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Abstract: Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the
obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD),
which progresses to NASH and then to end-stage liver disease. Currently, there are no specific
pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and
the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing
sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic
research and development of new therapeutic approaches are greatly needed. Mesenchymal stem
cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and
attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly,
but also target other liver cells, including Kupffer cells and macrophages recruited from the blood
flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role
of macrophages in the development of the disease. We examine in detail the mechanisms of the
cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of
MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
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1. Introduction

Obesity is a serious public health problem. It is associated with multiple comorbidities,
including type 2 diabetes, cardiovascular diseases, and cancers [1]. Obesity is also one of
the main and most common risk factors for the non-alcoholic fatty liver disease (NAFLD).
Progressive NAFLD, in 60% of cases, leads to non-alcoholic steatohepatitis (NASH); 41%
of patients with NASH develop liver fibrosis, which progresses further to cirrhosis in
22% of patients, of which 2% end up with hepatocellular carcinoma within 3 years [2]. In
NASH, hepatocytes undergo steatosis, while ongoing inflammation results in tissue fibrosis
and end-stage liver disease [3,4]. Although the rate and course of the NAFLD/NASH
progression varies among individuals, it typically proceeds through four stages: (1) lipid
accumulation in the liver (NAFLD), (2) early NASH, which, in addition to fat accumulation,
is also characterized by liver tissue inflammation, (3) fibrosis, manifested by chronic liver
inflammation, tissue damage, and excessive accumulation of extracellular matrix (ECM)
proteins, and (4) cirrhosis, the most dangerous stage of NASH, which evolves into generally
fatal (without organ transplantation) end-stage liver disease [5].

More than 20 years ago, Day and Saksena [6] proposed the ‘two-hit’ theory of NASH
pathogenesis. According to this theory, the first hit is steatosis, which sensitizes the liver
to the second hit, rendered by some of a plethora of factors including oxidative stress,
endotoxins, lipotoxicity, and necroinflammation. The accumulation of lipids such as dia-
cylglycerol increases insulin resistance, mitochondrial and endoplasmic reticulum stress,
and autophagic defects, collectively known as lipotoxicity. This event triggers immune
responses in Kupffer cells and hepatic stellate cells, promotes tissue infiltration with neu-
trophils and lymphocytes, and ultimately leads to fibrosis and death of hepatocytes [7].
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Somewhat later, Tilg and Moschen proposed the “multiple parallel hits” hypothesis for the
pathogenesis of NASH [8]. They stated that NASH is a pathogenetically complex condition
that involves cross-talk between several metabolically active tissues (adipose tissue and
the liver/gut axis). According to the “multiple hits” theory, multiple disorders, including
insulin resistance, hepatic lipid accumulation, oxidative stress, mitochondrial dysfunction,
abnormal gut microbiota characteristics, nutritional factors, and genetic and epigenetic
factors, may occur in parallel [8].

Although several drugs are at the late stage of clinical development, NASH therapy is
still based on lifestyle adjustment (diet, exercise, etc.) and the prescription of medicines
improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and
counteracting fibrosis. There are currently no FDA-approved pharmacotherapies for the
treatment of NAFLD/NASH [9]. Therefore, new therapeutic options for NASH are greatly
needed. Promising results have been obtained in a variety of preclinical studies conducted
in various animal models of NAFLD/NASH using mesenchymal stem/stromal cells (MSCs)
and their derivatives, including conditioned media, extracellular vesicles, and apoptotic
bodies [10–12]. The beneficial effects of the cell therapy of many diseases with MSCs are at
least partly associated with immunomodulation via direct and indirect interactions with
different immune cells [13], including macrophages [14]. The reactions of Kupffer cells, the
liver macrophages, to MSC transplantation have also been reported [15].

In this review, we provide an update on the pathogenesis of NAFLD/NASH and the
key role of Kupffer cells and recruited macrophages in the development of inflammation
and disease progression. We examine in detail the mechanisms of the cross-talk between
MSCs and macrophages, which likely mediate the therapeutic effects of MSCs and their
derivatives in the treatment of NAFLD/NASH.

2. NAFLD/NASH Pathogenesis

Inflammatory liver diseases, in the absence of contagious pathogens, are denoted
as “sterile”. These conditions include xenobiotic intoxication, e.g., as a result of para-
acetaminophenol (APAP) administration, cholestatic liver injury, liver ischemia–reperfusion
injury (IRI), non-alcoholic steatohepatitis (NASH), and alcoholic liver disease (ALD). Trig-
gers of pathological events in sterile liver diseases include various xenobiotics or endoge-
nous bioactive molecules that initiate the release of intracellular compounds from living
or dying parenchymal cells. It has been shown that both acute and chronic liver diseases
involve the massive death of hepatocytes [16]. Extensive hepatocyte death can be and
commonly is diagnosed by observing an increase in the serum levels of alanine amino-
transferase (ALT) and aspartate aminotransferase (AST). These parameters have significant
prognostic value for patients with NASH [17,18] and other liver diseases since they are
highly correlated with overall and liver-specific mortality in the general population [19,20],
highlighting the role of cell death as a major driver of liver disease progression and the
development of liver fibrosis, cirrhosis, and hepatocellular carcinoma.

In liver pathologies cells die in different ways. For example, a wide range of cell
death types, including apoptotic [21], necrotic [22], autophagic [23], pyroptotic [24], and
ferroptotic [25] cell death were found in alcoholic liver disease (ALD). Autophagy and
apoptosis are considered to be the predominant modes of hepatocyte death in ALD, while
the contribution of necroptotic cell death is still a controversial issue [26]. In APAP hepato-
toxicity, mitochondrial permeability transition-mediated regulated necrosis is the main type
of cell death, playing the key role in liver damage [27], while the contribution of autophagy
and apoptosis seems unlikely [26].

NASH is characterized by steatosis, ballooned hepatocytes containing hyaline in-
clusions (Mallory bodies), and severe inflammation leading to fibrosis, cirrhosis, and
hepatocellular carcinoma. There is strong evidence that hepatocyte cell death is a driver of
inflammation and fibrosis in NASH [28]. However, the predominant mode of cell death
in this metabolic disease is still debated. Liver biopsies of patients with NASH showed
increased TUNEL assay positivity and caspase-3/7 expression, indicating the prevalence
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of apoptotic cell death of hepatocytes in NASH [29]. Also, in a high-fat diet (HFD) mouse
model of NASH, it was shown that use of the pan-caspase inhibitor Emricasan significantly
attenuated liver injury, inflammation, fibrosis, and apoptosis, suggesting a critical role for
apoptosis in the pathogenesis of NASH [30]. However, despite the clearly beneficial effects
of the pan-caspase inhibitor in animal models and early clinical trials in a small group of
NASH patients [31,32], randomized clinical trials of the pan-caspase inhibitor Emricasan
conducted in a larger group of NASH patients did not show significant clinical improve-
ment [33]. In the short term, treatment with Emricasan reduced serum ALT levels, but it not
only did not improve the liver histology in patients with NASH, but even worsened fibrosis
and hepatocyte ballooning. The authors of the study suggested that treatment with the
pan-caspase inhibitor could provoke the onset of the alternative mechanisms of cell death
inciting more pronounced fibrosis and hepatocyte ballooning [33]. Nevertheless, many
studies suggest that in NASH apoptosis appears to be the predominant mode of cell death
and can occur through both intrinsic (via lipotoxicity and organelle stress) and extrinsic
(via cell surface receptors) pathways. Many authors do not exclude the contribution of
pyroptosis and ferroptosis in the development of NAFLD/NASH. While the participation
of pyroptosis in the pathogenesis of NAFLD/NASH was mainly demonstrated in animal
models [34,35] and less reliably in patients with NASH [36], the hallmarks of ferropto-
sis, such as lipid peroxidation, ROS accumulation, and increased liver iron stores (both
in the parenchymal and non-parenchymal compartment) were identified in most NASH
patients [37]. In addition to apoptotic cell death of hepatocytes in NASH livers, there is also
evidence of necrotic cell death. Free cholesterol accumulation in NASH patients [38,39]
was demonstrated to cause apoptotic and necrotic hepatocyte death through activation of
the c-Jun N-terminal kinase 1 (JNK1) [40].

Dying hepatocytes release a large number of different molecules capable of caus-
ing infection-independent activation of immune responses and their repertoire depends
on the type of cell death [41]. According to Matzinger’s “danger theory” of innate
immunity [41–43], these cell death type-specific libraries of endogenous molecules, re-
leased in all tissues in response to the non-contagious harmful stimuli and named damage-
associated molecular patterns (DAMPs), are scanned by the immune cells and recognized
as “self-safety” or “self-danger” signals. Because DAMPs induce inflammatory responses
in the absence of pathogenic infection, the inflammation they induce is called sterile in-
flammation [44]. DAMPs can activate not only innate immune cells such as macrophages,
neutrophils, and dendritic cells, but also non-immune cells including fibroblasts [45],
hepatic stellate cells [46], and endothelial cells [47]. Activation of both immune and non-
immune cells by DAMPs results in the production of various cytokines and chemokines
that trigger adaptive immune responses. Although sterile inflammation plays a critical
role in tissue repair, regeneration, and homeostasis, unresolved chronic inflammation
leads to the development of sterile inflammatory diseases, including the liver diseases
mentioned above. DAMPs comprise nuclear proteins (e.g., high mobility group box-1,
HMGB-1), cytosolic proteins (e.g., keratin-18), and mitochondrial components or mitochon-
drial DAMPs (mtDNA), including N-formyl peptides, cardiolipin, adenosine triphosphate
(ATP), mitochondrial transcription factor A (TFAM), and nucleic acids in various confor-
mations (e.g., single-/double-stranded RNA or DNA) [48]. DAMPs can initiate immune
responses through the activation of classical pattern recognition receptors (PRRs), which
include membrane-bound Toll-like receptors (TLRs) and C-type lectin receptors (CLRs),
cytoplasmic NOD-like receptors (NLRs), retinoic acid inducible gene I (RIG-I)-like receptors
(RLRs), and multiple intracellular DNA sensors, as well as via non-PRR transmembrane
proteins, including receptors for advanced glycation end products (RAGE), triggering
receptors expressed on myeloid cells (TREMs), G-protein-coupled receptors (GPCRs), and
ion channels [49].

NASH is a chronic state of sterile inflammation initiated by the presence of DAMPs
released from damaged hepatocytes. DAMPs triggering NASH-associated inflammation
have been reliably identified and involve extracellular ATP, keratin 18, HMGB1, various
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mtDAMPs, etc. Free fatty acid-induced lipoapoptosis in human hepatocytes stimulates ATP
release, promoting monocyte recruitment [50,51]. In addition, free ATP attracts circulating
neutrophils, ensuring their adhesion within the hepatic sinusoids, while mitochondrial
DAMP N-formyl peptides direct neutrophils to the site of injury [52]. Lipotoxic damage
also includes mitochondrial permeability transition with cytochrome c release, mitochon-
drial impairment, and oxidative stress. Liver biopsies from patients with NAFLD or NASH
have been found to exhibit both structural and functional mitochondrial abnormalities [53].
Structural abnormalities include organelle enlargement, while functional abnormalities
result in increased ROS production or accumulation of lipid peroxides [53]. Furthermore,
plasma from NASH patients has recently been shown to contain intact mitochondria and
high levels of oxidized mitochondrial DNA enclosed in hepatocyte-derived microparti-
cles [54,55]. Keratin 18 is the major epithelial-specific liver intermediate filament protein
expressed by hepatocytes and cholangiocytes [56,57]. In apoptosis, keratin 18 is one of the
most important substrates of activated caspases generating a neo-epitope after cleavage.
Caspase-cleaved fragments of keratin 18 are released into the blood as part of inclusion bod-
ies [58,59]. During necrotic cell death, intact keratin 18 is released into the blood, where it
circulates as part of extracellular vesicles [60]. Thus, the levels of fragmented keratin 18 and
intact keratin 18 reflect apoptotic and total cell death, respectively, while the ratio serves as
an apoptotic index [60]. Patients with NASH show an increased number of caspase-cleaved
keratin 18 fragments compared to patients with simple steatosis [29]. However, the clinical
assessment of the diagnostic value of the measurement of the keratin 18 fragment levels
is still controversial (reviewed in [60]). Keratin 18 has so far attracted attention due to its
usefulness in the establishment of cell death modes and as a biomarker of liver damage
rather than as a DAMP molecule.

The high-mobility group protein B1 (HMGB1), which is released from damaged hepa-
tocytes in chronic liver diseases, is probably the most widely assessed DAMP molecule [61].
Many studies have shown that HMGB1 is involved in the pathogenesis of NAFLD. HMGB1
plays a critical role in the initiation and maintenance of a chronic inflammatory state in
liver tissue. Since hepatic inflammation is one of the histological features distinguishing
simple steatosis and NASH, HMGB1 likely mediates the transition from steatosis to NASH.
In NAFLD, lipotoxicity leads to the release of HMGB1 and it is a driver of sterile inflam-
mation [62]. This observation was substantiated using a large cohort study of pediatric
patients with biopsy-confirmed NAFLD, which showed higher levels of circulating HMGB1
in children with NAFLD than in obese-only controls. The level of circulating HMGB1 not
only correlated with the degree of fibrosis, but also with the levels of inflammatory media-
tors such as TGF-β and MCP-1 [63]. These results suggest a critical role for HMGB1 in the
progression of NAFLD [63]. Therefore, serum HMGB1 may serve as a potential biomarker
for the early diagnosis of NAFLD and as a target for therapies aimed at the prevention and
treatment of NAFLD-associated inflammation. HMGB1 protein is both a nuclear factor
and a secreted protein. In the cell nucleus, it acts as an architectural chromatin-binding
factor that bends DNA and promotes protein assembly at specific DNA targets. HMGB1
is secreted by activated monocytes and macrophages and passively released by necrotic
or damaged cells [64]. HMGB1 interacts with several receptors such as TLR2, TLR4, and
RAGE. TLR4 is the primary receptor for HMGB1 in mediating macrophage activation and
cytokine release during tissue injury. Activation of the HMGB1 binding receptors results in
a wide range of inflammatory responses, including the production of pro-inflammatory
cytokines and the recruitment of immune cells to the site of injury. HMGB1 may also act in
conjunction with other pro-inflammatory mediators, such as single-stranded DNA, LPS,
IL-1β, and nucleosomes to induce inflammation. Structurally, among the two DNA-binding
domains of HMGB1, the B-box recapitulates the inflammatory activity of the full-length pro-
tein, whereas the A-box counteracts it [65]. In multiple experimental models of murine liver
fibrosis associated with cholestasis, alcoholic steatohepatitis or NASH increased expression
and release of HMGB1 are induced [66]. Notably, neutralization of HMGB1 protected
against liver fibrosis, whereas injection of recombinant HMGB1 promoted liver fibrosis [66].
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Extracellular HMGB1 is capable of activating the RAGE-PI3K-AKT1/2/3 pathway or the
RAGE-ERK pathway to upregulate type I collagen synthesis by hepatic stellate cells [66,67].
Importantly, HMGB1 does not stimulate profibrotic signaling through TLR2, TLR4, and
TLR9. The receptor specificity in the profibrotic response appears to be distinct from that in
liver inflammation, where HMGB1 interacts with RAGE and TLRs. Via the TLR4, HMGB1
secreted from lipotoxic hepatocytes facilitates a paracrine cytolytic effect on neighboring
hepatocytes loaded with cholesterol [40,61]. NASH pathogenesis is presented in Figure 1.
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Figure 1. NASH pathogenesis. Excessive consumption of high-fat foods and an unhealthy lifestyle
leads to obesity. Obesity is one of the causes of the non-alcoholic fatty liver disease (NAFLD).
Excessive accumulation of fats in the liver leads to lipotoxicity and death of hepatocytes. Dead
and/or damaged hepatocytes release large amounts of DAMPs, which cause severe inflammation,
thereby exacerbating hepatocyte damage.

Thus, the pathogenesis of NAFLD/NASH starts with the death of hepatocytes and
the release of DAMPs from dying cells. DAMPs primarily activate resident hepatic
macrophages and, subsequently, together with the cytokines and chemokines released by
macrophages, recruit various cells of innate and adaptive immunity to the liver, ultimately
leading to massive inflammation.

3. Role of Kupffer Cells in the Pathogenesis of NASH

Despite the abundance of data, the pathophysiology of NASH remains incompletely
understood at both molecular and cellular level. It is clear, though, that the innate and
adaptive immune systems play critical roles in the pathogenesis of NASH. Key players
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are the pro-inflammatory cytokines such as TNFα, IL-1β, and IL-6, as well as adipokines
derived from liver and adipose tissue [68]. These cytokines are the main mediators of
hepatic acute phase reaction triggering host intra-liver defenses, but if the problem turns
chronic, they become implicated in the development of fibrosis and cirrhosis and participate
not only in the deterioration of tissue homeostasis, but also affect liver-specific metabolic
functions by altering the gene expression of key regulatory enzymes of the carbohydrate
and lipid metabolism [69]. The pro-inflammatory environment in the liver favors the deteri-
oration of very low-density lipoprotein (VLDL) secretion and transcriptional upregulation
of de novo lipogenesis, as well as the weakening of mitochondrial fatty acid oxidation,
generally increasing lipid accumulation in the liver [70]. It may be surprising that NASH
develops in immunodeficient mice that lack B- and T-cells, as well as NK cells. It has
become clear that there is a connection between the immune system and the metabolic
disorders associated with obesity. The innate immune system senses nutritional stress and
mediates the progression of obesity, NASH, and type 2 diabetes. Winkler et al. [71] used an
immunodeficient mouse model that allowed the separation of adaptive and innate immune
responses and showed that NASH develops even in the absence of adaptive immunity.
Since the adaptive immune system cells did not play a significant role in this model, it
is likely that the resident liver macrophages and dendritic cells of the innate immune
system were the main mediators of inflammatory hepatic steatosis at the cellular level. It
is the pro-inflammatory cytokine TNFα, secreted during chronic nutritional overload by
the resident liver macrophages, Kupffer cells, that is considered the key player in NASH
pathogenesis [72]. Downstream targets of Kupffer cells are hepatocytes and hepatic stellate
cells, which are activated and transformed into myofibroblasts in response to TNFα.

Kupffer cells playing the central role in liver tissue inflammation are specialized
macrophages lining the walls of the hepatic sinusoids from the lumen side and accounting
for about 30% of sinusoidal cells [73]. Kupffer cells carry out five major functions critical for
maintaining the liver and whole-body homeostasis. These include (1) clearance of cellular
debris and metabolic waste [74–76], (2) maintenance of iron homeostasis through phagocy-
tosis of red blood cells and subsequent recycling of iron [77–80], (3) regulation of cholesterol
homeostasis through cholesteryl ester production transfer protein, which is important for
reducing circulating levels of high-density lipoprotein-cholesterol and increasing levels of
very low-density lipoprotein-cholesterol [81], (4) mediating antimicrobial defense [82,83],
and (5) promoting immunological tolerance [84,85].

The origin of Kupffer cells in embryogenesis was described in detail by Li et al. [86].
The Kupffer cell pool formation follows a program that is consistent between mice and hu-
mans and occurs in three waves at different stages of embryonic development. Embryonic
Kupffer cells reside in the liver throughout life and their population is preserved due to
proliferation [87,88]. In adults, the pool of Kupffer cells can be replenished by bone marrow
monocytes migrating to the liver and differentiating into Kupffer cells [89].

Kupffer cell populations in mice and humans are heterogeneous. Regrettably, human
Kupffer cells do not have uniform markers for identification. In three independent scRNA-
seq studies, human Kupffer cells were identified as CD163+MARCO+CD5L+TIMD4+ [90–92].
Functionally, these cells exhibit anti-inflammatory, anti-tumor, and immunomodulation
activity [90–92]. Compared to MARCO- macrophages, Kupffer cells express fewer inflam-
matory (TNFα), but more immunosuppressive genes (e.g., PDL1) when stimulated with LPS
or IFN-γ [90]. Another study showed that Kupffer cells display the CD32intCD68+CD14+

phenotype and have the potential to regulate the immune response [93]. In a recent study,
VSIG4 was identified as the best marker of human Kupffer cells [94]. Blériot et al. [95]
discovered two subpopulations of embryonic Kupffer cells in the mouse liver that differ
phenotypically and functionally: a major CD206loESAM- population (KC1) and a minor
CD206hiESAM+ population (KC2). KC2 were more likely to express genes involved in
metabolic processes in both steady state and diet-induced obesity and hepatic steatosis [95].
Human embryonic Kupffer cells express CD49a, whereas bone marrow derived Kupffer
cells do not express this marker. Actually, CD49a can be used to distinguish those two
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pools of Kupffer cells. Human embryonic Kupffer cells express high levels of both the
pro-inflammatory TNFα and IL-12 and the anti-inflammatory IL-10 cytokines, suggesting a
dual role in inflammation. However, LPS does not affect the expression of these cytokines
in the embryonic Kupffer cells. In contrast, these three cytokines are expressed, though at
low levels, in Kupffer cells derived from the bone marrow monocytes and their expression
is upregulated by LPS [96]. Therefore, the embryonic Kupffer cells appear to be functional
in homeostasis, whereas bone marrow derived Kupffer cells become functional in cases
of injury.

In mice, macrophages (MoMφs) recruited from the bone marrow to the liver have
the CD11b+F4/80intLy6C+CSF1R+ phenotype, while the resident Kupffer cells display
the CD11blowF4/80highClec4F+ phenotype [97–101]. MoMφs differentiate from circulat-
ing monocytes, which are derived from bone marrow CX3CR1+CD117+Lin− progenitor
cells [102]. In mouse models of liver disease, hepatic MoMφs are divided into two major
subpopulations according to the level of Ly6C expression: the inflammatory Ly6Chigh

and the restorative Ly6Clow MoMφs. Depending on the signals expressed by the liver
microenvironment, recruited MoMφs can differentiate into cells of different phenotypes.
For example, the recruitment of inflammatory Ly6Chigh MoMφs specifically relies on the
CCL2/CCR2, CCL1/CCR8, and CCL25/CCR9 signaling pathways, with chemoattractants
secreted by activated Kupffer cells, hepatic stellate cells, and liver sinusoidal endothelial
cells [103–107]. Inhibition or elimination of these signaling pathways in mice results in
reduced MoMφ recruitment, hepatic inflammation, and overall fibrosis [103,108]. However,
it should be noted that MoMφs are highly plastic, as shown by the potential of Ly6Chigh

MoMφs to switch to the restorative Ly6Clow phenotype [109].
Due to their central position in the hepatic microenvironment, their long cytoplasmic

protrusions, and the high density of pattern recognition receptors (PRRs) on their surface,
including Toll-like receptors (TLRs) and nucleotide binding oligomerization domain-like
receptors (NLRs), Kupffer cells act as the first line of responders for liver damage [110].
Kupffer cells play diverse roles in regulating inflammation in NASH. NASH induces the
upregulation of 891 Kupffer cell genes associated with ECM remodeling, lipid metabolism,
bacterial clearance, and recruitment of circulating monocytes [111]. Kupffer cells are
able to enhance or attenuate hepatic inflammation. Mitochondrial DNA from apoptotic
hepatocytes activates the STING/NF-kB signaling pathway in Kupffer cells and leads to the
amplification of inflammation [112]. As initial sensors of liver injury, Kupffer cells recruit
monocytes, neutrophils, and maybe other leukocytes through the secretion of a variety
of chemokines, including CCL2 and CXCL1 [113]. Kupffer cells are the main source of
CCL2 [114,115], which attracts CCR2+ monocytes to the damaged liver. Kupffer cells also
secrete CXCL1, CXCL2, and CXCL8 to attract neutrophils [114], which contribute to hepatic
ischemia–reperfusion (IR) injury and heat-induced liver injury [52,113,116]. It appears that
infiltrating Ly6Chigh MoMφs also release chemokines and promote leukocyte recruitment
during liver disease. For example, in mouse models of hepatic fibrosis induced by carbon
tetrachloride (CCl4) and an MCD diet, Ly6Chigh MoMφs express CXCL16 and promote the
recruitment of CXCR6+ natural killer T (NKT) cells, which exacerbate inflammation and
fibrogenesis [117]. In mice fed a high fat diet, Ly6Chigh MoMφs produce CCL5 and CXCL9
in a S100 calcium-binding protein A9 (S100A9)-dependent manner. These chemokines
lead to liver recruitment of both CD4+ and CD8+ T cells, which contribute to insulin
resistance [118,119]. Studies of chronically inflamed livers from patients with alcoholic liver
disease (ALD), NASH, primary biliary cholangitis, or primary sclerosing cholangitis have
also shown that intermediate CD14highCD16+ monocytes (similar to Ly6Chigh MoMφs in
the murine liver), which are derived from infiltrating classical CD14highCD16− monocytes,
secrete pro-inflammatory cytokines and chemokines such as TNFα, IL-1β, CCL1, and
CCL2 [120]. Figure 2 schematically shows the inflammatory process mediated by Kupffer
cells in the NASH liver.
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Figure 2. Activation of Kupffer cells in NASH liver. DAMPs released by dead hepatocytes activate
Kupffer cells or recruit macrophages, which begin to produce a wide variety of the pro-inflammatory
cytokines/chemokines and inflammosomes. Chemokines stimulate the recruitment of the innate and
adaptive immune cells to the liver, leading to increased inflammation and further liver damage.

Inflammosomes are multiprotein complexes that can sense danger signals sent by
pathogens and damaged cells via TLRs and NLRs. Inflammosome activation induces
caspase-1-mediated cleavage and maturation of the IL-1β and IL-18 cytokines [121]. In the
liver, gut-derived PAMPs (pathogen-associated molecular patterns), cell damage-induced
DAMPs (e.g., ATP), crystals (e.g., cholesterol), palmitic acid, and ROS present the well-
characterized signals that induce inflammosome activation in macrophages [35,122–124].
DAMPs such as ATP and uric acid, which are released from damaged hepatocytes, in-
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duce inflammosome activation in hepatic Kupffer cells in mouse models of ASH and
NASH [125,126]. Macrophage inflammosome activation plays an important role in the
pathogenesis of chronic liver diseases such as ALD and NASH [127]. IL-1β, which is
released as a result of the inflammosome activation in Kupffer cells, plays a critical role in
the promotion of alcohol-induced steatosis, inflammation, and liver injury [128]. Deletion
of caspase-1 or caspase-1 adapter in mice results in impaired IL-1β production, thereby
attenuating ALD symptoms [128]. With regard to NASH, in vitro studies have shown that
the NLRP3 inflammosome can sense lipotoxicity-associated increases in intracellular levels
of ceramides, cholesterol crystals, saturated fatty acid content, mtDNA levels, and ROS
content, causing caspase-1 induction in macrophages and subsequently promoting IL-1β
production [129–132]. In mouse models of NASH induced by supplying various diets,
including an atherogenic diet, methionine- and choline-deficient diet (MCD), high fat diet
(HFD), and Western diet, activation of NLRP3 inflammosomes and subsequent production
of IL-1β exacerbates inflammatory responses while increasing the IL-6 and CCL2 levels and
the numbers of infiltrating MoMϕ and neutrophils [132]. Genetic deletion or pharmacolog-
ical inhibition of NLRP3 in mice significantly suppresses tissue inflammation and improves
pathological features of NASH such as fibrosis and insulin resistance [129]. Liver samples
from patients with NASH showed significantly increased expression of the inflammosomal
genes (NLRP3 and caspase-1) compared with normal liver tissue [133] or liver samples
from patients with non-alcoholic fatty liver disease [134].

It has been shown that in NASH the pool of embryonic Kupffer cells is reduced with
increasing dietary cholesterol [135,136]. A reduction in the number of Kupffer cells is also
observed in MCD diet-induced NASH [135] and in hepatocellular carcinoma [137]. This
may be caused by apoptosis or cell death induced by the disease [138,139]. During MCD
feeding in mice, the pool of the Ly6CloClec4F+Tim4+ resident Kupffer cells was significantly
depleted, while that of the recruited Ly6CloClec4F−Tim4− monocyte-derived macrophages
was enriched. During recovery, the number of resident Kupffer cells normalized, as well
as the level of recruited monocyte-derived macrophages returning to the baseline. It is
noteworthy that Ly6CloClec4F+Tim4- monocyte-derived Kupffer cells did not self-renew
during the recovery period, but were reduced, while recovery from MCD diet feeding was
characterized by an increased content of Ki-67+ proliferating resident embryonic Kupffer
cells [135]. MoMφs are considered the main contributors to the replenishment of the
macrophage pool. This process depends on the concerted actions of hepatic stellate cells
and hepatic sinusoidal endothelial cells, which orchestrate monocyte occupancy and the
imprinting of the Kupffer cell phenotype, including the expression of the transcription
factors ID3 and liver X receptor-alpha (LXR-α) [140,141].

Because hepatic macrophages are the primary component of the immune response
during the development of sterile inflammation in the setting of non-alcoholic fatty liver
disease, the precise orchestration of their activation, differentiation, and polarization plays
a critical role in resolving or triggering subsequent disease progression. As mentioned
above, the transition from simple steatosis (mild form of NAFLD) to NASH depends on the
development of liver inflammation. Early in the disease, Kupffer cells rapidly divide and
secrete cytokines and chemokines such as IL-1, TNF-α, MCP-1, and C-C motif chemokine
ligand (CCL)5 [142], reflecting their involvement in controlling the inflammatory response
in NASH and their major role in recruiting inflammatory cells to the liver [143,144]. A
balance between the states of macrophage polarization is crucial for the development of
steatohepatitis. In the reparative phase of acute inflammation, hepatic macrophages can
undergo activation into M2 macrophages displaying an immunosuppressive but profibro-
genic phenotype. Activated macrophages can produce high levels of TGF-β1 and IL-13,
leading to the progression of fibrosis [145]. It has been shown that Kupffer cells can both
secrete and respond to the pro-inflammatory cytokines, such as IL-6, and anti-inflammatory
cytokines, such as IL-10. The anti-inflammatory M2 macrophages can induce apoptosis of
the M1 Kupffer cells, which have been reported to slow down the progression of fatty liver
diseases [146]. Additionally, the macrophage-derived IL-10 promoted lipid catabolism can
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subsequently prevent hepatic inflammation [147]. Macrophages have been implicated in
the progression of various stages of NAFLD. For example, a study conducted in a young
Korean population demonstrated a high number of CD68 + Kupffer cells in biopsy speci-
mens from patients with advanced NAFLD [148]. In another study, increased numbers of
activated macrophages were found interspersed among injured hepatocytes in children
with NAFLD [149]. Kupffer cells can be directly stimulated by the excess of free fatty acids
and cholesterol. The chemokines they release (CC-chemokine ligand 1 (CCL1), CCL2, and
CCL5) promote the differentiation of monocytes into M1 activated macrophages [150]. In
phase II clinical trials, inhibition of CCL2 and CCL5 signaling through selective blockade of
CCR2 and CCR5 receptors attenuated the signs of NASH, reduced the levels of circulating
biomarkers of systemic inflammation, including high-sensitivity C-reactive protein, IL-6,
fibrinogen, and IL-1ß, and counteracted the development of fibrosis [151]. Tacke, in his re-
view article [152], described several effective approaches to targeting hepatic macrophages
in the treatment of NASH, including specific inhibitors of inflammatory signaling aimed
at suppressing Kupffer cell activation (for example, the ASK-1 inhibitor selonsertib); in-
hibition of monocyte recruitment through pharmacological strategies to interfere with
chemokine signaling, including monoclonal antibodies against chemokines or their recep-
tor(s), receptor antagonists that prevent chemokine binding, inhibition of chemokines by
aptamer molecules or small molecule inhibitors blocking chemokine-induced intracellular
signaling; and use of novel drug carrier materials that may deliver specific drugs (e.g., gene
silencing siRNA, inhibitors of inflammatory signaling, and enhancers of autophagy) to
hepatic macrophage subsets in order to inhibit their disease-aggravating phenotype.

Thus, both pools of Kupffer cells and recruited macrophages play a critical role in
the pathogenesis of liver diseases. The above-mentioned therapeutic approaches targeting
hepatic macrophages, modulating their activity and recruitment, although showing some
success, are not completely effective in resolving NAFLD/NASH and other liver diseases.
Probably, their less than desired effectiveness is explained by the multifactorial and mul-
tidirectional nature of the pathogenetic mechanisms of liver diseases. In this regard, the
use of mesenchymal stem cells and their derivatives for therapy might turn out to be a
promising approach since the mechanisms of their therapeutic effects are also multifactor
and may be influencing multiple pathogenetic links.

4. Cell Therapy of NASH Based on the Cross-Talk between Transplanted MSCs and
Liver Macrophages

Transplantation of MSCs and MSC derivatives such as exosomes or conditioned
medium (CM) is effective in resolving inflammation, oxidative stress, fibrosis, and fatty
acid and triglyceride accumulation in various NAFLD/NASH mouse models [153–156].
This therapeutic action of MSCs and their derivatives can be at least partly attributed to
their immunomodulatory effect on hepatic macrophages. Ezquer et al. [157] showed that
intravenously administered syngeneic bone marrow derived MSCs prevented the onset of
NASH in obese mice. The observed hepatoprotection was not associated with the resolution
of metabolic syndrome, but with the prevention of the inflammatory process. Really, the
inflammatory cytokines IL-1β, INF-γ, TNF-α, and TGF-β1 mRNA levels were lower in
MSC-treated obese mice than in untreated obese mice [157]. Human UC-MSC exosomes
intravenously transplanted into mice with MCD-induced NASH improved MCD-induced
weight loss and liver damage, and down-regulated pro-inflammatory cytokines TNF-α,
IL-6, and IL-1β in the plasma [158]. Compared with control MCD mice, more F4/80+

macrophages were recruited to the liver in the UC-MSC exosome group, indicating that
exosomes potentially alter the distribution and chemotaxis of macrophages in the injured
liver. In addition, the levels of the markers of the anti-inflammatory macrophage pheno-
type, namely CD206, Arginase-1, and IL-10, were increased in MCD mice compared with
control diet mice, and their expression was further enhanced in the exosome-treated group,
indicating that in the MCD-induced liver injury external exosomes might increase the
number of the anti-inflammatory macrophages or promote macrophage polarization into
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an anti-inflammatory phenotype [158]. In a murine NASH model induced by supplying
a combination of Western diet and the repeated administration of low doses of carbon
tetrachloride, intravenous administration of conditioned medium from stem cells derived
from human exfoliated deciduous teeth reduced liver fibrosis and inflammation, inhib-
ited hepatocyte apoptosis and activation of inflammatory macrophages, and decreased
pro-inflammatory and profibrotic mediators including TNF-α, TGF-β, and CCL-2 [159].
In mice with NASH induced using a Western diet combined with lipopolysaccharide
treatment, human adipose tissue-derived MSCs and their sEVs significantly decreased
serum ALT levels and inflammatory markers but did not affect fat accumulation in the
liver. Also, after administering human MSCs and sEVs an improvement in fibrosis and
an increase in anti-inflammatory macrophages were observed in the mouse liver [160].
This mechanism may be related to the ability of MSCs to polarize macrophages into the
anti-inflammatory M2 phenotype. The M1 and M2 subsets of macrophages play highly
dynamic roles in the progression of NASH [161]. In liver fibrosis, it has been found that
M1 macrophages are anti-fibrotic due to their ability to actively phagocytose debris and to
degrade connective tissue, while M2 macrophages are profibrotic due to the secretion of
the tissue-remodeling factors, including fibronectin-1, coagulation factor XIII, tissue-type
plasmin activator, matrix-associated protein betaIG-H3, and insulin-like growth factor
(IGF) [162]. In vitro, immortalized E1-MYC 16.3 human ESC-derived MSC-EVs are able
to significantly polarize M0 macrophages, promoting their differentiation from human
peripheral blood monocytes into M2 (CD68+CD206hiCD163hi macrophages) but not into
M1 (CD68+PDL1hiCD38hi macrophages). In vivo, these MSC-EVs were shown to induce
the enrichment of CD163+ M2 macrophages in the livers of high-fat diet (HFD)-induced
NASH animals and a decrease in the serum IL-6 levels. However, despite the increase
in the number of profibrotic M2 macrophages in the liver and the reduction in plasma
IL-6, MSC-EVs did not exacerbate fibrosis, but reduced it, also showing a reduction in the
NAFLD activity score (NAS assessed using three parameters: the presence of micro- and
macrovesicular fat deposits (steatosis), hepatocellular ballooning, and inflammatory cell in-
filtration) [163]. However, another study showed that human amnion-derived MSC-EVs re-
duced the number of CD68+ Kupffer cells and CD11c+ M1 pro-inflammatory macrophages
without affecting the number of CD163+ M2 anti-inflammatory macrophages in the livers
of rats with HFD-induced NASH. It is likely that amnion-derived MSC-EVs attenuated the
inflammatory response in the NASH rat model by suppressing the activation of Kupffer
cells, especially M1 macrophages, and down-regulating the expression of the inflammatory
cytokines (TNF-α, IL-1β, and IL-6), rather than by shifting the M1/M2 macrophages ra-
tio [164]. In a rat model of sepsis-induced liver injury, the treatment with human umbilical
cord-derived MSCs inhibited the activation of Kupffer cells towards M1 phenotype, attenu-
ated TNF-α and IL-6 expression, and promoted IL-4 and IL-10 expression both in vivo in
septic rats and in vitro in the LPS-treated Kupffer cells [165].

The MSC-mediated modulation of immune responses at the macrophage level occurs
due to paracrine factors secreted by MSCs, such as the anti-inflammatory cytokines IL-10
and TGF-β and a variety of immunosuppressive factors, such as heme oxygenase (HO-1)
and iNOS, indoleamine 2,3-dioxygenase (IDO), or prostaglandin E2 (PGE2), and due to the
direct cell-to-cell contacts [14]. Wang et al. [166], for example, showed that MSCs can exert a
hepatoprotective effect in D-galactosamine-induced liver failure through PGE2-induced reg-
ulation of macrophage polarization. PGE2 secreted by mouse bone marrow-derived MSCs
inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase 3 pathway regulation in mouse
non-heart-beating liver transplantation model [167]. Some of the above-named factors
secreted by MSCs, including TGF-β and indoleamine 2,3-dioxygenase, induce M2 polariza-
tion of macrophages and reduce macrophage-mediated inflammatory responses [168,169].
Mitochondrial transfer from MSCs to macrophages enhances their swallowing ability [170],
and also promotes phagocytosis and suppresses the secretion of the pro-inflammatory
cytokines [171]. Another mechanism of immunomodulation mediated by MSCs may be
related to their ability to suppress mitochondrial fission in Kupffer cells, thereby promoting
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their M2 polarization. In a hepatic warm ischemia–reperfusion injury (IRI) model, MSCs
significantly limited the phenotypic M1 polarization, but enhanced the M2 polarization of
Kupffer cells isolated from the ischemic liver, as evidenced by the decreased levels of iNOS
and IL-1β transcripts, but increased levels of Mrc-1 and Arg-1 transcripts. MSCs inhibited
mitochondrial fission in Kupffer cells, as evidenced by a decrease in the levels of Drp1 and
Dnm2. The overexpression of Drp1 in the Kupffer cells promoted mitochondrial fission
during IR injury and abolished MSC-regulated Kupffer cell M1/M2 polarization after IR
injury, thereby antagonizing the therapeutic effect of MSCs [15]. Table 1 presents data on
the effects exerted by MSCs or MSC derivatives on macrophages/Kupffer cells.

In the murine traumatic hemorrhagic shock model, MSC-derived extracellular vesicles
containing IL-10 mainly accumulated in the liver, where they were captured by Kupf-
fer cells and induced the expression of the protein tyrosine phosphatase non receptor
22 (PTPN22) [172], which had been shown to negatively regulate the pro-inflammatory
macrophage activation [173]. It subsequently shifted Kupffer cells to the anti-inflammatory
phenotype and mitigated liver inflammation and injury [172]. It is known that after trans-
plantation MSCs quickly die within a few hours [174]. A number of studies have shown
that those dead MSCs are engulfed by macrophages with the non-classical Ly6Clow phe-
notype found in the lungs and liver. In vitro experiments showed that following the
phagocytosis of UC-MSCs classical human CD14++/CD16− monocytes polarized into the
non-classical CD14++CD16+CD206+ monocytes. Such non-classical or M2 macrophages
began to express the PDL-1 and IL-10, while the expression of the pro-inflammatory
TNF-α was reduced [175]. That is, phagocytosed MSCs induce the M2 polarization of
macrophages. Direct cell-to-cell contacts between MSCs and macrophages due to the
interaction of CD47 present on the MSCs and SIRPα displayed by the macrophages led to
a reduction in the liver tissue inflammation through the inhibition of inflammosomes in
Kupffer cells in vivo in the liver IRI model and in vitro in the LPS-treated macrophages. The
knockout of CD47 in MSCs increased the expression of NEK7, NLRP3, ASC, and cleaved
caspase-1 in Kupffer cells in damaged liver and in macrophages in vitro, and also increased
pro-inflammatory cytokines and chemokines, including IL-1β, TNF-α, IL-6, CXCL2, and
CXCL10 in macrophages after coculture [176].

Table 1. The effects of MSCs/MSC derivatives on macrophages/Kupffer cells.

MSCs/MSC Derivatives Effect on Kupffer Cells/Macrophages References

PGE2 Inhibition of apoptosis via TLR4-ERK1/2-caspase 3
pathway regulation [167]

TGF-β Induction of M2 polarization [168]
Indoleamine 2,3-dioxygenase Induction of M2 polarization [169]

Mitochondria
Enhancement of swallowing ability [170]

Phagocytosis promotion and pro-inflammatory cytokines
secretion suppression [171]

MSCs Inhibition of Drp-1 dependent mitochondrial fission and
promotion of M2 polarization [15]

MSC-derived extracellular vesicles
containing IL-10

Induction of the expression of the protein tyrosine
phosphatase non receptor 22 (PTPN22) and inhibition of the

pro-inflammatory macrophage activation
[172]

Dead MSCs Induction of M2 polarization [175]
Direct cell-to-cell contacts via CD47 on

MSCs and SIRPα on Kupffer cells Inhibition of inflammosomes in Kupffer cells [176]

According to the clinicaltrials.gov website, only one study using mesenchymal stem
cells to treat patients with NASH has been enrolled and completed to date (NCT03963921).
The complete results of this study have not yet been published. But brief results of this
study presented at the EASL Congress 2023 in Vienna showed that the highest dose of
human allogeneic liver-derived progenitor cells (HepaStem®) were safe and well tolerated
by adult patients with either F3 or F4 NASH (SAF fibrosis score). A preliminary efficacy
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study demonstrated normalization of ALT and AST serum levels and gradual decreasing
of bilirubin and triglyceride levels as well as IL-6 levels and fibrosis over a period of
6 months [177]. In the early- and late-stage NASH mouse models, these human allogeneic
liver-derived progenitor cells exhibited pronounced anti-inflammatory and anti-fibrotic
effects [178]. In another clinical trial (UMIN000022601), MSCs showed a significant thera-
peutic effect in patients with NAFLD/NASH. After the autologous adipose tissue-derived
regenerative (stem) cells’ (ADRCs) transplantation for the treatment of liver cirrhosis due
to non-alcoholic steatohepatitis or fatty liver disease, six out of seven patients showed an
improved serum albumin concentration and five out of seven patients showed improved
prothrombin activity. In one patient, hepatocyte steatosis decreased by one point, and in
another single patient, the lobular inflammation index decreased by one point [179].

5. Conclusions

Data reviewed in this article can be summarized in the following way. It has been
unequivocally demonstrated that NASH entails massive hepatocyte death, which is the
prime cause and driver of the subsequent pathological inflammation and fibrosis of liver
tissue. Decaying hepatocytes release a variety of biologically active substances, including
those constituting the so-called damage-associated molecular patterns (DAMPs) capable
of activating different types of cells, including immune cells, most importantly resident
liver macrophages (Kupffer cells), as well as macrophages recruited from the blood flow.
Activated macrophages produce and release a wide spectrum of cytokines and chemokines,
some of which are the attractants of neutrophils and cells of the adaptive immune system,
while the others intensify inflammation and promote fibrosis. These events drastically
exacerbate disease progression. Therefore, Kupffer cells and recruited macrophages present
in the liver tissue constitute the first line of the immune response in NASH and trigger
all the following pathological developments. If so, they can be regarded as a prospective
target for the development of new medicines and therapeutic approaches.

The progression of NAFLD/NASH is strongly dependent on the numerical ratio of
the pro-inflammatory (M1) and the anti-inflammatory (M2) macrophages present in the
liver tissue and, accordingly, on the cytokines and chemokines they produce. MSCs or MSC
derivatives shift the balance towards the anti-inflammatory M2 phenotype both in vitro
and in vivo, substantially reducing liver inflammation in the latter case. MSCs/MSC deriva-
tives affect the liver tissue in multiple ways and even if some of the effects are potentially
harmful, they can be neutralized. Thus, the M2 macrophages are profibrinogenic, but
with MSC therapy fibrosis is offset due to the parallel inhibition of the stellate cell and
pro-inflammatory immune cell activation and the hepatocyte protection against apopto-
sis. The multifactorial and multidirectional nature of the MSCs/MSC derivatives-based
NASH therapy is its main advantage over the other Kupffer cell-targeted approaches
under development.

Accumulating preclinical and clinical data regarding the pathogenesis of NASH and
the treatments currently under development indicates that the pathogenesis of this dis-
ease is complicated and, therefore, effective therapeutic approaches probably need to
be designed to simultaneously achieve several goals. Targeting a single link within the
NASH pathogenetic complex, as was done in the pan-caspase inhibitor trials, not only
does not produce the desired therapeutic effect, but may lead to enhanced disease progres-
sion. Therefore, multi-target cell therapy using MSCs and MSC derivatives may prove to
be effective.
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