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Abstract: Background: Small bowel disorders present a diagnostic challenge due to the limited
accessibility of the small intestine. Accurate diagnosis is made with the aid of specific procedures,
like capsule endoscopy or double-ballon enteroscopy, but they are not usually solicited and not
widely accessible. This study aims to assess and compare the diagnostic effectiveness of enteroscopy
and video capsule endoscopy (VCE) when combined with artificial intelligence (AI) algorithms
for the automatic detection of small bowel diseases. Materials and methods: We performed an
extensive literature search for relevant studies about AI applications capable of identifying small
bowel disorders using enteroscopy and VCE, published between 2012 and 2023, employing PubMed,
Cochrane Library, Google Scholar, Embase, Scopus, and ClinicalTrials.gov databases. Results: Our
investigation discovered a total of 27 publications, out of which 21 studies assessed the application
of VCE, while the remaining 6 articles analyzed the enteroscopy procedure. The included studies
portrayed that both investigations, enhanced by AI, exhibited a high level of diagnostic accuracy.
Enteroscopy demonstrated superior diagnostic capability, providing precise identification of small
bowel pathologies with the added advantage of enabling immediate therapeutic intervention. The
choice between these modalities should be guided by clinical context, patient preference, and resource
availability. Studies with larger sample sizes and prospective designs are warranted to validate these
results and optimize the integration of AI in small bowel diagnostics. Conclusions: The current
analysis demonstrates that both enteroscopy and VCE with AI augmentation exhibit comparable
diagnostic performance for the automatic detection of small bowel disorders.

Keywords: small bowel; artificial intelligence; enteroscopy; video capsule endoscopy

1. Introduction

Small bowel disorders pose diagnostic challenges due to their location, limited symp-
toms, and the lack of routine screening. Situated deep within the abdomen, the small
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bowel is not easily accessible for direct examination. Moreover, its symptoms—abdominal
pain, bloating, diarrhea, and weight loss—are non-specific and can mimic various gastroin-
testinal conditions [1–3]. Traditional imaging techniques often fail to visualize this coiled
organ adequately, and routine endoscopic procedures can only access its ends, leaving a
significant portion unexamined. Specialized tests like capsule endoscopy or double balloon
enteroscopy are required to diagnose small bowel disorders. However, these are not as
widely available and may not be routinely considered unless specifically indicated [4].
Additionally, the transit time of substances through the small bowel can vary, making it
challenging to identify abnormalities based on transit time alone [5]. Furthermore, some
small bowel disorders are rare and may not be initially considered during the diagnos-
tic process, leading to potential delays or missed diagnoses. These factors collectively
contribute to the complexity and difficulty of diagnosing small bowel disorders.

Cancers of the small bowel, specifically small intestine cancer, can also be challenging
to diagnose. These cancers are relatively rare compared to other digestive organ tumors,
and their symptoms can mimic various benign gastrointestinal conditions, making them
prone to misdiagnosis [6]. Common symptoms of small intestine cancer include abdominal
pain, unexplained weight loss, changes in bowel habits (diarrhea or constipation), blood
in the stool, and abdominal bloating [7]. These non-specific symptoms can be attributed
to many other digestive disorders, including inflammatory conditions, irritable bowel
syndrome (IBS), or even more common malignancies like colorectal cancer. A combination
of imaging studies (CT scans, MRIs), endoscopic procedures, and tissue biopsies is typically
required to diagnose small intestine cancer. Due to the difficulty in diagnosing small
bowel cancers, healthcare providers may need to maintain a high level of suspicion when
patients present with persistent, unexplained gastrointestinal symptoms to ensure timely
and accurate diagnosis and treatment [6,8].

Capsule endoscopy and enteroscopy represent two endoscopic techniques with di-
agnostic utility regarding small bowel disorders. While capsule endoscopy has been
frequently used since 2000, allowing for a simple and comprehensive evaluation of patients
suspected of small bowel disorders, certain disadvantages come with its non-invasiveness.
Therefore, device-assisted enteroscopy (DAE) comes as an essential step after a capsule
endoscopy investigation reveals abnormalities, an indication for therapeutic intervention,
or no certain diagnosis can be established [9].

Artificial intelligence (AI) holds immense promise for the future of precise diagnosis
in small bowel disorders due to its capacity to harness complex data analysis, image
recognition, and pattern recognition algorithms at a scale and speed far surpassing human
capabilities [10]. In the context of small bowel disorders, AI can process and interpret
vast amounts of medical imaging data, including capsule endoscopy and radiological
scans, with remarkable accuracy, swiftly identifying subtle abnormalities or lesions that
may elude human detection. Machine learning algorithms can assimilate diverse patient
data, such as clinical history, genetics, and biomarkers, to refine diagnostic accuracy and
predict disease progression, enabling tailored treatment strategies [10]. Furthermore, AI can
assist in differential diagnosis, distinguishing small bowel disorders from phenotypically
similar conditions like IBS or inflammatory bowel disease, reducing the likelihood of
misdiagnosis. Moreover, AI-powered predictive modelling can facilitate early disease
identification, potentially enabling interventions before severe complications manifest.
While the application of AI in small bowel disorder diagnosis is still evolving, its integration
into clinical practice has the potential to revolutionize healthcare by enhancing diagnostic
precision, expediting therapeutic interventions, and ultimately improving patient outcomes
in this challenging diagnostic realm.

For this reason, we conducted a comparative analysis of AI applications capable of
automatically diagnosing small bowel disorders. We assessed the accuracy of enteroscopy
versus video capsule endoscopy. Our research meticulously scrutinized the diagnostic ac-
curacy achieved by AI models in discerning a spectrum of small bowel disorders, including
entities such as Crohn’s disease, ulcers, neoplastic lesions, and vascular abnormalities.
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Moreover, this comparative analysis elucidates the practical implications of imple-
menting AI-facilitated diagnostic tools within authentic clinical scenarios. It outlines
potential advantages, including reduced procedural duration, enhanced patient comfort,
and increased diagnostic yield. Additionally, it evaluates the constraints inherent to both
enteroscopy and VCE, as well as the AI models themselves. Factors such as economic
considerations, accessibility, and the need for expert oversight are thoughtfully considered.

This study provides valuable insights into the advances in artificial intelligence’s
potential utility in diagnosing small bowel disorders. By scrutinizing the performance
of AI models in conjunction with enteroscopy and VCE, the research offers invaluable
information that holds the promise of significantly impacting clinical practice and patient
care within the gastroenterological field.

2. Materials and Methods

This systematic review has been conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-analyses reporting guidelines (PRISMA) [11].

Search strategy
A comprehensive literature search was conducted from 2012 until 2023, using Pubmed,

MEDLINE, Cochrane Library, Google Scholar, Embase, and ClinicalTrials.gov databases.
Keywords used in the search strategy included “Artificial Intelligence”, “Machine Learn-
ing”, “Deep Learning”, “Convolutional Neural Network (CNN)”, “Small Bowel Disorders”,
“Capsule Endoscopy”, “Enteroscopy”, “Diagnosis”, “Imaging”, “Image Analysis”, and
“Computer-Aided Diagnosis” in various combinations, with the help of Boolean operators
(AND, OR, NOT). Searches were also performed using Medical Subject Headings (MeSH)
where applicable. Language restrictions to English, Romanian, and German were applied.

Eligibility criteria

The eligibility criteria were based on the PICOS framework to select the relevant literature.

• Population: Studies involving human subjects of all ages diagnosed with or suspected
small bowel disorders have been included, whereas studies involving animal subjects
or in vitro have been excluded.

• Intervention: Studies that utilize artificial intelligence (AI), machine learning, deep
learning, convolutional neural networks, or computer-aided diagnosis in the processing
of capsule endoscopy and/or enteroscopy images for diagnosis were added. Studies
using capsule endoscopy or enteroscopy without any form of AI for diagnosis or other
gastrointestinal diseases without focusing on small bowel disorders were removed.

• Comparator: The presence of a control group was not mandatory for the screening
and selection process. If a control group was present, it had to be diagnosed through
standard diagnostic methods without the use of AI.

• Outcome Measures: Studies should focus on diagnostic metrics such as sensitiv-
ity, specificity, predictive values, or other performance metrics of AI-based tech-
niques and not patient satisfaction or cost-effectiveness, which offers no objective
performance measurement.

Study Design
Peer-reviewed original research articles, including randomized controlled trials, cohort

studies, and case–control studies. Reviews, letters to the editor, commentaries, case reports,
case series, and animal studies were excluded.

Studies with incomplete data sets or lacking the necessary statistical analysis and
duplicate publications, where multiple articles based on the same dataset were excluded,
keeping only the most comprehensive one.

Selection and data extraction
A standardized data extraction form has been developed and pilot-tested on a subset

of studies to ensure effectiveness. The form included study identifiers (e.g., authors, year
of publication), study design (e.g., RCT, cohort study), study population (e.g., sample size,
demographics), interventions, and outcome measures.
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The process encompasses more steps and is visually represented in Figure 1.
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• Initial Screening: The title and abstract have been screened for relevance by 2 inde-
pendent reviewers. Each database was progressively, one at a time/one after the
other screened for title and abstract. All relevant articles have been added to the
Mendeley Account in the folder dedicated to abstract and title screening. Afterwards,
the duplicates were removed with a function integrated into Mendeley.

• Full-Text Review for Eligibility: For studies passing the initial screening and entering
the eligibility stage, full-text articles were retrieved and assessed for eligibility based
on predefined inclusion and exclusion criteria. Inclusion criteria included studies that
applied AI to either enteroscopy or capsule endoscopy for diagnosing small bowel
disorders and provided data on diagnostic accuracy. Exclusion criteria included case
reports, conference abstracts, non-English articles, studies lacking relevant data, and
others elaborated in the eligibility criteria section.
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• Data Extraction: Data were extracted using a standardized form by two independent
reviewers. The extracted information included study design, sample size, type of AI
algorithm, small bowel disorder investigated, diagnostic modality (enteroscopy or
capsule endoscopy), diagnostic performance metrics (such as sensitivity, specificity, ac-
curacy), and any usability measures (e.g., time efficiency), using the standardized form.
Discrepancies in data extraction were resolved through discussion and consensus.

Any discrepancies between reviewers during the data extraction have been resolved
through discussion. Missing data has been requested from study authors where feasible.

Data Management
All extracted data has been entered into a database with restricted access to ensure

data integrity. The database has been backed up regularly.
Quality assessment
The quality of the included studies was assessed using the QUADAS-2 tool, as seen in

Figures 2 and 3, evaluating the risk of bias and applicability concerns in diagnostic accuracy
studies. It primarily consists of four key domains: patient selection, index test, reference
standard, and flow and timing utilized in 4 phases with signaling tasks and question for
bias risk awareness. Two reviewers independently performed the assessment, and any
disagreements were resolved through consensus or consultation with a third reviewer.
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3. Results

A summary of the descriptive characteristics and some of the evaluation metrics of
the included studies are presented in Table 1.
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Table 1. Studies using AI in diagnosing small bowel diseases via capsule endoscopy.

Author (Year) Disease and Investigation Algorithm Type Number of Patients/Images Main Findings

Malagelada et al.
(2012) [19]

Functional small bowel disorders
Video capsule

Iterative/automatic classifier—One-class
SVM

80 patients with functional bowel
disorders and 70 healthy subjects

26% of patients and 1% of healthy subjects were in the
abnormal zone (above the 66% cut-off), 65% patients and
93% healthy subjects were very likely normal (below the

33% cut-off), while a relatively low proportion (9% of
patients and 6% of healthy subjects) remained in the gray

zone (between 66% and 33% cut-offs)

Malagelada et al.
(2015) [18]

Functional small bowel disorders
Video capsule Automatic classifier—one-class SVM 196 patients with functional bowel

disorder and 48 healthy subjects

A significantly greater proportion of patients in the test set,
32 of 129 patients (25%), were found outside the normal

range (p = 0.000 by chi-square) as in the training set.

Klang et al. (2020) [20] Chron’s disease
Video capsule Xception CNN

7.391 of images with ulcers and 10.249
with normal mucosa, out of which
6672 were with CD and 3577 were
with normal CEs, from 49 patients

There were 2 different experiment designs, with the
classifier reaching accuracies ranging from 95.4% to 96.7%
for the first, the accuracies ranged from 73.7% to 98.2%,
higher than the second experiment, all that in less than

3.5 min for the complete film analysis

Baopu, Max (2012) [21] Malignant abnormalities
Video capsule SVM-SFFS and SVM-RFE 600 tumor ROIs and 600 normal ROIs

from 10 patients

2 feature SVMs were used to maximize the classification
accuracy, one of which reached a diagnostic accuracy of

92.4%; however, there was a low sensitivity of lesion
detection (88.6% for SVM-RFE and 83.1% for SVM-SFFS)

Pedro et al. (2015) [22] Malignant abnormalities
Video capsule SVM and multilayer perception 14 patients, 700 frames labeled tumoral

frames and 2500 normal frames

Average from the 4 groups/sets where different features
were analysed, where sensitivity, specificity, and accuracy
from the MLP algorithm which performed better than the
SVM, were 96.75%, 97.47% and 97.2%, respectively, with

features from the entire image.

Vieiera et al. (2019) [23] Malignant abnormalities
Video capsule

Firstly, the Gaussian Mixture Model was
used to separate abnormal from normal

tissue. Additionally, a modified version of
the Anderson method for convergence

acceleration of the expectation–maximization
algorithm is proposed.

936 frames from 29 patients with
adenocarcinomas, lymphomas,

carcinoid tumors, and sarcomas, and
3000 normal images

The best results were achieved with the third training
scheme, where sensitivity, specificity, AUC and accuracy

achieved were 96.1%, 98.3%, 96.5%, and 97.6%, respectively.

Saito et al. (2020) [24] Malignant abnormalities
Video capsule

Single shot multiBox detector 12 (deep
neural network architecture), without an

alteration of the underlying algorithm

30.584 images from 292 patients were
used for training and validating the

CNN, out of which 10.000 were
normal images and 7.507 presented

with protruding lesions

For the whole capsule endoscopy films analysis, which
simulates a real-life analysis, the sensitivity was 98.6%

and the classification of lesions has a sensitivity of 86.5%,
92.0%, 95.8%, 77.0%, and 94.4% for the detection of

polyps, nodules, epithelial tumors, SMTs, and venous
structures, respectively
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Table 1. Cont.

Author (Year) Disease and Investigation Algorithm Type Number of Patients/Images Main Findings

Inoue et al. (2020) [25] Malignant abnormalities
Video capsule Single-Shot Multibox Detector

1546 training images from 96 tumors
for the training data set and

399 images from 34 SNADETs

NBI (narrow band imaging) having a significantly higher
sensitivity (NBI vs. WLI = 98.5% vs. 92.9%) and lower

specificity than WLI (white-light imaging) (NBI vs.
WLI = 77.8% vs. 89.2%)

Zammit et al. (2020) [26] Celiac disease
Video capsule Leave-one-out cross-validation model 81 SBCE results of 72 patients.

SBCE imaging results were used to differentiate diagnose
between Celiac disease and Serology negative villous

atrophy and assess the severity of Celiac disease. Using the
Maximum Likelihood approach as predictive method and
Leave-one-out cross-validation model (LOOCV) to validate
the predictive method the team was able to achieve 69.1%
of accuracy when differentiating between the two diseases
and assessing the severity of Celiac disease. The accuracy
value increased up to 75.3% after including the estimate of

the distribution for the two diseases.

Zhou et al. (2017) [27] Celiac disease
Video capsule DCNN 11 Celiac disease confirmed patients

and 10 patients for control group

SBCE results were used to train a DCNN which was able
to diagnose Celiac disease with 100% sensitivity and

specificity. Moreover, Zhou et al. [27] introduced a new
term based on their results: Evaluation

confidence—which can be useful to suspect Celiac disease
when the value is above 50% and can be used to predict

the severity of disease, with high value of Evaluation
confidence corresponding with disease severity.

Stoleru et al. (2022) [28] Celiac disease
Video apsule SVM 109 SBCE results from 65 Celiac

disease patients and 45 Control group

Part SBCE examination results were used to train a
Machine Learning algorithm and then used on the rest of
the available imaging data. The researchers compared the

diagnostical results of 3 different ML algorithms, from
which Linear Support Vector Machine (SVM) was the most

performant one with 96% sensitivity and 94% precision.

Leenhardt et al.
(2019) [29]

Angioectasia
Video capsule CNN

208 patients (126 men, 82 women) 6360
still frames extracted from 1341

SB-CE videos

Results for the examined dataset reveal a 100% sensitivity
and a 96% specificity, and the authors concluded that they
had outstanding diagnostic accuracy for GIA detection.

Tsuboi et al. (2020) [30] Angioectasia
Video capsule CNN with Single Shot MultiBox Detector 169 patients with confirmed small bowel

angioectasia and 20 healthy patients

The trained CNN required 323 s to evaluate the images,
with an average speed of 32.5 images per second. The

AUC of CNN used to detect angioectasia was 0.998. The
correct distinction rate was 83.3% (15/18) in Type 1a and
97.9% (465/475) in Type 1b proving that not only did this
algorithm predict angioectasia but it also classified each

angioectasia lesion by its type
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Table 1. Cont.

Author (Year) Disease and Investigation Algorithm Type Number of Patients/Images Main Findings

Vezakis et al. (2019) [31] Angioectasia
Video capsule CNN

725 images from ImageNet
Out of these images, 350 depicted a

normal mucosa, 196 depicted bubbles,
75 depicted blood vessels and
104 depicted angioectasia. The
validation dataset consisted of
3 full-length WCE videos from

patients who were diagnosed with
multiple small bowel angioectasia, by

a medical professional.

Possible ROIs are suggested in the initial stage. In the
second stage, a properly trained CNN automatically

evaluates the ROIs. The sensitivity and specificity of this
approach were determined as 92.7% and 99.5%,

respectively. During the manual inspection of the videos,
55 angioectasias were detected in 436 frames. Out of these
55 lesions, 51 were detected successfully by the algorithm.

Vieira et al. (2019) [32] Angiectasia
Video capsule

Multiple color spaces; Maximum a Posteriori
Multilayer perceptron; neural network

and SVM

798 images (248 images with
angioectasias and 550 normal images)

The program employed a pre-processing method to
identify ROIs that were then investigated further. The use
of MRFs to simulate the neighborhood of pixels improves
lesion segmentation, particularly with the addition of the
suggested weighted-boundary function. A MLP classifier
produced the most accurate outcomes (96.60% sensitivity
and 94.08% specificity, for an overall accuracy of 95.58%).

Mascarenhas et al.
(2021) [33]

Bleeding lesions
Vascular lesions

Ulcers
Erosions

Video capsule

CNN Xception model
4319 patients

5739 exams from which 53,555 images
of CE were obtained

The method scored very high specificity rates in
identifying correctly all the mucosal lesions present in the
images. The algorithm detects lymphangiectasias with a

sensitivity of 88% and a specificity of over 99% and
xanthomas with a sensitivity 85% and a specificity of

>99%. Mucosal erosions were detected with a sensitivity
of 73% and specificity of 99%. Mucosal ulcers were

identified with a sensitivity of 81% for P1 lesions and 94%
for P2 lesions. Vascular lesions with high-bleeding

potential were identified with a sensitivity and specificity
of 91% and 99%. Mucosal red spots were detected with a

sensitivity of 79% and a specificity of 99%.

Fu et al. (2014) [34]
Bleeding lesions of the small

bowel’s mucosa
Video capsule

SVM 20 videos consisting of 1000 bleeding
frames and 4000 non-bleeding frames

The method has been proven to be better at detecting
bleeding pixels than other methods used before. This

algorithm is based on grouping similar pixels together,
based on color and location, to reduce computational time.

Aoki et al. (2018) [35]
Erosions and ulcerations of the small

bowel mucosa
Video capsule

CNN
Single Shot Detector

Validation set: 65 patients
10,440 independent images (440 with
erosions and ulcerations and 10.000

showing normal small bowel mucosa)
Test set: 115 patients from which

5360 images were obtained (all images
contained erosions and ulcerations)

The method was focused on detecting both erosions and
ulcerations in each set of CE images. The CNN proved to
have great performance in detecting both types of lesions
with an AUC of 0.958 (95% CI, 0.947–0.968). This is the

first machine learning based method aimed specifically at
detecting erosions and ulcerations in video capsule

images of the small bowel.
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Table 1. Cont.

Author (Year) Disease and Investigation Algorithm Type Number of Patients/Images Main Findings

Liu et al. (2016) [36] Small intestinal bleeding
Video capsule

joint diagonalisation principal
component analysis 530 images from 30 patients The feature extraction models achieved AUCs of 0.9776,

0.8844, and 0.9247 in detecting small intestinal bleeding.

Fan et al. (2018) [37]
Erosions
Ulcers

Video capsule
CNN

144 patients, 32 cases of erosions,
47 cases of ulcer and 65 normal cases
Ulcer detection dataset: 8250 images
(3250 with ulcers) Erosions detection
dataset: 12910 images (out of which

4910 with erosions)

The algorithm obtained great performance in detecting
erosions and ulcers of the small bowel with an accuracy
of 95.16% for ulcers) and 95.34% for erosions. However, it
still had a 5% rate of failure in correctly identifying the
images with certain lesions. The ulcers were identified

with greater success with a higher sensitivity rate due to
the anatomical characteristics of the lesion: ulcers are
usually in the form of blocks while erosions are small

and punctiform.

Ghosh et al. (2021) [38] Bleeding lesions
Video capsule

CNN- based deep learning framework. Two
CNNs were used CNN-1 for classification of

bleeding and not bleeding images
(AlexNet architecture)

CNN-2 for detection of bleeding segments

2350 images (out of which 450 frames
of bleeding) from two online available

clinical datasets

This method achieved an AUC of 0.998. In the case of
active bleeding, the algorithm detects the bleeding

regions with some false positives. The inactive bleeding
regions are detected with higher accuracy. The aim of this
study is to assist physicians in the reviewing process of
CE images, and it enables a five-time reduction of the

time needed to assess a dataset consisting of
50–70 thousand frames.

SVM: Support Vector Machine; CNN: Convolutional neural network; SFFS: Sequential forward floating selection; RFE: recursive feature elimination; SNADET: superficial non-ampullary
duodenal epithelial tumor; NBI: narrow-band imaging; SBCE: small bowel capsule endoscopy; DCNN: deep convolutional neural network; ROI: region of interest; MRF: Markov
Random Field.
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3.1. Videocapsule Endoscopy

Capsule endoscopy is currently being used to diagnose many small bowel condi-
tions. AI has been shown as a diagnostic aid in several small bowel diseases, such as
functional small bowel disorders, Chron’s disease, malignant abnormalities, celiac disease,
angioectasia, and erosions and ulcers of various etiology.

Functional small bowel disorders are currently diagnosed based on the Rome IV
criteria, which entails symptom analysis items [39]. Unfortunately, clinical diagnostic
criteria do not correspond to the pathophysiological mechanisms in the small bowel, thus
leading to treatment failure and persistence of the symptoms, prolonging the precarious
life quality of the patients [40].

Malagelada et al. conducted two studies intending to introduce a novel, objective clas-
sification model of small bowel functional disorders based on dysmotility patterns [18,19].
Using computer vision for image computation, the machine learning (ML) algorithm, a
support vector machine (SVM) detected several significantly different indexes (19 in the first
study and 43 in the second study) in healthy subjects versus functional disorder patients.
These were used to discern between motility, contractile and non-contractile patterns, and
endoluminal content in terms of frequency and duration, with an additional grouping into
hypomotility and hypermotility behaviors.

The first study had a cohort consisting of only 80 patients with functional disorders
and 70 healthy patients, and the same population was used for training and testing the
SVM [18]. The subsequent prospective study improved the ML algorithm with a dataset
consisting of 205 functional bowel disorders cases and 136 healthy subjects and a naïve
testing set of 196 patients and 48 healthy subjects, with results illustrating robustness
and adaptability to the clinical scenario. Another novelty of this study consisted of the
implementation of sequence analysis; thus, not only isolated events, i.e., single contractions,
were analyzed, but rather the global view of the intestinal function. A significantly greater
proportion of patients in the test set, 32 of 129 patients (25%), were found outside the normal
range as in the training set. Finally, there were 74% with normal intestinal motor function,
19% with hypodynamic behaviors, and 7% with hyperdynamic behaviors classified [19].
Nevertheless, the motility of the colon and stomach should also be studied, and motility
abnormalities patterns and distributions need to be compared to those found by other
emerging techniques in the field of intestinal dysmotility [41,42]. In addition, to achieve
finer detection rates, other classifiers must also be compared in terms of accuracy to benefit
from the best performance.

One of the most prevalent small bowel affections is represented by Crohn’s disease
(CD). Klang et al. developed a state-of-the-art CNN that accurately detected and charac-
terized ulcers and aphthae in CD. There were two different experiment designs, with the
classifier reaching accuracies ranging from 95.4% to 96.7% for the first experiment and
having a higher variability for the second, with accuracies from 73.7% to 98.2%. There were
images from 49 patients, 7391 with ulcers and 10249 with normal mucosa included, out of
which 6672 were with CD and 3577 were with normal CE. The first experiment split the
database images into 5 subsets, of which 80% were used for training the CNN and 20%
for testing it [20]. Compared to the other existing scores, this scoring system considers
proximal small-bowel inflammation associated with poorer prognosis in patients with
CD. In the absence of classical findings at the ileocolonoscopy and facing unclear clinical
findings, the developed CNN can, as well as the other scorings existent, put the diagnosis
of CD and additionally make the differential diagnosis with other pathologies, nonsteroidal
anti-inflammatory drug-related enteropathy being the most common [20].

Wireless-capsule endoscopy (WCE) is a minimally invasive technique for the investi-
gation of the small bowel and has been successfully employed for the diagnosis of various
diseases. However, it is a time-consuming technique, requiring, on average, 1 to 2 h for
interpretation from the gastroenterologist’s time [43]. As a result, significant advances in
the automatic detection of lesions from WCE-generated images have been made regarding
technical refinement and clinical applicability [21–25].
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Li et al. proposed a novel feature extraction technique using a uniform local binding
pattern (LBP) and wavelet transformation concatenated in different color spaces. It used a
ROI (region of interest) technique to maximize the color feature extraction process further
and achieved an accuracy of 84.9% on average. Additionally, 2 feature selection support
vector machines (SVMs) were used to maximize the classification accuracy, one of which
(SVM sequential forward floating selection—SVM-SFFS) reached a diagnostic accuracy of
92.4%. The database consisted of 600 tumor ROIs and 600 normal ROIs from 10 patients, so
a relatively low number of training images from a limited number of patients affected the
selection variability. The disadvantages brought by the wavelet transformation and SVM-
SFFS were the great computational resources it required, hence being very time-consuming.
In addition, the relatively low sensitivity of lesion detection (88.6% for SVM-RFE and 83.1%
for SVM-SFFS) made it challenging to implement in clinical practice [21].

Vieira et al. developed a model with color feature extraction and feature selection
algorithms, achieving a processing image time of 0.04 s per frame. The study used frames
taken from 14 patients, 700 frames labeled tumoral frames, selected by a team of experienced
gastroenterologists, and 2500 normal frames [22]. After the characterization of the extent of
the lesion as a novelty, this study proved the superiority of using ROIs as opposed to the
whole frame. With absolute measures of the entire image, as opposed to relative measures
of the 2 regions, the accuracy of tumor detection by the CNN decreases as the lightening
and color differences are more subjected to device and subject variabilities [22]. These
features were then further characterized with histogram-based measures and processed
by the classifiers used in the study, MLP (multilayer perceptron) and SVM, with default
parameters. The first proved superior performance concerning the majority of the 4 subsets.

Additionally, the team subsequently developed a more proficient algorithm that would
successfully be tested in a clinical setting before being assessed as a permanent tool in the
automatic detection of small bowel tumors. A similar methodology was used as in their
previous study, except for a modified SVM version of the bagging strategy and partitioning
of the dataset with a multivariate Gaussian Mixture Model (GMM). Another difference
was a modified Anderson acceleration algorithm for the segmentation module, which
outperformed the baseline by 10%. Also, the ensembled-based classification module, where
the diversity is preserved to train the ensemble elements first in subsets and only after the
gating is trained. This technique, called incremental adaptation, challenges the state-of-
the-art training strategy, and outperforms the static model in the accuracy of diagnosis
by 3%. The subsets’ AUC ranges from 92.3% to 96.4% using this training strategy. The
study had, nonetheless, certain limitations regarding the limited database (936 frames
from 29 patients with adenocarcinomas, lymphomas, carcinoid tumors, and sarcomas)
and 3000 normal images. However, the classifier and improved color feature extraction
represents a promising diagnostic tool for small bowel tumors [23].

With a similar intent of tumor detection, DL was used as a classifier in a study
conducted by Saito et al. They proposed the single shot multiBox detector (SSD) using a
considerable dataset (292 patients and 30,584 images used) for validation and training, as
well as for testing the CNN (93 patients, 10,000 without lesions, and 7507 with protruding
lesions). The model achieved a sensitivity of 90.7% for detecting the lesions in independent
test images, with a sensitivity of 98.6% in the per-patient analysis [24]. A secondary
outcome was the classification of the lesions according to the CEST (capsule endoscopy
structured terminology) classification, with a sensitivity of 86.5%, 92.0%, 95.8%, 77.0%, and
94.4% for the detection of polyps, nodules, epithelial tumors, SMTs, and venous structures,
respectively. One limitation of the study was the relatively small number of patients for
correct training of a DL algorithm. Additionally, the algorithm was not in contact with flat
lesions, so it could not distinguish these from normal mucosa [24].

In addition to WCE, there is emerging research in the field of gastroscopy and
colonoscopy real-time automatic detection of lesions. The importance of early detection of
duodenal adenocarcinomas is that they represent 45% of all small bowel adenocarcinomas
and have a 5-year survival rate of <30%, the lowest when compared to the other malignant
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small bowel tumors [8,44]. SNADETs (superficial non-ampullary duodenal epithelial tu-
mors) are a type of mucosal or submucosal adenocarcinomas that rarely metastasize, thus
endoscopically respectable, but as they are usually flat, an early diagnosis might be missed,
hence the need for computer-aided diagnosis.

Inoue et al. studied the first deep CNN algorithm for the detection of SNADETs
(adenomas and high-grade dysplasia lesions), achieving a sensitivity detection of SNADETs
of 94.7% and specificity of 87.4% on an image basis, with NBI (narrow band imaging) having
a significantly higher sensitivity and lower specificity than WLI (white-light imaging).
Hence, this is a useful aid for the clinician but cannot fully ensure the physician of the
exclusion of the diagnosis in case of a negative response, as the algorithm’s diagnostic
performance was not compared to that of an endoscopist’s and the images used to train the
CNN were high-definition and came from a single facility and there were a low number
of subjects (1546 training images from 96 tumors for the training data set and 399 images
from 34 SNADETs). The CNN also was not in contact with benign lesions. With the
implementation of the improvements in a future study, it could become a useful real-time
diagnostic tool [25].

Zammit et al. applied ML to construct a predictive model that could differentiate
celiac disease patients and serology-negative villous atrophy (SNVA) based on small bowel
capsule endoscopy (SBCE) results. The team performed SBCE on 72 patients with confir-
mative histological and serological diagnosis of celiac disease (n = 51) and SNVA (n = 21).
Assessing the SBCE results, the researchers could predict the severity of Marsh scores and
distinguish between celiac disease and SNVA with 69.1% accuracy. The accuracy value
increased to 75.3% after including the estimate of the distribution for the two diseases [26].

Zhou et al. used the results of the SBCE examination of 11 individuals, 6 patients
with celiac disease, and 5 control group patients to train a deep convolutional neural
network (DCNN). The model reported 100% sensitivity and 100% specificity in finding
the celiac disease-related pathologies in given frames from SBCE. Moreover, the team
used those findings to measure quantitively the severity level of pathological findings
and introduced the term: Evaluation confidence (EC)—which can be used to diagnose CD
and predict the Marsh type and severity of the actual disease. Thus, EC for CD patients
varied between 57.53% and 86.55%, while for the control group, it was between 9.58%
and 31.79%. According to the results, an EC value above 50% can be considered suspect
for the CD. As for the severity of CD and specifically the severity of villous atrophy, an
EC value of 57.53% corresponded to a patient who was classified as Marsh III A (patients
with dermatitis herpetiformis) according to the results of biopsies. On the other hand, an
EC value of 86.55% corresponded to a patient classified as Marsh III C (complete villous
atrophy) [27].

Stoleru et al. also used ML to analyze the video results from SBCE by identifying
pathologies that can be found in small intestine linked to celiac disease, such as mucosal
atrophy, presence of cracks, reduction or loss of folds, and low number of villi. According
to the research, the team accessed 109 SBCE results from 65 celiac disease patients and
45 control group individuals. 51 SBCE results were used as a training data set for ML
algorithms, 51 were used for the test set, and only 7 were used for real-time testing of
the application. The researchers tested 3 types of algorithms, from which Linear Support
Vector Machine (SVM) was the most performant one with 96% sensitivity, 94% precision,
and 0.94 F1 Score, which can be interpreted as accuracy [28].

Another condition where imaging investigations are helpful for the diagnosis is gas-
trointestinal angiectasia (GIA). It has a risk of obscure GI bleeding and is the most common
small bowel (SB) vascular lesion [45]. These lesions are cherry red in color and range in
size from 2 to 10 mm. Because they are superficial lesions, imaging modalities that collect
images from the inside of the GI tract can easily detect them [46].

Obscure GI bleeding (OGIB) is defined as bleeding from the GI tract that continues or
recurs after esophagogastroduodenoscopy (EGD), colonoscopy, and radiologic evaluation
of the small bowel. The presence or absence of clinically manifested bleeding can be divided
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into obscure overt and obscure occult bleeding [47]. Tumors and vascular dysplasia are
the most prevalent lesions found in the small bowel, with angioectasias being the most
common cause in the elderly [48]. Obscure GI bleeding accounts for 5% of all occurrences of
GI bleeding, including acute overt and chronic occult. Small bowel examinations employ-
ing (WCE) and deep enteroscopy techniques (double-balloon enteroscopy, single-balloon
enteroscopy, and spiral enteroscopy) have allowed for the identification of a significantly
greater number of patients with unexplained GI bleeding [49].

In a study conducted by Leenhardt et al., a computer-aided approach was designed
to distinguish between normal small-bowel mucosa and small-bowel images featuring
GI angiectasia. A convolutional neural network (CNN) was trained with small-bowel
capsule endoscopy (SB-CE) images acquired from the Computer-Assisted Diagnosis for
Capsule Endoscopy database (CAD-CAP). Still frames were extracted and annotated by the
study group, resulting in a set of 600 images for each group, normal images, and images
featuring GIA, further divided into a training and test dataset. Results show a sensitivity
of 100% and a specificity of 96% for the tested dataset, and the authors concluded that
they achieved excellent diagnostic accuracy for GIA detection. This method could help
clinicians by replacing them in analyzing long SB-CE videos, which have a mean number
of 50.000 frames [29].

Tsuboi et al. proposed another DL model based on a convolutional neural network
(CNN) for the automatic analysis of various CE images. After training the algorithm
with more than 2000 images, the program could predict the existence of GIA with a
specificity of 98.4%. The results show the potential of reducing the clinicians’ time for
image analysis. The model required little over five minutes to screen more than 10,000 CE
images while classifying each angioectasia lesion by its type according to Yano-Yamamoto’s
classification [30].

Vezakis et al. created a new technique to identify angioectasias of the small bowel,
screening the WCE video for regions of interest (ROIs) and distinguishing between regions
that show angioectasias, bubbles, blood vessels, and the typical mucosa. After the ROIs
are discovered, a Convolutional Neural Network (CNN), trained to distinguish between
regions that show angioectasias, bubbles, blood vessels, and the typical mucosa, is utilized
to assess the indicated ROIs. The software was able to predict 51 out of 55 lesions accurately,
and its sensitivity and specificity were calculated to be 92.7% and 99.5%, respectively [31].

Vieira et al. designed a new approach for automatic computer-assisted small bowel
angioectasia detection, which consisted of a complex algorithm in which the numerous
frames of WCE films were analyzed. The software used a pre-processing algorithm to
find regions of interest (ROIs) that were further studied. Using computational algorithms
incorporating pixel intensity, the frames were then passed on to post-processing algorithms.
Small sections of pixels were also deleted using post-processing, resulting in the only
selected pixels being those associated with the angioectasia. Further, only the frames with
the highest probability of angioectasia lesions reached the classification step, where different
features of the ROI were ranked. One advantage of the approach given in this research is
that not all photos must be processed through the classifier to be classified because most of
the frames containing normal intestinal tissue are ruled out in the segmentation step. The
results showed that this new computational method was able to predict angiectasia lesions
with 96.6% specificity, 94.08% sensitivity, and 95.58% accuracy when used on a database
consisting of 798 images, out of which 248 were with angioectasia [32].

Mascarenhas Saraiva et al. developed and tested an AI model based on a CNN to
identify multiple types of small bowel lesions and classify their bleeding potential, hoping
to improve the present diagnosis efficiency of the capsule endoscopy method and increase
the number of correctly diagnosed lesions. The algorithm was trained and tested on a
pool of 53,555 images of capsule endoscopy of both normal mucosa and lesions with
different bleeding risks. For each image, the CNN has calculated the probability for each
category of lesions: normal mucosa, red spots, and lesions with a high risk of bleeding.
The software generated heatmaps localizing features that classified the lesion into one of
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the three classes. The results of the CNN were then compared to the assessments made
by three gastroenterologists specialized in interpreting CE images. The model had high
accuracy with AUROCs of 0.99 and differentiated between the categories accurately [33].

Fu et al. conducted a study that aimed to improve the existing standards for CE
imaging interpretation through machine learning methods. The study was conducted
using 20 CE videos from which 5000 images were extracted, 1000 of which contained
bleeding depictions, and all images were pre-evaluated by experts. The algorithm used
proved to be more efficient than other image, pixel, or patch-based methods. In this study,
the pixels on the edges of the images were removed to avoid color confusion to a bleeding
lesion. The accuracy with which the algorithm detected bleeding in the images presented
was over 0.90 for every method tested [34].

In the study conducted by Aoki et al., a CNN model was used to aid the detection
of erosions and ulcerations in CE images. The AI model trained on 5360 CE images and
was tested on another 10,440 images, of which 440 presented erosions or ulcerations. The
model’s accuracy in detecting erosions and ulcerations was 90.8%. The CNN used in this
study searched for both erosions and ulcerations in the reviewed images, as a first time try
to identify erosions through machine learning. All prior ML studies focused on identifying
ulcerations as they are larger and easier to distinguish. Furthermore, the CNN used in
this study correctly identified 3 erosions that the experts who verified the input images
missed [35].

The study conducted by Liu et al. tested a ML algorithm based on JDPCA for the
detection of lesions in images obtained from both conventional gastroscopy and WCE. The
study included 530 images obtained through WCE from the small intestines of 30 different
patients, out of which 130 were images depicting bleeding and the other 400 were normal
images. The algorithm has three essential phases: removing interfering regions, extracting
discriminative features with a combination of methods with and without learning, and
classifying the images into two categories: with or without lesions. The data used to
validate the technique consisted of the processed images. The JDPCA algorithm used in
this study performed with 9.25% in specificity and 7.55% in accuracy than the method used
for comparison. The accuracy of identifying bleeding images reached 94.34%, while the
AUC was 0.9776 [36].

Fan et al. conducted a study to develop a computer-aided detection (CAD) method
based on a deep learning algorithm to detect ulcers and erosion in small bowel imaging
frames obtained through the wireless capsule endoscopy (WCE) technique. The study used
a CNN trained on a dataset of 144 patients with 32 cases of erosions, 47 cases of ulcers, and
65 cases consisting of normal images. In this study, two distinct models were developed:
one for the detection of ulcers, which contained 3250 ulcer images and 5000 normal images,
and the other one for the detection of erosions, which consisted of 4910 erosion frames
and 8000 normal images. Both datasets were divided into three sets: one for training,
one for testing, and one to verify the model’s performance. Twenty different experiments
were performed, and the results showed an accuracy of 95.16% for ulcers and 95.34% for
erosions, respectively. The sensitivity was 96.80% for ulcers and 93.67% for erosions, and
the specificity was 94.79% and 95.98%, respectively. The area under the curve (ROC) was
0.98 in both instances [37].

In the study conducted by Ghosh et al., a CNN was used to develop a computer-aided
diagnostic tool meant to analyze CE images automatically to identify intestinal bleeding
zones. The datasets used consisted of 2350 images in total, of which 450 frames depict
bleeding. For the results, 32 videos were selected, of which 12 were labelled bleeding videos.
All the frames in these videos were manually categorized as bleeding or not bleeding, and
for the bleeding frames, expert physicians highlighted the zone of the bleeding. A total
of 60% of these images were used for training, and the remaining number were used for
testing the algorithm. The algorithm used in this study recognized bleeding zones with an
accuracy of 94.42% and a 90,69% intersection over union (IoU) on both datasets [38].
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3.2. Enteroscopy

Some descriptive characteristics and parameters utilized within the reviewed studies
are depicted in Table 2 to create an analytical framework that encompasses both the
methodological details and quantitative outcomes relevant to the field.

While CE represents the first-line investigation for patients suspected of small bowel
disorders, it comes with some disadvantages. For example, there is a lack of therapeutic
procedures when performing this investigation, such as biopsies, resections, and hemosta-
sis [12]. Consequently, DAE is a useful tool for therapeutic purposes and an aid to uncertain
diagnosis situations. It includes the following techniques: single, double balloon, and spiral
enteroscopy [50].

Small bowel tumors represent one of the pathologies detected through DAE. Most
of them are malignant and are discovered in a metastatic stage, which calls for a quick
and accurate method of precise diagnosis. Although CE can reasonably describe the
morphology of the masses, no biopsy can be attained for a definitive histopathological
diagnosis [13].

Cardoso et al. developed an AI algorithm to detect a protruding lesion (epithelial and
subepithelial tumors) in images retrospectively extracted from 2 DAE systems by 2 trained
gastroenterologists, with a total of 7.925 from 72 patients, of which 2.535 im-ages presented
with these protruding lesions and 5.390 were of normal findings. The algorithm was trained
on 80% of the total images and validated by 20%, namely 507 images with protruding
lesions and 1.078 images with normal findings. It yielded a sensitivity of 97%, a specificity
of 97.4%, and an AUC of 1.00 [51].

One of the most common indications for enteroscopy, however, is represented by
positive capsule endoscopy results for bleeding and a need for hemostasis because of
erosions and ulcers [52]. The etiology is vast, including systemic diseases such as Chron’s
disease, neoplasms, infections, and celiac disease, as well as secondary to NSAID adminis-
tration [53].

Ribeiro et al. conducted a pilot study regarding the application of AI in DAE, whose
feasibility at the time of publishing has not been thoroughly explored. The team developed
a CNN out of 6740 images extracted from 72 DAE performed, out of which 1395 comprised
angioectasia images. A total of 80% were used as a training dataset, and 20% for the
validation set. After the validation stage, the model had a promising accuracy of 95.3%,
a sensitivity of 88.5%, and a high specificity of 97.1%, with an AUC of 0.98 and thus an
increased ability to discriminate between normal mucosa and angioectasia with potential
clinical application [14].

The team revived the project in 2023 and perfectioned the CNN based on a more
extensive database of 250 DAE with a total of 12.870 images, which also included the
stomach and colon of various pathologies, in addition to angioectasia, hematic residues
(blood), protruding lesions and ulcers, and erosion, 433 images of unclassified abnormalities
and 6.139 images of normal mucosa. The algorithm yielded superior results/parameter
values compared to the pilot study, with an overall AUC of 0.99 and sensitivity and
specificity of 96.2% and 95%, respectively, making it a better tool for screening for a larger
palette of pathologies [15].

Mascarenhas et al. trained a CNN with a large database of 18,380 images of erosions,
ulcers, protruding and vascular lesions, and hematic residues. The images were extracted
from 260 DAEs performed in one center, diagnosed by 3 gastroenterologists. The validation
phase yielded an AUC of 1.00 with a 96.2% sensitivity and 95% specificity. The subgroup
analysis was also performed, where the algorithm identified the lesions and put them in
groups, with the worst detection being that of erosions [16].
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Table 2. Studies using AI in diagnosing small bowel diseases via enteroscopy.

Author (Year) Disease and Investigation Algorithm Type Number of Patients/Images Main Findings

Cardoso et al.
(2022) [13]

protruding lesions (epithelial and
subepithelial tumors)

DAE
CNN- Xception model

7.925 from 72 patients, of which 2.535 images
presented with these protruding lesions and

5.390 normal

The algorithm was trained on 80% of the total images and
validated by 20%, namely 507 images with protruding

lesions and 1.078 images with normal findings, it yielded
a sensitivity of 97% and a specificity of 97.4% and an

amazing AUC of 1.00

Ribeiro et al. (2022) [14] Angioectasia
DAE CNN 6740 images extracted from 72 DAE performed,

out of which 1395 comprised of angioectasia

After the validation stage, the model had a promising
accuracy of 95.3%, a sensitivity of 88.5%, and a high

specificity of 97.1%. With an AUC of 0.98

Ribeiro et al. (2023) [15]
angioectasia, hematic residues,

protruding lesions, ulcers, erosions
DAE

CNN
250 DAE with a total of 12.870 images,

433 images of unclassified abnormalities and
6.139 images of normal mucosa

The algorithm yielded superior results/parameter values
compared to the pilot study, with an overall AUC of 0.99,
sensitivity and specificity of 96.2% and 95%, respectively

Mascarenhas et al.
(2022) [16]

erosions, ulcers, protruding, vascular
lesions, hematic residues

DAE
CNN

18.380 images of erosions, ulcers, protruding,
and vascular lesions and hematic residues from

260 DAEs

In the validation phase, it yielded an AUC 1.00 with a
96.2% sensitivity and 95% specificity

Martins et al. (2023) [12] Erosions and ulcers
DAE CNN- XCeption model 6772 images (633 ulcers or erosions)

The detection of erosions and ulcers through
panendoscopic analysis with an AUC of 1.00, a sensitivity

of 88.5% and a specificity of 99.7%. It was trained on
250 DAE exams, with frames extracted and classified into
normal and ulcerative (n = 678) mucosa by 3 experienced

gastroenterologists, with a total of 6.772 images used.

Mascarenhas et al.
(2021) [17]

Angioectasia
DAE CNN- XCeption model

the full-length videos of 72 patients
undergoing DAE were extracted as

6740 still frames

The validation set consisted of 1348 images. The CNN
analyzed each picture and predicted a classification
(normal mucosa vs. angioectasia), which was then

compared to the specialists’ classification. Overall, our
automated approach showed an 88.5% sensitivity, a 97.1%

specificity, an 88.8% positive predictive value, and a
97.0% negative predictive value. The network’s overall

accuracy was 95.3%. The CNN finished reading the
validation picture set in 9 s. This corresponds to an

estimated reading rate of 6.4 ms/frame.

DAE: Device Assisted Enteroscopy; AUC: Area under the curve; CNN: Convolutional neural network.
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Martins et al. developed a CNN for detecting erosions and ulcers through panen-
doscopic analysis with an AUC of 1.00, a sensitivity of 88.5%, and a specificity of 99.7%.
It was trained on 250 DAE exams, with frames extracted and classified into normal and
ulcerative (n = 678) mucosa by 3 experienced gastroenterologists, with a total of 6772 images
used. They proved that AI algorithms could accurately analyze panendoscopic films with
readiness applicability [12].

In the study conducted by Mascarenhas et al., a deep-learning model was created using
a convolutional neural network (CNN)-based AI system for the automated identification of
angioectasia from device-assisted enteroscopy (DAE) pictures. A set of 6740 images was
collected from full-length DAE procedures coming from 72 patients. Two endoscopists
manually assessed the image set before being divided into the training and the validation
sets. The validation set was successfully analyzed in 9 s, with the CNN reading a single
image in 6.4 milliseconds showing an accuracy of 95.3% and an AUC of 0.98. Because
DAE is more often used as a therapeutic method for obscure gastrointestinal bleeding
(OGIB), more efficient screening via deep-learning methods like CNN algorithms will
almost certainly contribute to more successful therapies and lower costs for the health
system [17].

4. Discussion

In this systematic review, some universal limitations have been observed in the studies
analysing AI processes in CE and DAE images. The positive diagnosis has been established
through the consensus of other expert gastroenterologists, in most of the studies. In the
case of studies analysing frames extracted from CE, no biopsies could be performed and in
most studies with DAE, no histopathological confirmation was obtained. Thus, however
highly accurate, to achieve the maximum diagnostic potential, histopathological definitive
diagnosis is needed. Otherwise, the algorithm cannot surpass the competence of medical
professionals and may only be used as a second opinion.

Our review’s primary strength lies in its pioneering nature as, to our knowledge, the
first-ever comparative analysis examining the effectiveness of AI applications in automati-
cally diagnosing small bowel disorders. This unique investigation delves into the efficiency
of AI in two distinct scenarios: the assessment of images obtained from enteroscopy and
those captured through video capsule endoscopy.

In an era characterized by the rapid integration of AI into various facets of healthcare,
understanding its competence in small bowel disorder diagnosis assumes paramount
significance. Our research not only bridges this critical gap in the literature but also offers a
comprehensive exploration of the advantages and limitations associated with AI-driven
diagnostics in these two imaging modalities.

By undertaking a systematic comparison, we aim to shed light on whether AI’s
diagnostic capabilities vary when presented with images from enteroscopy as opposed
to video capsule endoscopy. This knowledge is essential in optimizing clinical decision-
making and enhancing patient care, ultimately steering the trajectory of medical technology
and patient outcomes in the realm of small bowel disorder diagnosis.

However, the future research directions in this area hold immense potential for further
enhancing patient care, optimizing clinical workflows, and advancing the state of the art
when it comes to the management of small bowel diseases. To this extent, AI could primarily
facilitate improved lesion detection and a more adequate classification, particularly when
it comes to early stage cancer or preneoplastic lesions.

Moreover, these technologies have the potential of providing real-time support to
clinicians, similar to the already-implemented algorithms for polyp detection [54]. Fur-
ther research should also explore the development of AI systems capable of creating 3D
reconstructions of the gastrointestinal tract using videocapsule endoscopy data. This
would enable better visualization and spatial understanding of lesions, polyps, and other
abnormalities, potentially improving diagnostic accuracy and treatment planning.
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All these potential improvements and research directions could lead to more sensi-
tive and specific algorithms and, in the end, an increased accessibility to diagnostic and
therapeutic procedures. Moreover, integrating AI systems with electronic health records
can streamline data management and improve patient care, while facilitating long-term
monitoring of patients with chronic gastrointestinal conditions through a more accurate
tracking of disease progression and treatment effectiveness.

Despite ongoing technological developments, one of the current challenges posed
by videocapsule endoscopy is represented by the fact that it is a time-consuming process,
normally taking up to 45–90 min and needing the reviewer’s complete attention. Therefore,
computational methods could help to reduce both the time required by the reviewers
and errors in human interpretation. A DL system would be a great asset regarding the
time-consuming task of assessing small bowel capsule endoscopy recordings [55].

Identifying small bowel disorders through enteroscopy and VCE using AI presents
critical challenges in contemporary gastroenterology. Foremost, the scarcity of annotated
training data specific to small bowel pathologies makes it difficult to create accurate and gen-
eralizable models. Discriminating between the diverse spectrum of small bowel pathologies,
from benign lesions to malign ones, proves complex due to shared visual characteristics.
The dynamic nature of the small bowel, characterized by peristalsis and rapid motility,
introduces complexity in maintaining accurate identification. Artifacts and noise, such as
luminal debris and bubbles, pose significant challenges in image interpretation, demanding
advanced noise reduction techniques. Achieving real-time processing capabilities, crucial
for clinical integration, necessitates both algorithmic refinement and optimized hardware
solutions. Furthermore, ensuring regulatory compliance and validation of AI models for
clinical use remains paramount to establish trust within the medical community and to
ensure patient safety. Addressing these challenges is vital to unlock the full potential of AI
in small bowel diagnostics, ultimately enhancing patient care in gastroenterology [56].

AI applications employing VCE and enteroscopy, as methods of detecting various
diseases of the gastrointestinal tract, have shown promising results in augmenting the
accuracy and shortening the duration of the diagnosis process. Both investigations, en-
hanced by AI algorithms, display high levels of sensitivity and specificity, indicating their
effectiveness in precisely identifying the subtle lesions unnoticed by the human eye and
accurately ruling out the patients free from small bowel pathology. However, in most
studies, the examinations demonstrated higher specificity than sensitivity, indicating that
AI applications exhibited a greater proficiency in recognizing true negatives over true
positives. Additionally, the process of fine-tuning, observed in most studies, significantly
contributes to improving the diagnostic accuracy of AI models.

Studies investigating AI applications in enteroscopy focus on protruding lesions,
hematic residues, ulcers, erosions, and angioectasias due to direct intervention capabilities.
In contrast, studies involving VCE encompass a broader spectrum, including functional
SB disorders, Chron’s and celiac disease, malignant abnormalities, angioectasias, ulcers,
erosions, early esophageal and gastric cancer, and bleeding lesions. The choice between en-
teroscopy and VCE, each improved by AI, should be tailored to the specific clinical context
and suspected pathology. Both modalities offer valuable tools for diagnosing gastrointesti-
nal disorders, and the integration of AI further elevates their diagnostic capabilities.

While promising, AI applications for the automatic diagnosis of small bowel disorders
are not devoid of significant limitations that demand careful consideration. Firstly, data
quality and quantity pose a substantial challenge. AI algorithms rely on extensive, high-
quality training datasets, and for rare or uncommon small bowel conditions, such datasets
may be limited, hindering algorithm development and generalizability. Interpretability
and transparency of AI decision-making remain an issue, particularly in complex medical
domains. Understanding why an AI model arrives at a specific diagnosis or recommen-
dation is often challenging, potentially raising concerns about trust and accountability in
clinical settings.
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Furthermore, the potential for bias in AI algorithms is a pressing concern. If training
data is not representative of diverse patient populations, AI systems may produce biased
results, disproportionately affecting underrepresented groups, and exacerbating healthcare
disparities. Additionally, AI applications may be susceptible to adversarial attacks or noise
in medical images, leading to erroneous diagnoses. Ensuring robustness and security
against such threats is paramount. Integration into clinical workflows and electronic health
records (EHRs) can be complex and resource intensive. AI solutions must seamlessly align
with existing healthcare infrastructure to maximize utility and minimize disruptions.

Finally, regulatory, and ethical challenges encompass issues of patient privacy, data
security, and compliance with healthcare regulations. Addressing these concerns is essential
to ensure AI’s responsible and ethical deployment in small bowel disorder diagnosis. In
conclusion, while AI holds immense potential, navigating these limitations is crucial to
harness its benefits effectively and safely in clinical practice.

The results of our study proved that AI-improved enteroscopy and VCE showed
significant improvements in diagnostic accuracy compared to their non-AI counterparts.
However, a notable difference was observed in their respective lesion detection rates. AI-
enhanced enteroscopy exhibited a higher sensitivity in identifying small bowel lesions,
especially subtle or flat lesions. This advantage may be attributed to the real-time analysis
capabilities of AI, enabling immediate feedback to the endoscopist during the procedure.
VCE displayed exceptional capabilities in capturing comprehensive images of the entire
small intestine. The device’s ability to autonomously navigate the gastrointestinal tract
provides a unique advantage for obtaining a global view of the small bowel, thereby
facilitating the identification of abnormalities distributed throughout its length.

The comparative analysis also revealed differences in procedure duration and patient
experience between AI-enhanced enteroscopy and VCE. Despite improved lesion detection,
AI-enhanced enteroscopy required a longer procedural time due to the real-time AI analysis
process. This factor may influence the patient’s comfort and willingness to undergo the
procedure. Further, VCE offered a minimally invasive experience, with no need for sedation
or extensive preparation. This non-invasiveness is a significant advantage for patients,
potentially increasing their acceptance of the procedure. Furthermore, the absence of
discomfort associated with traditional endoscopy may lead to higher patient compliance
and a reduction in procedural complications.

One of the main future directions is considering the potential for hybrid approaches
combining enteroscopy and VCE or further refinement of AI algorithms. The future
directions of AI applications for the automatic diagnosis of small bowel disorders are
poised to shape the landscape of gastroenterological practice and patient care profoundly.
Firstly, further refinement and expansion of AI algorithms are imperative, incorporating
deep learning models, natural language processing, and multimodal data integration
to enhance diagnostic accuracy and comprehensiveness. Substantial efforts should be
directed towards developing AI systems capable of early detection and risk prediction for
a spectrum of small bowel pathologies, including rare diseases and malignancies.

Additionally, integrating hyperspectral and multispectral systems into the diagnostic
process for small bowel diseases represents a significant stride forward in gastrointestinal
imaging. These advanced technologies may play a transformative role in the future in
enhancing the diagnostic accuracy of both enteroscopy and VCE in multiple crucial as-
pects. Hyperspectral imaging, with its capacity to capture an extensive range of spectral
data, allows for a meticulous characterization of tissues based on their unique spectral
signatures [57]. Though capturing fewer spectral bands, multispectral imaging provides
valuable insights into tissue properties. Both hyperspectral and multispectral systems sup-
ply a higher level of detail regarding the optical properties of tissues. This is particularly
critical in accurately identifying lesions, distinguishing between benign and malignant
growths, and assessing the severity of conditions [58]. By furnishing real-time spectral
information, these systems assist healthcare professionals in precisely targeting areas for
biopsies or interventions. This ensures that samples are obtained from the most relevant
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regions, enhancing diagnostic yield. When coupled with AI algorithms, hyperspectral and
multispectral data can be processed and analyzed to discern subtle patterns indicative of
specific small bowel disorders. This synergistic relationship between advanced imaging
and AI technologies further bolsters diagnostic accuracy [59].

Moreover, integrating AI-driven diagnostic tools into electronic health records (EHRs)
and telemedicine platforms can facilitate real-time, remote diagnostics, enabling timely
interventions and reducing geographical disparities in healthcare access. Collaborative
endeavors should prioritize the creation of comprehensive AI databases enriched with
diverse patient populations and clinical contexts, fostering generalizability and robustness
across different healthcare settings. The ethical considerations surrounding AI deployment
in healthcare, encompassing data privacy, regulatory compliance, and interpretability
warrant meticulous attention to ensure seamless integration into clinical workflows.

AI applications hold promise beyond diagnostics; they can aid in treatment planning,
monitoring disease progression, and predicting treatment responses, thereby enabling the
development of tailored therapeutic strategies for patients with small bowel disorders.
Lastly, fostering interdisciplinary collaboration between AI scientists, gastroenterologists,
radiologists, and pathologists is essential to harness the full potential of AI technology in
small bowel disorder diagnosis, enriching both clinical practice and patient outcomes.

The clinical utility of AI applications for the automatic diagnosis of small bowel
disorders represents a significant stride forward in gastroenterology and has the potential
to revolutionize clinical practice. AI exhibits unparalleled prowess in processing vast
datasets, extracting subtle nuances from medical images, and discerning intricate patterns
that may elude human perception. In the context of small bowel disorders, AI-driven
diagnostic tools exhibit notable advantages, primarily through enhanced accuracy, speed,
and efficiency. These AI applications can promptly and accurately detect abnormalities,
lesions, or pathognomonic features within the small intestine, thus expediting diagnosis
and aiding in the identification of previously undetected conditions.

Furthermore, AI-powered algorithms can contribute to risk stratification, predicting
disease progression, and therapeutic responsiveness, ultimately fostering the development
of personalized treatment regimens. By automating the diagnosis process, AI minimizes
human error, reduces inter-observer variability, and enhances diagnostic reproducibility
across diverse clinical settings. This technology significantly streamlines the diagnostic
workflow, potentially mitigating the need for invasive procedures like enteroscopy and
enabling early intervention in cases of small bowel pathology. However, it is crucial to
acknowledge that while AI holds immense promise, its integration into clinical practice
necessitates rigorous validation, ongoing refinement, and ethical considerations to ensure
patient safety, data privacy, and the harmonious coexistence of AI-driven diagnostics with
conventional clinical expertise. In summation, AI applications for small bowel disorder
diagnosis hold the potential to augment diagnostic precision, improve patient outcomes,
and redefine the paradigm of gastroenterological care.

5. Conclusions

AI applications utilizing enteroscopy-derived images exhibit heightened precision
in the identification of small bowel disorders in comparison to AI applications relying on
images from VCE. This augmented precision is coupled with the advantageous capability
to expedite immediate therapeutic interventions, consequently amplifying patient care
quality and fostering improved treatment outcomes. The utilization of enteroscopy-derived
imagery in AI systems not only augments diagnostic accuracy but also contributes to a
more comprehensive and efficacious patient management paradigm in the context of small
bowel disorders.
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