and participates in tumour
rejection in breast cancer cells [129]

IL-8, IL-10 Mast cell-derived IL-8 and IL-10 act as tumour
suppressors contributing to tumour cell growth [130,131]

PGD2 PGD2 secretion from mast cells attenuates angiogenesis
in a Lewis lung carcinoma mouse model [132]

Macrophages

IL-1β
IL-1β induced Snail stabilization in Snail/MCF7 cells
and this effect was dependent on cell types and IL-1β

concentration
[133]

IL-8
IL-8 produced by macrophages induce EMT in

hepatocellular carcinoma samples via
JAK2/STAT3/Snail pathway

[134]

TNF-α

TNF-α induces the stabilization of Snail in a
non-phosphorylated, functional form and thus enhances

cell migration and invasion dependent on NF-κB
activation

[133]

TGF-β

TGF-β induced EMT phenotypes in A549 cells,
including changes in cell morphology and induction of

mesenchymal marker expression in part by NF-κB
signalling

[135]

MMP-2, MMP-9

Macrophage-derived MMP-9 and MMP-2 related with
fibrous capsule leading led to the migration and

invasion of hepatocellular carcinoma cells in human
samples

[136]

CHI3L1
M2 macrophage-secreted CHI3L1 promoted metastasis

of gastric and breast cancer cells in vitro and in vivo;
CHI3L1 interaction with IL-13Rα2 upregulates MMPs

[137]

IL-23/IL-17

Upregulation of IL-23 leads to tumour growth and
progression and development of a tumoral IL-17

response which promote tumorigenesis in a mouse
model of colorectal cancer

[138]

IL-6
TAM-derived IL-6 highly expressed in Hepatocellular
carcinoma patients, which is correlated with disease

grades and tumour progression
[139]

PDGF
PDGF release from macrophages mediates the

recruitment of pericytes in human melanoma cell lines
and OCM-1-induced melanoma mouse model

[140]
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Table 2. Cont.

Leukocyte Inflammatory
Mediator Produced Effect Refs.

T cells

IL17-A Inhibition of IL17-A release by Th17 cells prevent
development of microinvasive PCa in mouse models [141]

IL-17 IL-17-producing T cells can promote PCa progression by
enhancing inflammation and angiogenesis [69]

PD-1
A high percentage of CD8+ T cells express PD-1 in PCa
samples, which impair an effective immune response by

these cells
[44]

IL-3
IL-3 expressed by T cells increase the recruitment of

basophils and immune cells into the tumour
microenvironment, which is linked with a poor survival

[112]

IFN-γ IFN-γ can enhance antigen presentation and contribute
to immune surveillance in PCa [142]

TNF-α TNF-α produced by activated T cells regulated
apoptosis, angiogenesis, and inflammation in PCa [143]

TGF-β
TGF-β produced by T cells can suppress and promote

tumour growth in PCa depending on the signal it
receives

[144]

B cells

Lymphotoxin

Lymphotoxin lead to
CXCL13/IKKa/STAT3/E2F1/BMI1 (RNF51) activation,

ubiquitination of histones within PCa cell nuclei and
proliferation of androgen-deprived PCa cells in

castration-resistant PCa in mice

[145]

TGF-β Secretion of TGF-β by B-cells leads to anergy of CD8+ T
cells [146]

IL-2
IL-2 and IL-4 produced by B cells regulate the Th2

memory responses to Heligmosomoides polygyrus (Hp) in
chimeric mice lacking AID infected with Hp

[147]

IL-6 Chimera’s mice with B cell lack IL-6 have impaired Th1
and Th17 responses to Salmonella [148]

GABA
B cell-derived GABA promotes monocyte differentiation
into anti-inflammatory macrophages that secrete IL-10

and inhibit CD8+ T cell killer function in mice
[149]

ANGPT: Angiopoietin, ARG: Arginase, CCL: CC chemokine ligand, CML: Chronic myeloid leukaemia,
CXCL: Chemokine (C-X-C motif) ligand, ECM: Extracellular matrix, EMT: Epithelial-mesenchymal transi-
tion, FOXP3: Forkhead box subfamily 3, GABA: γ-amino butyric acid, GM-CSF: Granulocyte-macrophage
colony-stimulating factor, HGF: Hepatocyte growth factor, IFN-γ: Interferon-gamma, IL: Interleukin, IL-13Rα2:
Interleukin-13 receptor α2 chain, IL-1RA: IL-1 receptor antagonist, MHC: Major histocompatibility complex,
MMP: Matrix metalloproteinase, NDE: Neutrophil-derived elastase, NET: Neutrophil extracellular traps, PD: Pro-
grammed death, PDGF: Platelet-derived growth factor, PGD: Prostaglandin, RNE: Reactive nitrogen species,
ROS: Reactive oxygen species, TAM: Tumour-associated macrophages, TAN: Tumour-associated neutrophils,
TGF: Transforming growth factor, TNF: Tumour necrosis factor, VEGF: Vascular endothelial growth factor.

7.1. Neutrophils

Neutrophils, originating from hematopoietic stem cells, are among the first immune
cells recruited after an insult. They possess a short lifespan to prevent excessive tissue
damage, owing to their high plasticity and robust effector response [150]. When recruited
to a damaged area, neutrophils release proteases, including neutrophil elastase, neutrophil
extracellular traps (NETs), and reactive oxygen species (ROS), which exacerbate damage
and contribute to the development of chronic inflammation [151]. Under normal circum-
stances, neutrophils can shift their function towards immunosuppression, thus regulating
the production of pro-inflammatory mediators. However, in disease states, this shift may
not occur correctly, leading to the development of carcinogenesis [152]. Therefore, neu-
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trophils serve as a crucial link between inflammation and cancer. A study has observed
a correlation between low neutrophil counts and a positive PCa biopsy, while elevated
neutrophil counts may indicate a benign prostate biopsy [153]. These results can predict
the progression from an acute response, characterized by increased neutrophil levels, to a
carcinogenic phenotype dominated by chronic inflammation [154]. Tumour associated neu-
trophils (TANs) have been reported in cancer-affected regions. TANs, along with regular
neutrophils, secrete substantial amounts of matrix metalloproteinase (MMP)-9, which play
a role in the degradation of the extracellular matrix and cancer progression [104].

TANs are a complex population in the tumour microenvironment, associated with poor
outcomes in some PCa studies [72] and demonstrating antitumoral effects in others [155].
In vitro assays showed that coculture of human PCa cells in the presence of neutrophils
leads to a reduction of cell growth via caspase activation [156]. These findings suggest that,
as tumours progress, neutrophil cytotoxicity diminishes, allowing PCa to avoid neutrophil
cytotoxic effects. Studies have linked neutrophils as crucial cells in PCa prevention. In bone
metastatic PCa, there is an increased formation of neutrophils and NETs to limit the spread
of infection and control metastasis [156]. The role of different inflammatory mediators
produced by neutrophils and its role in cancer progression is summarized on Table 2.

7.2. Basophils

Basophils constitute approximately 1% of circulating white blood cells and serve as
protectors against allergens, pathogens, and parasites. In an inflammatory context, ba-
sophils can migrate to inflammatory regions and promote M2-like macrophage polarization,
highlighting the disparity in function between circulating and resident basophils [157].

Elevated basophil and basophil-to-lymphocyte ratio were associated with a poor
outcome in metastatic hormone sensitive PCa [158]. Epithelial-derived pro-inflammatory
cytokines including interleukin (IL)-33, IL-18, granulocyte-macrophage colony-stimulating
factor (GM-CSF), and growth factors including IL-3, IL-7, transforming growth factor-
beta (TGF-β), vascular endothelial growth factor A (VEGF) promote activation of ba-
sophils [159]. Several studies demonstrated that activated basophils can secrete different
cytokines involved in PCa including IL-4, which promotes tumour-promoting Th2 in-
flammation [112,160] and M2 macrophage polarization related to a poor prognosis [161],
IL-13 [157], and tumour necrosis factor-alpha (TNF-α) [162]. Studies also suggested the
role of basophils in angiogenesis. Basophils release high amount of VEGFA, a potent
proangiogenic molecule [115]. Basophils are a source of hepatocyte growth factor (HGF), a
powerful angiogenic factor in tumours [116]. Human basophils also express angiopoietins
(ANGPT) 1 and ANGPT2 mRNAs which are involved in vascular permeability [117]. Other
studies showed the protective role of basophils in cancer development [114]. Low levels of
circulating basophils correlated with higher size and extend of the tumour, higher number
of lymph nodes and poor survival in colorectal cancer patients [163]. The effects of different
inflammatory molecules produced by basophils in cancer are described in Table 2.

While most data on the role of basophils in cancer progression pertains to cancers other
than PCa, additional studies are needed to elucidate the mechanisms by which basophils
influence PCa.

7.3. Eosinophils

Eosinophils constitute 1–4% of white blood cells and play a vital role in maintaining
homeostasis and defending the host against infectious agents. They originate from multipo-
tent CD34+ progenitors in the bone marrow [164]. Under normal conditions they are located
in spleen, lymph nodes and thymus. When activated, they have the capacity to modulate
the immune response, including the phenotype of T cells. [165]. The migration and recruit-
ment of eosinophils to the tumour microenvironment are orchestrated by eotaxins, namely
CC chemokine ligand (CCL)11, CCL24, CCL26, and CCL5 which activate the CCR3 receptor,
highly expressed on eosinophils [166]. Eosinophils secrete cytotoxic granules including
eosinophil cationic protein (ECP), major basic protein (MBP), eosinophil derived neuro-
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toxin (EDN) and eosinophil peroxidase (EPO). Additionally, they release pro-inflammatory
mediators such as IL-2, IL-4, IL-5, TGF-β, TNF-α, GM-CSF, and interferon-gamma (IFN-
γ) [167]. IL-5 is a key mediator for eosinophil growth, differentiation, and activation [168].
Moreover, eosinophils express adhesion molecules CD11a/CD18, allowing them to interact
with tumour cells, indicating their role in cancer progression [169]. Histological analysis of
PCa samples revealed an increase in eosinophils compared to healthy controls in correlation
with age and Gleason score [170].

On the other hand, activated eosinophils inhibited PCa cell growth through upreg-
ulation of E-cadherin, a metastasis suppressor molecule [171]. Evidence demonstrated
that incubation of PCa cell lines with activated eosinophils inhibited cell growth [172].
Treatment of patients with metastatic castration-resistant PCa with Sipuleucel-T led to an
increase in eosinophil counts, correlated with improved survival and enhanced maximal T-
cell proliferation responses [120]. The role of different cytokines and chemokines produced
by eosinophils are labelled in Table 2.

To advance the understanding of eosinophils in the tumour microenvironment and
their interactions with other immune cells, it is crucial to improve the technological detec-
tion of eosinophils and discover novel biomarkers for defining eosinophil subpopulations.
This will provide insights into their ability to modulate various cells in different cancers,
including PCa, and their role in cancer progression.

7.4. Mast Cells

Mast cells derive from CD34+/CD117+ hematopoietic stem cells in the bone marrow
and they undergo maturation within target tissues [173]. Besides KIT activation, which
is essential for mast cell development, several cytokines, including IL-3, IL-4, IL-9, IL-10,
IL-33, and TGF-β, influence their growth and survival [174]. Mast cells exhibit significant
plasticity and can adopt various phenotypes depending on the host’s genetic background
and local or systemic factors [175]. These cells are characterized by the presence of numer-
ous granules rich in histamine and heparin. Upon activation, mast cells can degranulate
and release inflammatory mediators to combat pathogens [176]. This response leads to
the synthesis of specific cytokines, including anti-inflammatory TGF-β, IL-10, as well as
the proinflammatory associated cytokines IL-4, IL-6, and IFN-γ [131]. Evidence demon-
strated that mast cells are present in several tumours [177,178]. Zadvornyi et al. [179]
demonstrated that increased mast cell infiltration and degranulation were associated with
malignancy of PCa. Another study demonstrated the potential of mast cells to promote
PCa cell proliferation and epithelial mesenchymal transition which is linked with invasion
and metastasis [180]. A study dissected that infiltrating mast cells in PCa suppress andro-
gen receptor-MMP signalling promoting PCa cell invasion [181]. Intratumoral mast cell
tryptase+/chymase+/CD117+ phenotype was founded in malignant PCa samples [182].
Additionally, a high extratumoral mast cell count was linked with a high risk of biochemical
recurrence and PCa metastasis [183].

Release of IL-1, IL-4 and IL-6 from mast cells was associated with elimination of
tumour cells and rejection of tumours [129]. Other studies demonstrated that IL-1 is linked
with tumour growth, angiogenesis, macrophage recruitment and metastasis [128]. Another
study in human PCa samples associated higher mast cell infiltrates with a better PCa
prognosis [184]. Moreover, mast cells can contribute to angiogenesis inhibition through
secretion of prostaglandin D2 (PGD2) [132]. Table 2 dissects the role of each cytokine
released by mast cells on cancer progression.

7.5. Macrophages

Macrophages are vital phagocytic cells integral to the innate immune response. The
primary sources of macrophages are monocytes, which circulate in the blood, and tissue-
resident macrophages originating from the yolk sac. These cells are recruited and activated
by the specific microenvironment in which they operate. In the context of the tumour
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microenvironment, macrophage activation plays a significant role in influencing tumour
development, progression, metastasis, immune regulation, and angiogenesis [79].

Activated macrophages can be classified into two main categories: M1-like macrophages,
which promote inflammation to combat pathogen invasion and cancer, and M2-like
macrophages, which are associated with tissue repair and support tumour progression [185].
M1-like macrophages secrete proinflammatory mediators including IL-12, TNF-α, chemokine
(C-X-C motif) ligand (CXCL)-10, IFN-γ, and nitric oxide synthase (NOS), whereas M2-like
macrophages produce anti-inflammatory IL-10, IL-13, and IL-4, arginase-1, the mannose
receptor CD206, and scavenger receptors [186,187]. The polarization of macrophages into
M1 or M2 phenotypes depends on the signals present in the microenvironment.

Research has demonstrated that tumour-associated macrophages (TAMs) often acquire
a tumour-suppressive M2-like phenotype, contributing to the development of carcinogene-
sis [188]. The release of IL-1β, IL-8, TNF-α, TGF-β [133–135], MMP-2, and MMP-9 [136]
by macrophages is involved in epithelial-mesenchymal transition (EMT), which promotes
cancer cell invasion and metastasis. It is believed that metastatic processes could not be a
late event in tumour progression. The primary tumours could prime the metastatic organ
before tumour cell arrival. Macrophages are involved in the formation of this pre-metastatic
niches. They are mobilized to bloodstream and are then clustered in these regions by CCL2,
CSF-1, VEGF, platelet-derived growth factor (PDGF), TNF-α, and TGF-β [189,190]. The
role of inflammatory mediators produced by macrophages in cancer is discussed in Table 2.

Given their ability to modulate the tumour microenvironment, the strategic targeting of
macrophages has emerged as a promising approach in the development of new strategies for
treating PCa. This approach holds the potential to provide novel and effective therapeutic
alternatives for PCa patients.

7.6. T Cells

T cells play a crucial function in the adaptive immune response and were identified
as key cells in the PCa tumour microenvironment [191]. These cells originate from the
bone marrow and comprise various subtypes, including CD8+ T cells, CD4+ T cells, Th17
and regulatory T cells (Tregs). CD8+ T cells, known as cytotoxic T cells, exert their effects
directly on infected cells. They predominantly secrete immune mediators such as IFN-
γ, TNF-α, IL-2, granzyme, and perforin. In contrast, CD4+ T cells, or T helper cells,
orchestrate immune responses by activating B cells and CD8+ T cells. They can be further
categorized into Th1, Th2, Th17, and regulatory T cell (Treg) subsets. Th1 cells release
proinflammatory cytokines, including IFN-γ, TNF-α, and IL-2, while Th2 cells secrete
IL-4, IL-5, IL-13, IL-25, and IL-10, driving an anti-inflammatory response [192]. Th17 cells,
characterized by secretion of IL-17A, IL-17F, IL-21, and IL-22, have been implicated in PCa
metastasis. Studies have shown that the loss of Th17 function can hinder the development
of microinvasive PCa in murine models [141]. Tregs were firstly defined as CD4+CD25high

cells and were found to be increased in PCa patients [193]. These cells play a vital role
in discriminating self from foreign antigens and can either activate or suppress immune
responses. Tregs release immunosuppressive cytokines, including IL-10, TGF-β, IL-35,
CD39, CD73, and indoleamine 2,3-dioxygenase (IDO) [194]. The immunosuppressive
functions of Tregs favour tumour progression, and elevated Treg levels in PCa patients
have been associated with poorer survival outcomes [80]. CD8+ T cells have been associated
with a good prognosis and a study identified CD8+CD44+ population as important for
reducing the tumour burden [195]. On the other hand, accumulation of CD4+ T cells in
the PCa tumour microenvironment was associated with a poor survival [75]. In fact, this
population is increased in PCa patients in comparison to healthy controls. An increase
of CD4+ T cells was also associated with increased chemo-resistance to docetaxel in PCa
cells [76]. Later, Kaur et al. [196] showed an association between increased transcription
factor FOXP3+ Treg cells and risk of metastasis. Another study identified CD4+FOXP3+

Tregs and CD8+FOXP3+ Tregs increased in PCa samples and associated with increased risk
of death [77,197].
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Understanding the intricate roles of T cells, including their subtypes and cytokine
profiles (Table 2), is essential for deciphering the complex immune landscape within the
PCa microenvironment.

7.7. B Cells

B cells originate in the bone marrow and have the ability to migrate to the spleen and
lymph nodes. Naïve B cells undergo activation into plasma cells in response to specific
antigens during their development, leading to proliferation and differentiation. The mat-
uration of B cells results in changes to their epitopes, and their characterization relies on
CD markers such as CD19, CD20, CD21, CD40, and CD79b [198]. B cells can influence the
tumour microenvironment through various mechanisms, including antibody presentation,
antibody production, and cytokine secretion [199]. Studies have demonstrated that B cells
activate CD4+ T cells, resulting in the accumulation of T cells in the tumour microenvi-
ronment and the differentiation of CD4+ and CD8+ T cells into distinct phenotypes [200].
Interactions between CD20+ B cells and T cells in the tumour microenvironment have been
shown to impact the protective function of T cells [201]. Regulatory B cells (Bregs) are
frequently found in advanced hepatocellular, gastric, and PCa, suggesting their potential
influence on tumour development and progression [73,202,203]. Bregs are associated with
an anti-immune function, as they release immunosuppressive molecules such as IL-10,
IL-35, and TGF-β, which hinder the activity of T cells [146,204–206].

Literature data suggest that the infiltration of B cells increases the risk of adverse
events in prostate carcinogenesis and malignancies. The effect of inflammatory modulators
produced by B cells on tumour progression is described in Table 2.

7.8. Overall Remarks

Overall, IL-1, IL-6, IL-2, IL-4, IL-7, IL-8, IL-10, IL-17, IL-23, TNF-α, TGF-β, IFN-γ,
VEGF, and GM-CSF are the main inflammatory mediators involved in PCa (Figure 3).

IL-1 and IL-6 promote cancer growth, proliferation, and progression [207,208]. IL-
1 is increased in PCa and induces immunosuppressive function of mesenchymal stem
cells [209,210]. IL-6 is increased in PCa, induces EMT and metastasis, increases the expres-
sion of androgen receptor, and induces infiltration of T cells into the tumour microenvi-
ronment [211,212]. IL-2 has been found to stimulate Tregs, with some studies associating
it with tumour growth and progression, while others suggest its potential anti-tumour
activity [213]. IL-4 increases the expression of androgens, activates the JNK pathway, and
promotes tumour progression [214]. IL-7 induces EMT and cancer metastasis [215]. IL-8
stimulates proliferation of prostate stromal cells, regulates the expression of MMPs, pro-
motes PCa progression, angiogenesis, and metastasis [216]. IL-10 inhibits anti-tumour
responses and regulates androgen signalling, promoting cancer metastasis [217]. IL-17
promotes PCa growth, angiogenesis, and metastasis [218], increases the expression of pro-
grammed death-ligand 1 (PD-L1) and COX-2 and induces the release of IL-6 and IL-8 [219].
IL-23 regulates the androgen response and Th17 survival [217]. TNF-α and TGF-β are able
to promote PCa progression and metastasis [220]. TNF-α upregulates the expression of
PD-L1, and its control is indicative of tumour cell behaviour [219,221]. TGF-β induces
EMT, inhibition of anti-tumour activity, reduces the expression of major histocompatibility
complex (MHC)-I, regulates angiogenesis, the formation of the premetastatic niche, and
metastasis in bone [222–224]. IFN-γ induces the release of IL-6 and IL-8 and promotes
anti-tumour response [225]. VEGF contributes to angiogenesis, formation of premetastatic
niche, tumour microenvironment remodelling, tumour invasion, and metastasis [224,226].
GM-CSF stimulates leukocytes and increases tumour antigen presentation to effector T
cells [227,228].
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Figure 3. Leukocytes and leukocyte-mediated cytokines involved in prostate cancer (PCa). Repre-
sentation of key cells in the prostate tumour microenvironment. Neutrophils mainly release matrix
metalloproteinase (MMP)-9, interleukin (IL)-1, granulocyte-macrophage colony-stimulating factor
(GM-CSF), reactive oxygen species (ROS), neutrophil extracellular traps (NETs), IL-8, and tumour
necrosis factor (TNF)-α, all promoting PCa progression. Basophils promote activation of the M2-like
phenotype in macrophages and Th2 response in T cells and release pro-tumour IL-4, VEGF, ANGPTs,
and HGF cytokines. Eosinophils secrete pro-tumoral transforming growth factor (TGF)-β, IL-6, vascu-
lar endothelial growth factor (VEGF), and IL-4 cytokines and anti-tumoral interferon (IFN)-γ cytokine.
Release of TNF-α, IL-2, and IL-5 from eosinophils can modulate a pro-tumoral or anti-tumoral activity
depending on cell signals. IL-2 and IFN-γ stimulates activation of, respectively, Tregs/Th17 and CD4+

T cells. Mast cells secrete pro-tumoral TNF-α, IL-8, and IL-10 and anti-tumoral IL-1β, IL-4, and IL-6
cytokines. Tumour-associated macrophages secrete IL-1β, IL-8, IL-10, IL-23, MMP-2, MMP-9, and
TGF-β, impacting tumour progression. Macrophages can shift to pro-inflammatory M1-like or anti-
inflammatory M2-like phenotypes, influencing tumour outcomes. M1-like macrophages release IL-12,
TNF-α, and IFN-γ, while M2-like macrophages secrete IL-4, IL-6, IL-10, and IL-13. T cells encompass
CD4+ T cells (Th1, Th2, Th17, and Tregs) and CD8+ T cells, with Th1 having a pro-inflammatory
response. Th2, Th17, and Tregs contribute to tumour progression. CD8+ T cells secrete IFN-γ, TNF-α,
and IL-2, associated with a favourable prognosis in PCa. B cells release pro-tumoral IL-4, IL-6, IL-10,
and TGF-β cytokines and the intermediate IL-2 cytokine. IL-2 and IL-4 stimulate CD4 and CD8 re-
sponses, while IL-6 activates Tregs in PCa. Green-coloured cytokines support tumour resolution and
a positive prognosis. Red-coloured cytokines promote tumour growth, proliferation, and metastasis.
Orange-coloured cytokines can trigger a pro- or anti-tumoral response in PCa. ANGPT: Angiopoietin,
GM-CSF: Granulocyte-macrophage colony-stimulating factor, HGF: Hepatocyte growth factor, IFN:
Interferon, IL- Interleukin, MMP: Matrix metalloproteinase, NETs: Neutrophil extracellular traps,
PCa: Prostate cancer, ROS: Reactive oxygen species, TGF: Transforming growth factor, TNF: Tumour
necrosis factor, Tregs: Regulatory T cells, VEGF: Vascular endothelial growth factor.

The activity of interleukins is primarily modulated through the Janus Kinase/signal
transducers and activators of transcription (JAK/STAT) pathway. This signalling pathway
is integral to normal development, cellular homeostasis, cell proliferation, differentiation,
and apoptosis [229]. Ligand binding initiates the multimerization of receptor subunits,
leading to the activation of the JAK/STAT pathway and the transmission of signals through
the phosphorylation of receptor-associated JAK tyrosine kinases. Consequently, activated
JAKs induce the phosphorylation and activation of STATs. This phosphorylation prompts
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the dimerization of STATs via their conserved SH2 domain, subsequently allowing them
to enter the nucleus. Within the nucleus, STATs bind to specific DNA sequences, either
stimulating or suppressing the transcription of target genes [230]. It was reported that
JAK/STAT3 inhibition suppress PCa cell growth and increases apoptosis [231]. BRCA1
via JAK1/2 and STAT3 phosphorylation can induce cell proliferation and inhibit cancer
cell death [232]. The androgen receptor could also activate JAK/STAT3 and stimulate cell
proliferation and antiapoptotic effect increasing tumour invasion [233,234].

NF-κB is a transcription factor predominantly activated by cytokines such as TNF-α in
PCa. In androgen-dependent PCa, IL-6 and VEGF stimulates the increase of the expression
of NF-κB [235]. NF-κB targets a transcription regulatory element of PSA and correlates
with cancer progression, chemoresistance, and PSA recurrence [236].

Growth factors including VEGF, epidermal growth factor (EGF), insulin-like growth
factor (IGF)-1, HGF, and TGF-β are key players in the receptor tyrosine kinase (RTK)
signalling pathway. These growth factors activate the extracellular signal-regulated kinases
(ERK)/MAPK or PI3K/AKT/mTOR mechanisms [237]. Growth factor receptors possess
RTK activity, and their binding to ligands leads to the activation of transcription factors,
resulting in the altered expression of genes associated with cell growth, proliferation, and
survival [238]. IGF-1 functions as a positive growth-promoting signal transduction pathway,
while FGF plays a dual role as a positive growth factor and an angiogenic growth factor. On
the other hand, TGF-β serves as a negative growth factor, regulating cell differentiation and
proliferation [239]. Studies demonstrated that alterations on the expression of TGF-β, EGF
and their receptors correlates with PCa progression and biochemical recurrence [240,241].
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway is often upregulated
due to the loss of the tumour suppressor PTEN, which negatively regulates the PI3K/AKT
pathway [242]. It has been demonstrated that the aberrant PI3K/AKT pathway disturbs the
action of ERKs, thereby supporting androgen receptor-independent growth in PCa [243].
Overexpression of growth factors promotes the activation of Ras and MAPK pathways [244].
Upon activation, MAPKs phosphorylate transcription factors such as c-Jun, c-Fos, ATF2,
and p53. Additionally, ERK or p38 MAPKs can activate MAPK interacting protein kinases
1 and 2 (MNK1 and MNK2), which controls signals involved in mRNA translation [245].
Interestingly, MNKs have been found to be overexpressed in PCa [246].

As discussed in this review, inflammatory signalling plays a significant role in the
development and progression of PCa. Considering these findings, therapeutic strategies
targeting inflammatory signalling pathways in PCa may help manage the disease and
potentially improve outcomes.

Ongoing research is exploring new treatments and strategies, especially those utilizing
natural bioactive compounds, to mitigate the severe side effects, radiotherapy resistance,
and recurrence of PCa.

8. Polyphenol Compounds in Prostate Cancer

In recent years, the utilization of natural compounds in cancer treatment has gained
substantial attention and research interest for several compelling reasons. These com-
pounds, when administered in appropriate doses and forms, often exhibit fewer adverse
effects in comparison to conventional cancer treatments, thereby enhancing the overall qual-
ity of life for cancer patients. Furthermore, specific natural compounds can target distinct
signalling pathways and molecular processes involved in cancer growth and progression.
They can be utilized in conjunction with chemotherapy or radiation therapy to augment
the delivery of therapeutic drugs to cancer cells, thereby improving their effectiveness.
Additionally, these natural compounds, primarily polyphenols, possess antioxidant and
anti-inflammatory properties that are of utmost importance in cancer treatment. Notably,
they can also bolster the body’s natural defences, facilitating a more effective targeting and
elimination of cancer cells [247].

Polyphenols are plant secondary metabolites that have garnered significant attention
in cancer research owing to their potent antioxidant capabilities in neutralizing free radi-
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cals [248]. These polyphenols fall into various categories, including flavonoids, phenolic
acids, lignans, and stilbenes [7]. They typically feature one or more hydroxyl groups
attached to the ortho, meta, or para positions on a benzene ring. These hydroxyl groups
are highly reactive, readily donating electrons or hydrogens to neutralize free radicals,
thus playing a crucial role in their antioxidant activity. The aromatic rings in phenolic
compounds form conjugated systems, enabling the delocalization of electrons, which con-
tributes to their stability (Figure 4). This structural characteristic enhances their ability to
scavenge free radicals and prevent their propagation within cells.
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Figure 4. Chemical structure of phenols and their resonance states’ stability, imparting antioxidant
activity for scavenging free radicals and inhibiting their propagation.

The effectiveness of each polyphenol relies on its specific chemical structure, with
flavonoids standing out for their significant anti-cancer properties. The architecture of
flavonoids features two benzene rings connected by a heterocyclic pyran ring, providing
structural stability, and facilitating electron delocalization, which in turn enhances their
antioxidant potential. Moreover, the presence of a double bond between C2 and C3, a
hydroxyl group in ortho-positions, carbonyl conjugation at C4, and methoxy groups on the
benzene rings greatly enhances their ability to donate electrons, effectively neutralizing and
stabilizing free radicals [249]. In addition to these attributes, certain polyphenols can also
exhibit chelating properties, binding to metal ions that can otherwise trigger the production
of free radicals. This chelation process serves to prevent the formation of reactive species,
further bolstering their antioxidative impact [9].

The role of polyphenol compounds in PCa was demonstrated by several authors
(Table 3).

Table 3. Effect of polyphenols in prostate cancer.

Polyphenol Model Study Conditions Effect Ref.

Curcumin

PC-3 and DU-145 cells 0–50 µM curcumin, 0–48 h,
37 ◦C

5 µM curcumin reduced cell viability
and proliferation in DU-145 cells; 25
µM curcumin reduced the survival
and migration of DU-145 and PC-3

cells in 24 h

[250]

PC-3 and DU-145 cells
10, 20, 30, 40 or 50 µmol/L
curcumin at 37 ◦C for 12 h,

24 h or 48 h

30 µmol/L curcumin for 24 h
decreased cell proliferation, migration,
and invasion in PC-3 and DU-145 cells

by regulating the
miR-30a-5p/PCLAF axis

[251]

LNCaP xenografts mice

OA of 30 mg/kg curcumin
3×/week in athymic nude

mice injected s.c with
LNCaP cells

Increased TUNEL staining, decreased
the expression of PCNA andKi67, and
inhibition of the activation of NF-kB in

LNCaP xenografts

[252]
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Table 3. Cont.

Polyphenol Model Study Conditions Effect Ref.

Immunodeficient mice

S.c injection of PC-3 cells and
daily i.p injected after

4–6 weeks with curcumin
analogues (10 µg/g body

weight) for 31 days

Curcumin analogues inhibited growth
and progression of PC-3 tumours [253]

BALB/c-nu/nu

PC-3 cells injected s.c in mice
and 0.25 µmol Ca 37,

0.5 µmol Ca 37, or 6 µmol
curcumin administered i.p

daily for 16 days

Ca 37 analogue suppressed PCa
tumour and promoted

curcumin-induced growth inhibition
of PCa cells

[254]

Anacardic acid

C57BL/6 mice and
nude mice

PC-3 cells s.c injected into
mice and anacardic acid

(2 mg/kg per day) s.c
injected for 30 days

Inhibition of VEGF-induced cell
proliferation, migration, and adhesion [255]

LNCaP cells 1–125 µmol/L anacardic acid
at 30 ◦C for 24 h

125 µmol/L anacardic acid inhibited
LNCaP cell proliferation, induced

G1/S cell cycle arrest and apoptosis of
LNCaP cells

[256]

Caffeic acid

PC-3, DU-145 and
LNCaP cells 10–106 nM CAPE for 72 h

CAPE attenuates proliferation and
promotes and cytotoxic effect by

reducing AKT, ERK and ER-a(Ser-167)
phosphorylation in PC-3 cells

[257]

PC-3 cells 20 µM CAPE for 24 h or 72 h
CAPE decreased protein expression of
cyclin D1, cyclin E, SKP2, c-Myc, AKT,

mTOR, and Bcl-2
[258]

Ellagic acid

LNCaP cells 25 and 50 µM ellagic acid for
48 h

Increased ROS, TGF-β, IL-6, and
tumour suppressor protein p21 levels

and activated caspase-3
[259]

PC-3 and PLS-10 cells 0, 25, and 50 µM ellagic acid
for 24 h, 37 ◦C

Decreased secretion of MMP-2 and
proteolytic activity of

collagenase/gelatinase secreted from
PLS-10, inhibiting invasiveness of

PCa cells

[260]

Gallic acid

DU-145 cells 24 h, 48 h, or 72 h

100 mg/mL gallic acid promoted
maximal growth inhibition at 72 h and
25 and 50 mg/mL maximal apoptotic

death at 24 and 48 h in human
DU-145 cells

[261]

DU-145 and 22Rv1
xenograft mice

Mice supplemented with
0.3% or 1% (w/v) gallic acid

Gallic acid feeding inhibited the
growth of DU-145 and 22Rv1 PCa

xenografts in nude mice
[262]
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Table 3. Cont.

Polyphenol Model Study Conditions Effect Ref.

Resveratrol

Immunodeficient
(SCID) mice

C-3M-MM2 cells s.c injected,
and 20 mg/kg resveratrol
administered oral gavage

every 2 days

Inhibited PCa growth and metastatic
lung lesions associated with reduced

miR-21 and pAKT, and elevated
PDCD4 levels

[263]

BALB/cAnNCr-nu/nu
mice

Supplemented with 50 and
100 mg/kg resveratrol.

2 weeks after LNCaP cells
s.c injected

Delayed LNCaP tumour growth and
inhibited expression of a marker for

steroid hormone responses
[264]

TRAMP-C1,
TRAMP-C2, and
TRAMP-C3 cells

50 or 100 µM resveratrol for
0 h, 2 h, 4 h, 8 h, 12 h, and

16 h

TRAMP cells exposed to resveratrol
showed mitochondria-mediated

decreased cell viability, and altered
cell morphology leading to aberrant
expression of Bax and Bcl-2 proteins

[265]

PC-3 and 22RV1 cells 2.5–10 µM resveratrol

Resveratrol arrested cell cycle,
promoted apoptosis, and sensitized

PCa cells to ionization therapy,
activated the

ATM-AMPK-p53-p21cip1/p27kip1
and inhibit the AKT signaling

pathways

[266]

Piceatannol

DU-145, MLL, PC-3
and TRAMP-C2 cells

Treatment with EGF for 0 h,
6 h, 12 h or 24 h with 0 or
10 µmol/L piceatannol

Piceatannol reduced basal and
EGF-induced migration and invasion
of DU-145 cells-induced IL-6 secretion

by IL-6/STAT3 inhibition

[267]

DU-145 cells 0 or 40 µmol/L piceatannol
for 24 h

Piceatannol increased the percentage
of cells in G1 phase, cyclin A, cyclin
D1, and reduced CDK4 and CDK2

activity

[268]

DU-145 cells 0–40 µM piceatannol for 24 h
Piceatannol reduced TNF-α-induced
invasion and MMP-9 gene expression

via suppression of NF-κB activity
[269]

Pterostilbene

PC-3 and LNCaP cells 0.1, 1, 10, 100, and 1000 mM
pterostilbene for 24 h at 37 ◦C

A conjugate molecule caused 50%
growth inhibition, reduced

accumulation of cells in G2/M phase
and induction of apoptosis by

downregulation of PI3K/AKT and
MAPK/ERK pathways

[270]

PC-3 and LNCaP cells 0, 20, 40, 60, 80, and 100 mM
pterostilbene for 48 h

80 µM pterostilbene decreased lipid
synthesis by decreasing FASN
expression and inhibiting ACC

activity, blocked cell cycle at G1 phase
by inducing p53 and further
up-regulating p21 expression

[271]

Epigallocatechin-
3-gallate
(EGCG)

PC-3 cells 1 and 25 µM EGCG for 48 h

1 µM EGCG reduced PC-3 cell
survival, promoted apoptosis by

increasing the pro-apoptotic splice
isoform of caspase-9 and enhanced

apoptotic capacity of cisplatin

[272]

DU-145, PC-3 and
LNCaP cells

20, 40, 80, and 100 µg/mL
EGCG for 24 h

EGCG inhibited cytokine and
chemokine gene induction, activity of

MMP-9 and -2, and NF-κB activity
[273]
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Table 3. Cont.

Polyphenol Model Study Conditions Effect Ref.

Fisetin

LNCaP cells Treatment with fisetin
10–60 µM, 48 h

Fisetin induced apoptosis, PARP
cleavage, modulation of Bcl-2 family

protein expression, inhibition of PI3K,
phosphorylation of AKT at Ser473 and

Thr308, mitochondrial release of
cytochrome c into cytosol, and

activation of caspases-3, -8 and -9

[274]

LNCaP cells Treatment with fisetin
10–60 µmol/L 48 h

Fisetin acted as an AR ligand leading
to decrease in AR stability and

decreased transactivation of target
genes including PSA

[275]

PC-3, DU-145 and
LNCaP cells

Cells treated with fisetin
10–120 µM for 24 h, 48 h,

72 h, and 96 h

Fisetin activated the mTOR repressor
TSC2 through inhibition of AKT and

activation of AMPK leading to
inhibition of Cap-dependent
translation and induction of

autophagic cell death in PC-3 cells

[276]

Quercetin

Cancer-induced (MNU
and Testosterone

treated) rats

Rats treated orally with
200 mg/kg quercetin

3×/week

Quercetin decreased expression of
IGFIR, AKT, AR, cell proliferative and

anti-apoptotic proteins
[277]

LNCaP, DU-145, and
PC-3 cells

5, 10, 20, 40, 80, and 160 µM
quercetin for 24 h, 48 h, and

72 h

Apoptotic and necrotic cell death and
AKT and NF-κB activation in PC-3
and LNCaP cells; reduction of AKT

pathway and activation of Raf/MEK
in DU-145 cells

[278]

LNCaP cells

0, 1, 10, 25, 50, 100, and
150 µM quercetin for 24 h to

5 days depending on the
type of analysis

Inhibited expression and function of
the AR in LNCaP cells, decreased

mRNA levels of PSA, NKX3.1, and
ODC and repressed AR expression

[279]

LNCaP cells 50–200 µM quercetin for 24 h
and 48 h

Quercetin at 150 µM caused G0/G1
phase arrest via decreasing the levels
of CDK2, cyclins E, and D proteins,
stimulated the protein expression of

ATF, GRP78, and GADD153, apoptotic
cell death and DNA damage at 48 h,
decreased Bcl-2, increased Bax, and

activation of caspase-3, -8, and -9

[280]

BALB/cA nude mice
PC-3 cells injected s.c,

20 mg/kg/d quercetin
injected i.p for 16 days

Reduced tumour growth, inhibited
tumorigenesis by targeting

angiogenesis, reduced cell viability
and induced apoptosis correlated with

downregulation of AKT, mTOR
and P70S6K

[281]
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Table 3. Cont.

Polyphenol Model Study Conditions Effect Ref.

Apigenin

PC-3 xenograft mice
Orally administration of 20

and 50 µg/mouse/day
apigenin for 8 weeks

Both doses of apigenin decreased
tumour growth, HDAC activity,

HDAC1 and HDAC3 protein
expression, and bcl-2 expression

shifting the Bax/Bcl-2 ratio in favour
of apoptosis

[282]

LNCaP and PC-3 cells 0, 10, 20, 40, and 80 µM
apigenin for 72 h at 37 ◦C

Up-regulation of p21 expression, and
p21 inhibits transcription of PLK-1 [283]

PC-3 and DU-145 cells 5–40 µM apigenin for 24 h

Dose-dependent suppression of XIAP,
c-IAP1, c-IAP2 and survivin protein
levels, decrease in cell viability and
apoptosis, decrease in Bcl-xL and

Bcl-2, and inhibition of class I histone
deacetylases and HDAC1 protein

expression

[284]

C57BL/TGN TRAMP
mice

20 and 50 µg/day of
apigenin for 20 weeks

Inhibition of VEGF, uPA, MMP-2, and
MMP-9, tumour growth, and

metastasis, reduction of IGF-I, and
increase of IGFBP-3 through inhibition

of p-AKT and p-ERK1/2

[285]

TRAMP mice 20 and 50 µg/mouse/day,
6 days/week for 20 weeks

Apigenin-treated mice showed
reduced proliferation, reduced

phosphorylation of AKT (Ser473) and
FoxO3a (Ser253), and upregulation of

FoxO-responsive proteins BIM and
p27/Kip1

[286]

Proanthocyanidins

DU-145 cells 0.1, 0.5 and 1.0 mg/mL PAC
for 24 h

Down-regulation of MMP activity and
up-regulation of TIMP activity [287]

DU-145 and LNCaP
cells

20 µg/mL of blueberry
fraction, 2.38 mM quercetin

for 48 h (DU-145) or 72 h
(LNCaP)

Inhibited growth of DU-145 and
LNCaP cells [288]

DU-145, PC-3, and
LNCaP cells

1–100 mg/mL PAC complex
for 48 h

Inhibited proliferation of PC-3 and
DU-145 with higher effect in LNCaP

cells by decreasing AR expressing, G1
cell cycle arrest, decreased

cyclin-dependent kinases, and cyclins,
stimulated p21 and p27, and increased

phosphorylation of p44 and p42

[289]

ACC: Acetyl-CoA carboxylase, AR: Androgen receptor, CAPE: Caffeic acid-phenyl ester, CDK: cyclin-dependent
kinase, EGF: Epidermal growth factor, FASN: Fatty acid synthase, HPLC: High-performance liquid chromatog-
raphy, I.p: Intraperitoneally, OA: Oral administration, PAC: Proanthocyanidin complex, PARP: Poly (ADP-
ribose) polymerase, PI3K: Phosphatidyl inositol 3-kinase, PSA: Prostate-specific antigen, S.c: Subcutaneously,
TRAMP: Transgenic adenocarcinoma of mouse prostate.

Curcumin is the active compound in turmeric, a spice commonly used in Indian
cuisine. It promoted apoptosis and inhibited angiogenesis and metastasis in DU-145 PCa
cells [250] and inhibited cell proliferation, migration, and invasion in PC-3 and DU-145
cells by regulating the miR-30a-5p/PCLAF axis [251]. In another study, curcumin was
found to block the growth of LNCaP xenografts through several mechanisms. It induced
apoptosis, hindered proliferation, and upregulated the expression of key factors, including
TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21/WAF1, and p27/KIP1. Simultaneously, it
curbed the activation of NF-kB and its downstream gene products, including cyclin D1,
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VEGF, uPA, MMP-2, MMP-9, Bcl-2, and Bcl-xL [252]. Curcumin analogues inhibited growth
and progression of PC-3-induced tumours in vivo [253,254].

Anacardic acid is the active phenolic lipid found in the Amphipterygium adstringens
plant. It was reported that this phenolic acid inhibited PCa angiogenesis by targeting the
proto-oncogene tyrosine-protein kinase (Src)/focal adhesion kinase (FAK)/rhodopsin (Rho)
guanosine triphosphate (GTP)ase signalling pathway [255]. It mediates PCa by inhibiting
cell proliferation and inducing G1/S cell cycle arrest and apoptosis [256].

Caffeic acid is a hydroxy-cinnamate metabolites existent in plant tissues. Caffeic acid
derivates were involved in anti-proliferative effects by alterations in oestrogen receptors
(ER)-α and ER-β abundance [257]. Other studies showed that caffeic acid-phenyl ester
(CAPE) treatment suppressed proliferation and cell cycle progression in PC-3 cells [258].

Ellagic acid is a polyphenolic compound present in fruits and berries. Studies revealed
that it modulates apoptosis inducing factor (AIF), leading to an increase in ROS levels and
caspase-3 and a reduction in TGF-β and IL-6 [259]. Another study showed that ellagic acid
inhibited invasion and motility of PCa cells [260].

Gallic acid is ubiquitously present either in free form or, more commonly, as a con-
stituent of tannins in red and white wines. Gallic acid inhibited cell viability in DU-145 and
22Rν1 PCa cells by promoting apoptosis [261] and inhibited tumour growth in DU-145 and
22Rν1 PCa xenografts [262].

Resveratrol is one of the best studied stilbenes and is found in grapes. Resveratrol
inhibited cancer cell growth, promoted cell cycle arrest and apoptosis in PCa cells [263–265]
and, interestingly, increased the sensitivity of PCa cells to ionizing radiation [266]. Piceatan-
nol is a metabolite bio transformed from resveratrol also with impact in PCa. Studies
suggested that the effect of resveratrol in PCa cells is partially explained through its
conversion to piceatannol [290]. This compound inhibited migration by a decrease in
IL-6/STAT-3 signalling [267], and delayed G1 cell cycle progression by inhibition of CDK2
and CDK4 [268] in DU-145 PCa cells. Other studies showed that piceatannol inhibited
TNF-α-induced invasion by suppression of MMP-9 activation via AKT-mediated NF-κB
pathways in DU-145 PCa cells [269].

Pterostilbene is an antioxidant mainly found in berries and grapes. Its conjugate
pterostilbene-isothiocyanate repressed proliferation, induced apoptosis by modulating
PI3K/AKT and ERK/MAPK pathways, and down regulated androgen receptor expression
in LNCaP cells [270]. This conjugate promoted cell cycle arrest in LNCaP cells by increasing
p53 and p21 expression, which protects against the effects of AMPK activation [271].

The role of flavonoids including epigallocathechin-3-gallate (EGCG), fisetin, quercetin,
apigenin, and proanthocyanidins in PCa was also revealed. EGCG is a polyphenol found in
green tea. Studies showed that green tea polyphenols decreased risk and slower progression
PCa [291] by modulating NF-κB/MAPK/IGFR/COX-2 signalling pathways, inhibiting
protein kinases, and suppressing the activation of transcription factors [8]. EGCG promoted
apoptosis via expression of caspase-9a [272], and suppressed pro-inflammatory cytokines,
MMPs-2 and -9 in PCa cells [273].

Fisetin belongs to the flavanol subgroup of flavonoids. Studies showed that fisetin
decreased the viability of LNCaP, 22Rν1, and PC-3 cells [274,275], suppressed cell pro-
liferation by hypophosphorylation of eukaryotic translation initiation factor 4E-binding
protein-1, and induced autophagic cell death in PCa cells through suppression of mTORC1
and mTORC2 complexes [276].

Quercetin is a plant pigment flavanol found in citrus fruits. Studies showed that
quercetin decreased ROS, and increased superoxide dismutase (SOD) and catalase (CAT)
in Sprague Dawley rats [277] but increased ROS production in DU-145 cell line acting as
a pro-oxidant agent [278]. Quercetin decreased the expression of androgen receptor in
LNCaP cells [279], decreased CDK2, cyclin E and D levels, VEGF, and promoted G0/G1
cycle arrest in PC-3 cells [280,281].

Apigenin is a naturally occurring plant flavone present in common fruits and veg-
etables. Apigenin mediated growth inhibitory responses through inhibition of histone



Biomedicines 2023, 11, 3140 25 of 40

deacetylases (HDACs) [282]. Apigenin induced PCa cell apoptosis via upregulation of p21
and subsequent inhibition of polo-like kinase (PLK)-1 transcription [283] and inhibition of
class 1 HDACs and HDAC1 protein expression increasing the acetylation of Ku70 and the
dissociation of Bax [284]. This molecule attenuated IGF-1/IGF binding protein-3 signalling
associated with inhibition of p-AKT and p-ERK1/2, suppressing invasion and progression
of PCa [285]. A study also showed that apigenin inhibit PCa progression via targeting
PI3K/AKT/forkhead box FoxO pathways [286].

Proanthocyanidins, commonly known as condensed tannins, are found abundantly in
various plants and foods. A study showed that proanthocyanidins downregulated MMP
activity, upregulated endogenous tissue inhibitors of MMP’s (TIMP) activity in DU-145
cells [287] and affected the growth of androgen-dependent growth of PCa cells [288]. Proan-
thocyanidins also mediated inhibition of CDKs, cyclins, activation of tumour suppressors
p21 and p27, Bcl-2/Bax ratio favouring apoptosis and induced cellular differentiation by
increasing MAPK p44/42 in PCa cells [289].

It is evident that polyphenols play a crucial role in inhibiting the progression of PCa.
However, the low bioavailability and limited absorption of free polyphenols in the human
body have sparked interest in innovative strategies to enhance their delivery to target cells.

Polyphenol-Gold Based Nanoparticles

In recent years, nanoparticles (NPs) have emerged as a promising approach to im-
prove the delivery and targeting potential of polyphenols [292]. The encapsulation of
polyphenols within NPs not only shields them from degradation but also enhances their
solubility, thus improving absorption in the gastrointestinal tract. Moreover, the size, shape,
and morphology of NPs can be precisely tailored to optimize polyphenol delivery and
biocompatibility. Additionally, NPs can be functionalized with ligands to facilitate targeted
delivery to specific organs and cells [293]. However, it is essential to note that conventional
methods of AuNP synthesis are environmentally damaging, resource-intensive, and energy-
consuming, with NPs prone to aggregation and toxicity within the human body [294]. This
underscores the urgency of transitioning to environmentally-friendly, biocompatible, cost-
effective, and sustainable green NP synthesis approaches [295]. The interest in developing
polyphenol-based nanoparticles has been steadily growing. Polyphenols exhibit a high
reducing capacity, allowing them to reduce metal ions and produce metal NPs. Their strong
biocompatibility reduces NP toxicity, and they can serve as capping agents to prevent NP
aggregation and enhance stability [296,297]. Furthermore, polyphenols exhibit synergistic
effects with conventional drugs, potentially reducing the required drug concentrations
and their associated toxicity. Additionally, the antioxidant properties of polyphenols can
contribute to the overall efficacy of cancer treatment [298].

A comprehensive examination of polyphenol-based nanoparticles has been conducted
to elucidate their impact on PCa progression (Table 4).

Curcumin incorporation in nanoparticles demonstrated high PCa cellular uptake [299].
Moreover, conjugation of this polyphenol with nanoparticles decreased proliferation and
viability of PCa cells [300,301]. A combination of resveratrol and docetaxel downreg-
ulated the expression of NF-kB p65, COX-2, and upregulated cleaved caspase-3 [302].
Moreover, resveratrol improves internalization of NPs into PCa cells [303], increased their
anti-proliferative activity, promotes cell cycle arrest. and decreased tumour cell viabil-
ity [304,305]. EGCG nanoparticles had proapoptotic and antiangiogenetic effects on 22Rr1
cells [306], inhibited tumour growth in PC-3 cells [307], induced apoptosis and reduced via-
bility of DU-145 cells [308], and inhibited tumour growth and secretion of PSA by increase
of Bax, induction of poly (ADP-ribose) polymerases cleavage, and activation of caspases
and apoptosis [309,310].

In conclusion, the encapsulation of polyphenols and their utilization in green NP
synthesis represents an innovative therapeutic approach for PCa. This approach shows
promise in attenuating the severe side effects and resistance associated with conventional
treatments.
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Table 4. Effect of polyphenol-based nanoparticles in prostate cancer.

Nanoparticle (Size) Model Treatment Effect Ref.

Curcumin-CA-NP
(12.53–60.23 nm) DU-145 cells 0.0832–260 µM 72 h Uptake by PCa cells [299]

Curcumin emulsome NP
(184.21 nm) LNCaP cells 10–40 µM for 24 h, 48 h or

72 h
Decreased proliferation, cell
cycle arrest at G2/M phase [300]

Curcumin NPs
(34.0–359.4 nm) PC-3 cells 50–600 µM overnight Decreased cell viability and

increased haemolytic effect [301]

FA-RES + DTX-PBM NP
(36.6 nm)

PC-3, C4-2B and
LNCaP cells

3 µM RES + 0.01 µM DTX
24 h, 48 h, or 72 h

Reduced expression of NF-kB
p65, COX-2, pro- and
anti-apoptotic genes

[302]

RSV-SLN (126.85 nm) PC-3 cells and Charles
Foster rats

2 mL for 0–48 h and
2 mg/kg i.v. for 0–24 h

Internalization of NPs in
PC-3 cells [303]

RES-MSNs (60 nm) PC-3 cells 10–20 µg for 72 h
Increased anti-proliferative
activity and sensitization of

Docatexal
[304]

RL-loaded PLGA
(202.8 nm) LNCaP cells 0–50 µM for 48 h

Decreased cell viability, G1-S
phase arrest, increased

apoptosis
[305]

EGCG-PA-PEG-NP (N.D.) Tumour xenograft mice 1 mg in food consumption
Proapoptotic and angiogenesis

inhibitory effects, enhanced
bioavailability

[306]

198AuNP-EGCg (535 nm)
PC-3 xenograft SCID

mice 136 µCi I.T. for 42 days
72% retention in tumours after

24 h and 80% reduction of
tumour volumes after 28 days

[307]

EGCG-GA-MD-NPs
(120 nm) DU-145 cells 0.9–60 mg/mL for 64 h Reduced cell viability and

apoptosis induction [308]

Chitosan-based EGCG NP
(150–200 nm)

Athymic nude
xenograft mice 3–6 mg/kg by O.A 5x week Decreased tumour growth and

PSA levels [309]

EGCG-gold NPs (90.3 nm) PC-3 cells 0–200 µg/mL for
1–24 h

Increased NF-κB activity and
apoptosis [310]

198AuNP-EGCg: Epigallocatechin-gallate functionalized radioactive gold nanoparticles, FA-RES + DTX-PBM
NP: Folic acid conjugated resveratrol and docetaxel planetary ball milled nano-particle, Curcumin-CA-NP: Cur-
cumin loaded calcium alginate nanoparticles, EGCG-GA-MD-NPs: Epigallocatechin-gallate-based gum arabic mal-
todextrin nanoparticles, EGCG-PA-PEG-NP: Epigallocatechin-3-gallate encapsulated polylactic acid–polyethylene
glycol nanoparticles, i.t.: Intratumorally, i.v.: Intravenously, N.D: Not defined, O.A: Oral intubation, PSA: Prostate
specific antigen, RES-MSNs: Resveratrol-based mesoporous silica nanoparticles, RL-loaded PLGA: Resveratrol-
loaded polylactic-co-glycolic acid, RSV-SLN: Resveratrol-solid lipid nanoparticles.

9. Conclusions

Nanotechnology has served as the foundation for remarkable industrial applications
and exponential growth. Notably, in the pharmaceutical sector, nanotechnology has made
a substantial impact on medical devices, including diagnostic biosensors, imaging probe
delivery systems, and pharmaceuticals.

AuNPs offer diverse potential applications across various domains. Several in vitro
studies demonstrated the anticancer potential of AuNPs as an anti-cancer agent as well
as their stability, low toxicity, and specificity to PCa cells [6]. The traditional synthesis
of AuNPs is highly polluting, wastes high levels of resources and energy, and nanopar-
ticles can be toxic to the human body. A novel approach in the green synthesis of metal
nanoparticles involves the use of bioactive natural compounds, rather than whole or partial
plant extracts. Recent research has explored the synthesis and biomedical application
of metal nanostructures based on phytochemicals. Natural phenolic acids offer a wide
variety of metal ion bioreduction capabilities, making them ideal for creating biocompatible
metal nanoparticles with numerous biomedical applications [296,297]. However, most
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metal nanoparticles produced with phenolic acids have only been applied in a limited
range of biomedical applications. This is due to insufficient compelling results regarding
biomedical properties and safety concerns, as compared to commonly chemically-coated
metal nanoparticles. Comprehensive laboratory analysis considering various parameters
such as size, shape, surface chemistry, the type of phenolic acids, and metal nanoparticles,
must be conducted through rigorous animal models and well-designed molecular studies.

Recent reviews and meta-analyses have established a strong correlation between a
history of clinical chronic prostatitis and the development of PCa in the general popula-
tion [31]. The causes of prostate inflammation are multifaceted, ranging from bacterial
triggers of prostatitis and sexually transmitted diseases to imbalances in oestrogen hormone
levels, physical trauma, urine reflux into the prostate gland, and environmental factors such
as diet [68]. Although prostate biopsy remains the gold standard for diagnosing prostate
inflammation, various parameters, including laboratory biomarkers (cytokines) and clinical
factors (familiar historical, age, prostatic calcifications, symptom severity, and response
to therapy), can be valuable in everyday clinical practice when prostate inflammation is
suspected [19]. Figure 3 illustrates the impact of prostatic inflammation and inflammatory
mediators on tumour initiation, growth, and progression.

To develop more effective drug combinations and minimize toxicity, comprehensive
studies are necessary to determine the optimal dosage of each drug within a combination
and to monitor pharmacodynamic endpoints.
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