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Abstract: Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated
by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immu-
nity, metabolism, and growth. NRs represent attractive and valid targets for the management and
treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural
products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied
member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging,
obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that
resembles NRs’ endogenous ligands. Herein, we present a review of the literature on UA’s effect
on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA
exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable
anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumu-
lation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver
fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation.
Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such
as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative
effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein,
for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
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1. Introduction

Encoded by 48 genes, nuclear receptors (NRs) are transcription factors that are catego-
rized into seven subfamilies [1]. They include the receptors for steroid hormones, lipophilic
vitamins, sterols, and bile acids and are located in the cytoplasm or the nucleus [2]. NRs
play a paramount role in orchestrating diverse biological processes, including metabolism,
development, growth, inflammation, and reproduction [1–7]. Disturbance of NR func-
tion may lead to a vast array of illnesses; hence, they are deemed attractive targets that
can be modulated by small hydrophobic chemical entities [1,2,5,8,9]. Some NRs have
well-characterized ligands, which are hydrophobic small molecules [5]. Others are still
considered orphan receptors with unknown endogenous or synthetic ligands [2,10–13].

Sequences of NRs share considerable homology and conserved structures, which are
divided into six subregions, as shown in Figure 1 [2,14]. The N-terminal region involves
A/B subregions and has a ligand-independent activation function (AF1). The N-terminal
is the most divergent among different NRs and is connected to the most conserved C
region. The latter represents the DNA binding domain (DBD) that contains two zinc
fingers coordinated with cysteines and other basic amino acids. The linker between the
C and E region is a flexible, short, and less conservative hinge region, designated as the
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D region [1,2,14]. The E region encompasses the ligand binding domain (LBD), with a
hydrophobic binding site for endogenous ligands and a ligand-dependent activation factor
(AF-2). This is followed by the F region, with an unidentified function, towards the variable
C-terminal [2,15].
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Upon ligand binding, conformational changes occur to regulate further transcriptional
activity. This happens through recruiting a specific cofactor and binding to a specific DNA-
response element (RE) in the corresponding target gene [2]. Imitating the endogenous
hydrophobic ligand with a synthetic one that can interact with the LBD is a common
approach to modulating NRs’ pharmacological pathways [14,16,17]. The action of ligands
is more complicated than it seems, as it occurs in a tissue-specific manner, i.e., the cellular
context and type of the recruited cofactor determines the resulting activity. This led to the
generation of the term selective modulator of NRs instead of classic agonist–antagonist or
inverse agonist terms.

One of the most explicit examples is the variable pharmacological effect of the widely
used estrogen receptor (ERα; NR3A1) selective modulator, raloxifene, for the treatment
of breast cancer. Raloxifene antagonizes ERα in breast and uterine tissue, although it is
an ERα agonist in bone tissue, which makes it useful for increasing bone density. This
differential effect of raloxifene is ascribed to the activation of distinct cofactors in different
tissues [2,5]. The concept that a drug can elicit opposing pharmacodynamic activities in
different tissues supports the urgent necessity to find a selective modulator of NRs. Finding
therapeutically beneficial vitamin D receptors (VDR, NR1I1) modulators without incidence
of hypercalcemia is another example.

NRs may work as homodimers like steroid receptors, including mineralocorticoid
receptors (MRs; NR3C2), glucocorticoid receptors (GRs; NR3C1), and the receptors for male
and female sex hormones, or may function as heterodimers with an obligatory partner,
the retinoic acid X receptor α (RXRα; NR2B1), similar to metabolic NRs [18,19]. Uniquely,
retinoic acid receptor-related orphan receptors (RORα; NR1F1, RORβ; NR1F2, and RORγ,
NR1F3) can function as monomers or homodimers [20].

Many FDA-approved drugs are derived from natural sources, especially in the cancer
chemoprevention field [21–23]. Pentacyclic triterpenes (PTs) are bioactive plant secondary
metabolites with a multitude of bio-pertinent effects [24–30]. They function to protect
plants against pathogens and water loss, thus characterized by their lipophilic scaffold [31].
Researchers have linked them to NR modulation, owing to their structural similarity to
the endogenous lipophilic NR modulators [32]. From a chemical perspective, PTs involve
mainly four chemical types: oleanane, ursane, lupane, and friedelane, as shown below [24].

To date, many natural products have been reported to possess biological activities due
to NR modulation [14–16,33–36]. Found in the resin of the guggul plant, guggulsterone is
a naturally occurring promiscuous NR modulator with chemoprevention properties [37].
Diterpenoid (−)-acanthoic acid, from the roots of Rollinia pittieri, is a potent LXRα agonist
with EC50 0.18 µM [38]. The tetracyclic triterpenoid polycarpol, from Unonopsis glaucopetala,
is a more potent LXRα agonist with EC50 0.03 µM [38]. This may be attributed to the higher
similarity of triterpenoids to oxysterols, the endogenous LXRα agonists, than diterpenoids.
Theonellasterol, a marine-derived sterol, was identified as an FXR antagonist [39].
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As anticipated, PTs proved to be prominent NRs ligands, eliciting a multitude of bioac-
tivities due to their high structural similarity to the lipophilic endogenous NRs ligands. A
lupane-type PT, betulinic acid, ameliorated non-alcoholic steatohepatitis (NASH) in vivo,
via FXR activation [40]. Celastrol, a distinguished friedelane-type PT, is a Nur77 (NR4A1)
nuclear receptor with a potential clinical application in Alzheimer’s therapy [41,42]. Notably,
oleanolic acid (OA) is one of the most studied oleanane-type PTs with respect to NR modu-
lation, with a multitude of bioactivities against NASH [43–45], metabolic disorders [45–47],
and atherosclerosis [48] via different NR pathways that were recently reviewed [49]. Hedrag-
onic acid, an oleanane-type PT isolated from Celastrus orbicalatus, was identified as a hep-
atoprotective agent against acetaminophen-induced injury through selective FXR agonism.
Owing to its high affinity, hedragonic acid was co-crystalized with FXRα LBD (Protein Data
Bank ID: 5WZX) [50]. Its analog, hederagenin, promoted FXR mRNA and protein expression
with a potential role against colon cancer [51,52]. The chemical structures of UA and other
mentioned PTs which modulate NRs were shown in Figure 2.
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Ursolic acid (UA), 3-beta-hydroxyurs-12-en-28-oic acid, is one of the most studied
ursane-type PTs due to its safety and diverse bioactivities. UA is orally and topically safe
in rodents and humans. UA LD50 in rodents is quite high: 637 mg/kg for intraperitoneal
injection and 8330 mg/kg for oral administration, indicating its high safety margin [53].
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UA is abundant in different plant species, including many types of food, medicinal and aro-
matic plants, especially from the Lamiaceae, Rubiaceae, Araliaceae, Asteraceae, Ericaceae,
Saxifragaceae, Verbenaceae, Rosaceae, and Myrtaceae families. Apple and grape skins,
marjoram, rosemary, holy basil, and oregano leaves are rich sources of UA [23,54,55].

UA modulates different pharmacological pathways, leading to multifaceted health ben-
efits and the prevention of chronic diseases [23,55,56]. In fact, UA demonstrated antiprolifer-
ative effects against hepatocellular carcinoma [57,58], lung cancer [59,60], leukemia [61–63],
breast cancer [64,65], prostate and urogenital cancers [66,67], and cervical cancer [68,69].
Other than its vast anticancer potential, UA was proved to possess ubiquitous biological
activities against metabolic diseases, including obesity [70–73], insulin resistance [74–77],
hyperlipidemia [72,73,78], and atherosclerosis [79], in addition to anti-inflammatory, anti-
oxidant, and anti-aging properties, through interfering with different pharmacological
pathways, including prominent NR modulation [55,80,81].

Provoked by our interest in triterpenes chemistry and bioactivity [29,30,49,82,83] and
also in targeting NRs, we systemically compiled all previous studies linking UA to NR mod-
ulation. We emphasized the effect of UA on each NR and dissected the resulting bioactivity
against metabolic disorders, autoimmune-induced inflammations, and cancers. We focused
on only UA as a parent compound, since we did not find any report on its semi-derivatives
activity towards NRs. Furthermore, we briefly explained the bioassay experiments used
for testing UA. De facto, there are various perspectives on UA highlighting its ubiquitous
bioactivities [23,31,56,70,80,84]; however, this is the first one to discuss UA activities from
NRs modulation perspective (Figure 3).
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2. Methodology

We retrieved the literature from the Web of Science, PubMed, and Google Scholar
databases, using the keywords “ursolic acid” and “nuclear receptors” to perform a com-
prehensive search. This search was performed without publication year limitations, since
there was no previously reported review article on the same topic. The outcome was ap-
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proximately 100 research articles, review articles, and patents, of which 51 were considered
for this review. The remaining articles were not extensively investigated as they focused on
other types of receptors or other natural products.

3. Ursolic Acid Pharmacodynamics towards NRs
3.1. Modulation of Peroxisome-Proliferator-Activated Receptors (PPARs)

PPARs involve three subtypes (PPARα; NR1C1, PPARβ; NR1C2, and PPARγ; NR1C3)
that control insulin sensitivity, resistance, and lipid homeostasis, making them valid tar-
gets for alleviating metabolic syndrome, hyperlipidemia, and diabetes [85–88]. PPARα
reduces the formation of blood lipids and plays a role in cancer [89], and PPARβ also
plays a role in managing blood lipid levels and insulin sensitivity [90,91]. PPARγ controls
insulin sensitivity, adipogenesis, neuroprotection [4,92], and inflammation [93]. Fibrates
are PPARα modulators used for hyperlipidemia therapy and are represented by fenofibrate
and pemafibrate, whereas thiazolidinediones, such as pioglitazone and rosiglitazone, are
used for the treatment of diabetes through PPARγ agonism [14,94]. Among different NRs,
the UA effect on PPARs is the most explored [95].

3.1.1. UA Effect on PPARα

The first report on PT modulation of PPARα and their potential pharmaceutical and
cosmeceutical role in dermatology was released in 2005 [96]. Concomitantly, in 2007,
Lim et al. showed that topical application of UA to hairless adult mice models enhanced
keratinocyte differentiation and led toa subsequent recovery of the epidermal permeability
barrier. This effect was clearly observed by examining a biopsy specimen using a light
microscope and an electron microscope. The enhanced recovery was hypothesized to
be due to PPARα activation. This was validated by immunoblot analysis of PPARα and
the keratinocyte differentiation markers involucrin, loricrin, and filaggrin, in human skin
keratinocyte cell line HaCaT cells. The test confirmed that UA treatment upregulated the
tested protein levels, leading to accelerated recovery. It is worth noting that OA exhibited a
similar therapeutic effect [97].

Interestingly, UA’s agonistic effect on PPARα played a pivotal role in its cytotoxic
activity against skin cancer through the AMPK pathway. In the mouse squamous car-
cinoma model, Ca3/7, UA enhanced AMPK phosphorylation at cytotoxic levels, which
was reversed by using an AMPK small molecule inhibitor or by AMPK knockdown. As
PPARα upregulation has a partial role in skin cancer therapy, the authors investigated this
mechanism for UA [89]. Indeed, using the PPARα antagonist GW6471, or the less potent
MK886, for one hour prior to adding UA, elevated IC50 values of the latter against Ca3/7
or mouse skin papilloma cells MT1/2, as shown by MTT assay. This suggests that the UA
cytotoxic effect is partially mediated by PPARα activation [98].

Likewise, Jia et al. confirmed UA-induced activation of PPARα in terms of alleviating
hypertriglyceridemia. Having said that, they could not confirm that UA directly binds
to PPARα LBD using Biacore surface plasmon resonance (SPR) analysis. However, UA
treatment remarkably promoted PPARα mRNA concentration in cultured hepatocytes
(HepG2), as shown by qPCR. A luciferase reporter gene assay in the same cells revealed that
UA is a PPARα activity upregulator. Furthermore, a 20 µM concentration of UA enhanced
PPARα binding to its response element in the responsive genes by 46% and promoted
PPARα transactivation consequently. In a dose-dependent manner, UA treatment was
significantly proved to have significant hypolipidemic effects by reducing intracellular
triglycerides (TGL) and cholesterol accumulation in HepG2 cells. This was accompanied by
significant upregulation of the fatty acid transport protein 4 (FATP4) gene in both mRNA
and protein levels; FATP4 is a major fatty acid transporter in the liver and a known target
gene PPARα. The authors emphasized that UA promotes PPARα transactivation by indirect
mechanisms, other than simply binding to its LBD [99].

The same research group moved forward with in vivo validation of their previous
in vitro results. They found out that UA can regulate lipid and glucose metabolism in



Biomedicines 2023, 11, 2845 6 of 19

high-fat diet (HFD)-fed mice. UA intake reduced lipid accumulation in adipose tissues and
the liver, while increasing muscle mass. Biochemical analysis confirmed that plasma levels
of TGL and low- density lipoprotein (LDL) levels were reduced in contrast to high-density
lipoprotein (HDL) levels. This was accompanied by improved glucose tolerance and insulin
sensitivity. In mice tissue, UA treatment resulted in the over-expression of mRNA and
protein levels of PPARα, the activation of its responsive genes that regulate fatty acids
uptake and β-oxidation, and the suppression of lipogenic genes [100]. Additionally, UA
induced the hepatic expression of the autophagy marker LC3-II, which could partially
participate in the hypoglycemic and hypolipidemic role of UA in HFD-fed mice [101].

The anti-hyperlipidemic effect of UA (25 mg/kg) or artesunate (25 mg/kg) alone or
in combination (12.5 + 12.5 mg/kg) was assessed in a New Zealand rabbit model on a
Western-style diet. UA administration for a couple of months significantly reduced TGL
and cholesterol levels in a comparable manner to atorvastatin without a significant effect
on LDL level, which was efficiently lowered in the case of UA/artesunate combination. UA
alone alleviated hepatocyte steatosis; meanwhile, the combination completely prevented
it in the same way as atorvastatin, as displayed by histopathological examination using
hematoxylin and eosin (H&E) stains [102]. In liver tissue, UA alone or in combination
upregulated mRNA expression of PPARα, which is in agreement with previous studies.

The potential role of UA in NASH therapy was further investigated by the Li group
using the obese NASH Sprague Dawley rat model. UA administration significantly re-
versed HFD-induced lipid accumulation, NASH, and liver injury and reduced serum ALT,
AST, TGL, FFA, and LDL levels in a dose-dependent manner, as revealed by hepatocyte
morphologic, histological, and serum biochemical examination. In the same context, UA
promoted mRNA and protein levels of PPARα whose knockdown interrupted UA-induced
hepatoprotective effect. UA reduced the expression of hepatic inflammatory cytokines,
including different interleukins and the tumor necrosis factor α (TNFα). In this model,
UA did not affect the activity of PPARγ, farnesoid X receptor (FXR), or liver X receptor
(LXR) [103]. Meanwhile, the authors studied the beneficial effect of UA in the human hep-
atic cell line (HL-7702) model, where it stimulates PPARα mRNA, showing an anti-steatosis
effect that was interrupted by PPARα knocking down [103].

Another research group studied the PPARα upregulation effect on alleviating periph-
eral inflammation and inflammatory hyperalgesia in obese animals. Following the injection
of carrageenan into obese Sprague Dawley rats, systemic UA administration mitigated
thermal hyperalgesia and paw edema, compared with the control group. At the molecular
level, UA lowered the expression of inflammatory mediators, including IL-1β, TNF-α, and
NF-κB P65 in the spinal cord of the rats, as shown by the Western blot test. Carrageenan
injection into rats’ paws significantly reduced spinal cord PPARα levels in the control HFD
groups prior to UA administration, which reversed the process and restored PPARα levels.
This means that UA could restore PPARα levels in obese rats’ spinal cords and reduce the
expression of inflammatory mediators due to peripheral inflammatory stimulation [104].

UA-induced activation of PPARα is not only beneficial in skin diseases and metabolic
disorders, but also in right ventricle hypertrophy (RVH) and remodeling [105]. In a Sprague
Dawley monocrotaline-induced RV dysfunction rat model, UA significantly reduced RVH
and RV fibrosis, promoted ventricle function, and lowered the increase in cardiomyocyte
size and mRNA level of hypertrophic genes and apoptotic cells. From a metabolic aspect,
monocrotaline injection remarkably decreased PPARα and PPARγ gene expression; however,
UA pretreatment only reversed the abnormal PPARα expression in RV tissue. This opens the
way for harnessing UA in the alleviation of RV disorders through the PPARα pathway [106].

3.1.2. UA Effect on PPARγ

The UA effect on PPARγ was described in different aspects of biological activities.
PPARγ agonism is well-known to alleviate inflammations in asthmatic animal models [107].
In the BALB/c mice model of allergic bronchial asthma facing methacholine challenge,
UA nebulization mitigated methacholine-induced airway hypersensitivity and alleviated
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airway inflammation. In the ovalbumin-challenged asthma model, ursolic acid (20 mg/kg)
reduced eosinophilia bronchoalveolar lavage fluid, neutrophils, and eosinophils, within
peripheral blood mononuclear cells (PBMC). Furthermore, it suppressed cytokine, IL-5,
IL-13, and IL-17 release, and reduced the level of anti-ovalbumin IgE, in comparison to
untreated cells. The authors showed that UA significantly upregulated PPARγ mRNA
expression in lung tissue. PPARγ activation was further validated in EL4 T cells and RAW
264.7 macrophages, via qPCR and Western blotting [108].

Wang et al. explored UA neuroprotection effects through the PPARγ pathway in a
model of male Sprague Dawley rats with middle cerebral artery occlusion and reperfusion.
UA treatment improved the neurological deficit score, promoted the number of intact
healthy neurons, and minimized the infarct size compared to the control animals in a dose-
dependent manner. This is accompanied by the upregulation of PPARγ, the downregulation
of the inflammatory mediators, matrix metalloproteinase-2/9 (MMP2 and MMP9), the in-
crement of the anti-inflammatory factor tissue inhibitor matrix metalloproteinase (1TIMP1),
and the interruption of MAPK signaling pathways in brain tissue, as revealed by Western
blot and qRT-PCR. Hence, UA can serve as a neuroprotective therapeutic agent, acting via
PPARγ agonism, and optimizing the metalloprotease/anti-metalloprotease balance [109].

Another confirmatory report on UA anti-inflammatory activity in the central nervous
system (CNS) via PPARγ activation has been recently published. UA enhanced the pheno-
typic switch of BV2 cells (murine microglia) from M1 polarization, the pro-inflammatory, to
M2 polarization, the anti-inflammatory, through the promotion of PPARγ protein expression.
Meanwhile, PPARγ activation resulted in the suppression of MMP2 and MMP9 secretion
and the increment of 1TIMP1 secretion, which supports the previous results [109]. Notably,
those effects were not observed in the case of the co-addition of UA and the potent selective
PPARγ antagonist GW9662. In a word, UA protects against neuro-inflammation through
the PPARγ pathway, opening the way for its application in ischemic stroke therapy [110].

A potential dual role of UA in the treatment of multiple sclerosis (MS) through im-
munomodulation and neuroregeneration via PPARγ agonism was disclosed by
Zhang et al. [111]. In MS mice model using experimental autoimmune encephalomyelitis
(EAE), a 25 mg/kg/d of UA reduced CNS inflammation and demyelination; furthermore,
in Th1- and Th17-polarizing cultures, UA reduced their differentiation, implying an im-
munomodulatory effect. At the chronic stage of EAE, UA intake not only hinders further
spinal cord myelin damage, but also supports myelin recovery, and protects neurons
and axons by promoting oligodendrocyte progenitor cell maturation in CNS lesions. The
remyelination-enhancer effect was consistent incuprizone-induced demyelination model in
a completely PPARγ-agonistic pathway that disappears incase of PPARγ knockout. In an
ex vivo model of lysophosphatidylcholine (LPC)-induced demyelination in organotypic
cerebellar slices, UA reduced the expression of inflammatory factors and upregulated
anti-inflammatory cytokines and neurotrophins, especially mRNA and the protein level
of ciliary neurotrophic factor (CNTF), which, in turn, promoted remyelination. CNTF
expression was significantly promoted in astrocytes by UA, and this induction was highly
opposed by the PPARγ antagonist GW-9662 [111].

Collectively, UA has a highly promising PPARγ-agonistic character that can be em-
ployed for the management of a multitude of diseases, including bronchial asthma, CNS
ischemia, and neuro-inflammatory diseases such as MS. Table 1 summarizes the mentioned
effects of UA on PPARs and the other NRs in this study and the related bioactivity.
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Table 1. Summary of ursolic acid (UA) pharmacodynamic effect on nuclear receptors (NRs) and the
resulting corresponding therapeutic effect.

Nuclear Receptor Type, UA
Pharmacodynamic Effect Pathology Type of Study

PPARα (NR1C1), agonist

- Epidermal permeability
barrier malfunction

In vivo, hairless adult mice [97]

- Skin cancer In vitro, Ca3/7 [98]

- Hyperlipidemia
In vitro, HepG2 cells [99] and in vivo, HFD fed
mice and New Zealand rabbit model on a
Western-style diet [101,102]

- NASH In vitro, HL-7702 and in vivo, obese NASH
Sprague Dawley rats [103]

- Peripheral inflammation
and inflammatory
hyperalgesia

In vivo, carrageenan-induced paw edema in
obese Sprague Dawley rats [104]

- Right ventricle hypertrophy
(RVH)

In vivo, Sprague Dawley monocrotaline-induced
RV dysfunction rats [106]

PPARγ (NR1C3), agonist

- Bronchial asthma In vivo, BALB/c mice model [108]

- Neural inflammation and
cerebral ischemia

In vitro, BV2 cells [110] and in vivo, male
Sprague Dawley rats with middle cerebral artery
occlusion and reperfusion [109]

- Multiple sclerosis (MS) In vivo, EAE mice and ex vivo, LPC-induced
demyelination mice [111]

LXRα (NR1H3), antagonist

- Hepatic lipid accumulation
and NASH

In vitro, 3T3-L1 [112,113] and in vivo, C57BL/6
HFD-mice [113]

- Valproate-induced hepatic
steatosis In vitro, HepaRG cells [113]

PXR (NR1I2)/CAR (NR1I3), antagonist
- Rifampicin-induced

hepatic steatosis In vitro, HepaRG cells [113,114]

RORγ (NR1F3), antagonist/
inverse agonist

- Autoimmune encephalitis In vivo, EAE mice [115]

- Autoimmune arthritis In vivo, collagen-induced autoimmune
arthritis [116]

- Breast and prostate cancer In vitro, HCC70 cells for breast cancer, C4-2B,
and 22Rv1 cells for prostate cancer [117]

FXRα (NR1H4), agonist - NASH In vivo, rats with alcoholic liver injury

3.2. Modulation of Liver X Receptors (LXRs)

The hydrophobic oxysterols are the endogenous ligands of LXRs, which have two sub-
types (LXRα; NR1H3 and LXRβ; NR1H2). Both have shared approximately 70% homology
with PPARs. They play a paramount role in lipid and glucose homeostasis, atherosclerosis,
and NASH development by regulating hepatic de novo lipogenesis [118–120]. Activation
of LXRα transactivates hepatic lipogenic genes and LXRα is found to be upregulated in the
case of non-alcoholic fatty liver disease (NAFLD); thus, LXR antagonists might be useful
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for NASH therapy [121,122]. On the contrary, LXRα agonists alleviate the atherosclerotic
effect, which is accompanied by severe adverse effects such as hepatic steatosis; this hinders
the development of the potent LXRα agonist T090.

Kuding tea or Ku-Ding-Cha leaves are mainly from Ilex latifolia Thunb and Ilex kud-
ingcha C.J. Tseng, of the family Aquifoliaceae. This bitter-tasting tea contains high amounts
of ursolic acid and has been widely used in China for more than 2000 years as a healthy
beverage for the management of obesity, cardiovascular disease, hypertension, and hy-
perlipidemia [123]. Fan et al. explored the mechanism of action of Kuding tea alcoholic
extract [112]. In cell culture, it could interrupt the later stages of 3T3-L1 adipocyte differ-
entiation. Indeed, in the high-fat diet C57BL/6 mice model, the extract reduced weight
gain, blood glucose level, and lipid accumulation in hepatocytes. The authors found that
the resulting benefits were partially attributed to LXR antagonism. However, they did not
figure out which components in the extract were responsible for the activity.

Later on, Lin et al. identified UA as an LXRα antagonist, in a similar fashion to
its oleanane-type analog OA [113,124]. In a dose-dependent manner, UA opposed T090-
induced transactivation of LXRα in human hepatocarcinoma cells, as shown by a luciferase
reporter assay using an LX response element and SREBP-1c promoter. Consistently, co-
treatment with UA attenuated T090-inducedupregulation of LXRα lipogenic target genes,
including SREBP-1c, SCD, and FAS. Microscopic examination of Oil Red O stained hepa-
tocytes showed a reduction in TGL and cholesterol accumulation by UA. To validate the
present data, the authors went through further in vivo tests using male C57BL/6 mice.
Histopathologic examination of the mice liver section, using H&E staining and Oil Red
O staining, showed elevated lipid and TG accumulation accompanied by microsteatosis
due to T090. This was significantly reversed by the co-administration of UA. In mice
hepatocytes, UA showed a similar downregulation effect on lipogenic genesto that in
human hepatocytes [113].

Molecular docking calculations of UA and T090 into the LXRα ligand binding site
(Protein Data Bank ID:1UHL) [125] using the CDOCKER module of Discovery Studio (DS)
revealed useful theoretical information on the potential binding pattern. The CDOCKER
binding energy of T090, the co-crystalized ligand, was −45.7965 kcal/mol, whereas UA
also fitted snugly in the same hydrophobic pocket, with a comparable energy parameter of
−37.5211 kcal/mol, reflecting an optimal interaction. UA displayed strong hydrophobic
interactions with Phe326, Phe257, Leu331, Trp443, Leu439, Phe254, and Ala261, with a
different binding mode from T090.

UA activity was assessed in human intestinal cells LS174T, and surprisingly, it upregu-
lated ABCA1 and ABCG1 expression instead of the anticipated downregulation. It is worth
noting that ABCG1 gene expression decreased upon co-treatment with UA and T090 in
HepaRG cells, confirming the cellular-context paradox. This is further confirmed by the
lack of UA effect on cellular contents of TG in LS174T cells. It can be deduced that UA
suppressed LXRα activation in hepatocytes but not in intestinal cells, suggesting that UA
controls LXRα signaling in a cell- and tissue-specific manner due to differential effects on
the recruitment of coregulators [113].

The possible clinical application of UA to mitigate the lipogenic side effects of the
ani-epileptic drug valproate was tested. De facto, UA significantly opposed valproate
induced LXRα transactivation, lipogenic gene expression, and lipid accumulation in Hep-
aRG cells. As we will mention below, UA may also protect against rifampicin-induced
hepatic steatosis [114].

3.3. Modulation of Pregnane X Receptors (PXR) and Constitutive Androstane Receptors (CAR)

Alongside CAR (NR1I3), PXR (NR1I2) is mainly responsible for xenobiotic detoxifi-
cation by regulating the expression of the metabolic enzyme cytochrome P450 (CYP 450),
including the two main types, CYP3A4 and CYP2B6 [126,127]. PXR can be modulated by
numerous exogenous and endogenous ligands such as bile acids, steroids, antibiotics like
rifampicin, and antimycotics like clotrimazole [128]. Dysregulation of PXR/CAR leads
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to drug-induced hepatotoxicity, as in the cases of acetaminophen- and isoniazid-induced
hepatic injury.

Using a dual-luciferase reporter gene assay in HepaRG cells, UA, alongside carnosol
from Rosmarinus officinalis, activated mouse, rat, and human PXR. In terms of human PXR
activation, the EC50 values of UA and carnosol were 10.77 and 2.22 µM, respectively. UA
was confirmed to bind within PXR LBD and activate luciferase activity in cells transfected
with a plasmid expressing human PXR LBD. In human colon adenocarcinoma cells, LS180,
UA promoted the mRNA expression of the major metabolizing enzyme CYP3A4 and a
multi-drug resistance protein 1called ATP binding cassette B1 (ABCB1). In the intestine, this
effect enhanced the first-pass metabolism and reduced the oral bioavailability of chemicals
metabolized by CYP3A4 and transported by ABCB1 [129].

In 2017, two different reports came out, reporting the promising role of UA and
OA in attenuating rifampicin/isoniazid-induced cytotoxicity viamodulation of PXR and
its sister NR CAR [114,130]. The presented results were in discrepancy with the above-
mentioned outcome of PXR activation. Herein, in human PXR-expressing and CYP3A4
reporter plasmid-transfected HepaRG cells, UA antagonized PXR activity and significantly
attenuated the transactivation of the CYP3A4 promoter in a concentration-dependent
manner. This inhibitory effect was remarkable incase of co-treatment with the activator
rifampicin. Indeed, UA inhibited CYP3A4 mRNA and protein expression. Likewise, UA,
through a CAR-dependent mechanism, was involved in the downregulation of the target
gene CYP2B6 on both mRNA and protein levels [114]. The catalytic activity of CYP3A4 and
CYP2B6 under only UA, or under rifampicin co-treatment, was significantly attenuated.
Interestingly, the well-known rifampin-mediated and isoniazid-induced cytotoxicity was
reduced by UA co-treatment, as shown by the HepaRG cell viability test. Additionally, UA
elevated the intracellular glutathione levels and regeneration capacity in a concentration-
dependent manner [114].

A supporting claim for the outcome for PXR antagonism by UA was introduced by
the same research group in 2018; they evaluated the UA effect on PXR transactivation
of lipogenic genes, including S14, SCD, FAS, and FAE. It was revealed that UA could
effectively oppose the transient activation of promoters S14 and SCD by rifampicin, as
shown by reporter assay. In the presence of rifampicin, UA reduced the mRNA and protein
expression of S14, SCD, FAS, and FAE genes. Histopathological examination of stained
HepaRG cells by phase-contrast microscope showed rifampicin-induced lipid accumulation
and steatosis, which was significantly interrupted by UA [113]. Therefore, UA could serve
to lessen the unwanted interactions between transcriptional inducers of CYP450 enzymes
and drugs [131].

3.4. Modulation of Retinoic Acid Receptor-Related Orphan Receptors (ROR)

As we mentioned above, ROR has three subtypes that possess indispensable roles in
immunity, development, and metabolic homeostasis. It is worth noting that the RORγt
type is only expressed in immune cells, especially Th17 lymphocytes, where it controls
their development and differentiation from CD4+ cells [132]. Th17 cells secrete different
inflammatory interleukins (ILs), like IL-17 and IL-21, that fight against pathogenic invaders.
Nevertheless, its upregulation is linked to autoimmune diseases such as systemic lupus
erythematosus, lupus nephritis, psoriasis, rheumatoid arthritis, and MS; thereby, RORγt
is a potential target for managing such obstinate diseases [133,134]. Recently, RORγ over-
expression was related to the progress of different types of advanced cancers of breast,
prostate, and lung [135–137]. Endogenous hydroxycholesterols, which have structural
similarity to PTs, can bind and modulate RORγt-dependent biological processes [32,138].

Indeed, methyl corosolate, uvaol, and OA are three triterpenes found in loquat leaves
with in vitro inhibitory effects against RORγt, accompanied by an interruption of Th17
differentiation, with a potential application in lupus nephritis [139]. Furthermore, the
titled PTs ameliorated skin inflammation, epidermal hyperplasia, and aberrant keratinocyte
proliferation in an imiquimod-induced psoriasis animal model [140]. Digoxin, with its
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similar structure to hydroxycholesterols, is a well-established RORγt inverse agonist that
was co-crystalized with it (Protein Data Bank ID: 3B0W) [141].

The first report claiming that UA acts as a strong and selective inhibitor of RORγt
function came out in 2011 by Xu et al. A preliminary high throughput screening of 2000
compounds identified UA as a human and mouse Th17 development and differentiation
inhibitor in a dose-dependent manner. At 2 µM, UA inhibited RORγt-mediated, but
not RORαt-mediated, IL-17 and IL-17 expression to almost background level in Th17
cells. UA, in a dose-dependent manner, interrupted the binding of RORγt-LBD, but
not RORαt-LBD, to its co-activator peptide. Further experiments led to the conclusion
that UA exclusively antagonizes RORγt function with IC50 of 0.68 µM, while its IC50 on
Th17 cells was determined to be 0.56 µM. As a result, UA abrogated IL-17 secretion from
differentiated Th17 cells of both mouse and human origin. In experimental autoimmune
encephalomyelitis mice as an MS model, UA treatment slowed the onset of disease in mice
and significantly alleviated the symptoms in comparison with the control group. The CNS
of UA-treated mice contained fewer IL-17+ and IFN-γ+ cells, and their spleen showed less
IL-17 production. The study paved the way for UA application in autoimmune disorders
and Th17-mediated inflammatory diseases [115].

In addition, UA administration significantly reduced the incidence and severity of
collagen-induced autoimmune arthritis in mice models, partially via the inhibition of
Th17 differentiation, as shown by flow cytometry. In a dose-dependent manner, mRNA
expression of IL-17, IL-21, and RORγt was downregulated in the splenocytes [116]. Owing
to its pronounced RORγt antagonism, UA was used as a positive control when testing new
inverse agonists [132].

A recent interesting report by Zou et al. emphasized the RORγ-dependent anti- prolif-
erative role of UA against triple negative breast cancer (TNBC) cells, HCC70, and prostate
cancer (PCa) cell lines C4-2B and 22Rv1 [117]. In the test cell lines, UA lowered RORγ
activation, as shown by a luciferase reporter assay, in a dose-dependent manner. In PCa,
UA interrupted RORγ-mediated androgen receptors’ (AR) expression and signaling; this
was also observed for the variant AR-V7 in C4-2B and 22RV1 cells. The strong anticancer
effect of UA was more remarkable in the AR-positive PCa cell line LNCaP but not in the
AR-negative PCa cell lines PC3 and DU145. In TNBC, RNA-seq, qRT-PCR, and Western
blot analysis showed that UA treatment suppressed the RORγ-mediated mRNA and pro-
tein expression of most of the genes controlling cholesterol biosynthesis. Concomitantly,
UA disrupted RORγ-controlled apoptosis/cell cycle genes. In conclusion, UA elicits its
antiproliferative effect against PCa and TNBC, in part, via targeting RORγ [117].

3.5. Modulation of Farnesoid X Receptors FXRs

FXRs are involved in lipid and bile acid homeostasis, with a significant role in hepatic
inflammation and fibrosis, and are widely distributed in organs such as the liver, kidney,
intestinal tract, and adrenal gland [142–145]. Bile acids, the natural ligands of FXR, were
identified as potential promoters of colon cancer [37,146]. FXRα; NR1H4 represents a
valid target for mitigating primary biliary cirrhosis (PBC), NASH, diabetes [147], and
atherosclerosis [6,147–150]. An FXR modulator, obeticholic acid, was approved for PBC
therapy, and further clinical trials are underway to assess it against NASH [151].

A recent report revealed that UA can modulate FXR in rat models with alcoholic
liver injury. UA intervention reduced the pathological changes in hepatocytes when ex-
amined by hematoxylin–eosin staining. The reduced hepatic steatosis was accompanied
by improved cell inflammation and infiltration. In biochemical terms, alanine aminotrans-
ferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and total bile acid
(TBA) levels in serum were significantly lessened in comparison to the untreated group.
Concomitantly, UA upregulated FXR protein expression and downregulated CYP7A1 and
SREBP-1c expression [152].
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4. Conclusions

Selective NR modulation, in the way that introduces health benefits with minimal
side effects, is a real challenge due to its conservative structure and unpredictable tissue-
specific response. However, finding such a selective modulator can be of huge health
benefit in terms of fighting metabolic syndromes that lead to the development of heart
and cardiovascular disease. PTs possess a lipophilic structure, making them efficient NR
modulators. Indeed, UA demonstrated various pharmacodynamic effects on PPAR, LXR,
PXR/CAR, ROR, and FXR. As a result, it exhibited a multitude of health benefits, especially
in terms of metabolic disorders, including insulin resistance, diabetes type II, NASH,
hyperlipidemia alongside neuroprotection and an anti-asthma effect. Owing to PPARα
upregulation, UA can be employed in pharmaceutical and cosmeceutical dermatology
and skin cancer. Furthermore, UA showed a comparable anti-hyperlipidemic effect to
atorvastatin in vivo. In addition, a significant role of UA in the treatment of autoimmune
inflammatory diseases was observed and attributed to RORγt agonism. The latter effect has
further conferred anti-proliferative potential to UA in cases of TNBC and PCa. So far, none
of the UA semi-synthetic derivatives has been evaluated for NR modulation; therefore,
screening of UA derivatives is urgently required, as it may pave the way for finding more
potent and selective NR modulators that outperform the parent compound.
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ABCB1 ATP binding cassette B1
AF activation function
ALP alkaline phosphatase
ALT alanine aminotransferase
AR androgen receptors
AST aspartate transaminase
CAR constitutive androstane receptors
CNS central nervous system
CNTF ciliary neurotrophic factor
CYP cytochrome P
DBD DNA binding domain
EAE autoimmune encephalomyelitis
FXR farnesoid X receptors
HDL high-density lipoproteins
HFD high-fat diet
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IL interleukins
LBD ligand binding domain
LDL low-density lipoproteins
LPC lysophosphatidylcholine
LXR liver X receptors
MMP matrix metalloproteinase
MS multiple sclerosis
NASH non-alcoholic steatohepatitis
NRs nuclear receptors
OA oleanolic acid
PBC primary biliary cirrhosis
PBMC peripheral blood mononuclear cells
PCa prostate cancer
PPAR peroxisome proliferator-activated receptors
PTs pentacyclic triterpenes
PXR pregnane X receptors
RE response element
ROR retinoic acid receptor-related orphan receptors
RVH right ventricle hypertrophy
SPR surface plasmon resonance
TBA total bile acid
TGL triglycerides
Th T helper
TNBC triple negative breast cancer
TNF tumor necrosis factor
UA ursolic acid
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Identification of Corosolic and Oleanolic Acids as Molecules Antagonizing the Human RORγT Nuclear Receptor Using the
Calculated Fingerprints of the Molecular Similarity. Int. J. Mol. Sci. 2022, 23, 1906. [CrossRef]

134. Solt, L.A.; Burris, T.P. Action of RORs and Their Ligands in (Patho)physiology. Trends Endocrinol. Metab. 2012, 23, 619–627.
[CrossRef]

135. Zou, H.; Yang, N.; Zhang, X.; Chen, H.-W. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging
therapeutic target in cancer and autoimmune diseases. Biochem. Pharmacol. 2022, 196, 114725. [CrossRef]

136. Zou, H.; Zou, H.; Yang, Y.; Yang, Y.; Shi, Z.; Shi, Z.; Wu, X.; Wu, X.; Liu, R.; Liu, R.; et al. Nuclear receptor RORγ inverse
agonists/antagonists display tissue- and gene-context selectivity through distinct activities in altering chromatin accessibility and
master regulator SREBP2 occupancy. Pharmacol. Res. 2022, 182, 106324. [CrossRef] [PubMed]

137. Wang, Y.; Huang, Z.; Chen, C.Z.; Liu, C.; Evans, C.P.; Gao, A.C.; Zhou, F.; Chen, H.-W. Therapeutic Targeting of MDR1 Expression
by RORγ Antagonists Resensitizes Cross-Resistant CRPC to Taxane via Coordinated Induction of Cell Death Programs. Mol.
Cancer Ther. 2020, 19, 364–374. [CrossRef]

138. Kojetin, D.J.; Burris, T.P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 2014, 13, 197–216. [CrossRef]
139. Zhou, X.; Chen, H.; Wei, F.; Zhao, Q.; Su, Q.; Lei, Y.; Yin, M.; Tian, X.; Liu, Z.; Yu, B.; et al. The Inhibitory Effects of Pentacyclic

Triterpenes from Loquat Leaf against Th17 Differentiation. Immunol. Investig. 2020, 49, 632–647. [CrossRef] [PubMed]

https://doi.org/10.1016/j.phymed.2017.09.016
https://www.ncbi.nlm.nih.gov/pubmed/29157826
https://doi.org/10.1074/jbc.C111.250407
https://www.ncbi.nlm.nih.gov/pubmed/21566134
https://doi.org/10.1038/aps.2014.58
https://www.ncbi.nlm.nih.gov/pubmed/25087995
https://doi.org/10.3389/fphar.2023.1146741
https://doi.org/10.3390/genes12050645
https://doi.org/10.1016/j.bcp.2008.08.016
https://www.ncbi.nlm.nih.gov/pubmed/18778688
https://doi.org/10.1016/S1537-1891(02)00175-1
https://www.ncbi.nlm.nih.gov/pubmed/12449021
https://doi.org/10.1111/j.1872-034X.2008.00382.x
https://www.ncbi.nlm.nih.gov/pubmed/18684130
https://doi.org/10.3389/fmed.2023.1102469
https://www.ncbi.nlm.nih.gov/pubmed/36817797
https://doi.org/10.3390/nu12092796
https://www.ncbi.nlm.nih.gov/pubmed/32932672
https://doi.org/10.1021/acs.jafc.8b03372
https://doi.org/10.1093/emboj/cdg456
https://www.ncbi.nlm.nih.gov/pubmed/12970175
https://doi.org/10.1016/j.tem.2009.03.003
https://doi.org/10.1210/er.2001-0038
https://doi.org/10.1124/mol.107.038398
https://doi.org/10.1016/j.phrs.2017.03.007
https://doi.org/10.1021/acs.jafc.7b02696
https://doi.org/10.1016/S1995-7645(12)60044-3
https://doi.org/10.1016/j.bmc.2018.02.018
https://doi.org/10.3390/ijms23031906
https://doi.org/10.1016/j.tem.2012.05.012
https://doi.org/10.1016/j.bcp.2021.114725
https://doi.org/10.1016/j.phrs.2022.106324
https://www.ncbi.nlm.nih.gov/pubmed/35750301
https://doi.org/10.1158/1535-7163.MCT-19-0327
https://doi.org/10.1038/nrd4100
https://doi.org/10.1080/08820139.2019.1698599
https://www.ncbi.nlm.nih.gov/pubmed/31795780


Biomedicines 2023, 11, 2845 19 of 19

140. Tian, X.; Tang, L.; Wei, F.; Chen, H.; Sheng, L.; Yang, Y.; Zhou, X.; Li, Y.; Xu, X.; Zhang, B.; et al. Pentacyclic triterpene compounds
from loquat leaves reduce skin inflammation and epidermal hyperplasia in psoriasis via inhibiting the Th17 cells. Mol. Immunol.
2021, 132, 30–40. [CrossRef] [PubMed]

141. Fujita-Sato, S.; Ito, S.; Isobe, T.; Ohyama, T.; Wakabayashi, K.; Morishita, K.; Ando, O.; Isono, F. Structural Basis of Digoxin That
Antagonizes RORγt Receptor Activity and Suppresses Th17 Cell Differentiation and Interleukin (IL)-17 Production. J. Biol. Chem.
2011, 286, 31409–31417. [CrossRef] [PubMed]

142. Lamers, C.; Schubert-Zsilavecz, M.; Merk, D. Medicinal chemistry and pharmacological effects of Farnesoid X Receptor (FXR)
antagonists. Curr. Top. Med. Chem. 2014, 14, 2188–2205. [CrossRef]

143. Sun, L.; Cai, J.; Gonzalez, F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev.
Gastroenterol. Hepatol. 2021, 18, 335–347. [CrossRef]

144. Jiang, L.; Zhang, H.; Xiao, D.; Wei, H.; Chen, Y. Farnesoid X receptor (FXR): Structures and ligands. Comput. Struct. Biotechnol. J.
2021, 19, 2148–2159. [CrossRef]

145. Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B.
Identification of a nuclear receptor for bile acids. Science 1999, 284, 1362–1365. [CrossRef] [PubMed]

146. Parks, D.J.; Blanchard, S.G.; Bledsoe, R.K.; Chandra, G.; Consler, T.G.; Kliewer, S.A.; Stimmel, J.B.; Willson, T.M.; Zavacki, A.M.;
Moore, D.D.; et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science 1999, 284, 1365–1368. [CrossRef] [PubMed]

147. Zhang, Y.; Lee, F.Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F.J.; Willson, T.M.; Edwards, P.A. Activation of the nuclear receptor
FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA 2006, 103, 1006–1011. [CrossRef]

148. Pellicciari, R.; Costantino, G.; Fiorucci, S. Farnesoid X receptor: From structure to potential clinical applications. J. Med. Chem.
2005, 48, 5383–5403. [CrossRef]

149. Shi, X.; Chen, Y.; Zhou, T.; Wang, J.; Xu, X.; Chen, L.; Hu, L.; Shen, X. HS218 as an FXR antagonist suppresses gluconeogenesis by
inhibiting FXR binding to PGC-1α promoter. Metabolism 2018, 85, 126–138. [CrossRef]

150. Festa, C.; Finamore, C.; Marchianò, S.; Di Leva, F.S.; Carino, A.; Monti, M.C.; del Gaudio, F.; Ceccacci, S.; Limongelli, V.; Zampella,
A.; et al. Investigation around the Oxadiazole Core in the Discovery of a New Chemotype of Potent and Selective FXR Antagonists.
ACS Med. Chem. Lett. 2019, 10, 504–510. [CrossRef]

151. Mudaliar, S.; Henry, R.R.; Sanyal, A.J.; Morrow, L.; Marschall, H.; Kipnes, M.; Adorini, L.; Sciacca, C.I.; Clopton, P.; Castelloe, E.;
et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic
fatty liver disease. Gastroenterology 2013, 145, 574–582.e1. [CrossRef] [PubMed]

152. Sun, Y.; Zhang, W.; Li, N.; Guo, S.; Gao, L.; Ge, N. Effect of Ursolic Acid Extracted from Hippophae rhamnoides L. on FXR Signaling
Pathway in Liver of Rats with Alcoholic Liver Injury. Sci. Technol. Food Ind. 2023, 44, 363–370. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.molimm.2021.01.019
https://www.ncbi.nlm.nih.gov/pubmed/33540227
https://doi.org/10.1074/jbc.M111.254003
https://www.ncbi.nlm.nih.gov/pubmed/21733845
https://doi.org/10.2174/1568026614666141112103516
https://doi.org/10.1038/s41575-020-00404-2
https://doi.org/10.1016/j.csbj.2021.04.029
https://doi.org/10.1126/science.284.5418.1362
https://www.ncbi.nlm.nih.gov/pubmed/10334992
https://doi.org/10.1126/science.284.5418.1365
https://www.ncbi.nlm.nih.gov/pubmed/10334993
https://doi.org/10.1073/pnas.0506982103
https://doi.org/10.1021/jm0582221
https://doi.org/10.1016/j.metabol.2018.03.016
https://doi.org/10.1021/acsmedchemlett.8b00534
https://doi.org/10.1053/j.gastro.2013.05.042
https://www.ncbi.nlm.nih.gov/pubmed/23727264
https://doi.org/10.13386/j.issn1002-0306.2022040305

	Introduction 
	Methodology 
	Ursolic Acid Pharmacodynamics towards NRs 
	Modulation of Peroxisome-Proliferator-Activated Receptors (PPARs) 
	UA Effect on PPAR 
	UA Effect on PPAR 

	Modulation of Liver X Receptors (LXRs) 
	Modulation of Pregnane X Receptors (PXR) and Constitutive Androstane Receptors (CAR) 
	Modulation of Retinoic Acid Receptor-Related Orphan Receptors (ROR) 
	Modulation of Farnesoid X Receptors FXRs 

	Conclusions 
	References

