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Abstract: Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), which is predominantly spread by ticks,
is the cause of Lyme disease (LD), also known as Lyme borreliosis, one of the zoonotic diseases
affecting people. In recent years, LD has become more prevalent worldwide, even in countries with
no prior records. Currently, Lyme Borrelia detection is achieved through nucleic acid amplification,
antigen detection, microscopy, and in vitro culture. Nevertheless, these methods lack sensitivity in
the early phase of the disease and, thus, are unable to confirm active infection. This review briefly
discusses the existing direct detection methods of LD. Furthermore, this review also introduces the
use of aptamer technology integrated with biosensor platforms to detect the Borrelia antigen. This
aptamer technology could be explored using other biosensor platforms targeting whole Borrelia cells
or specific molecules to enhance Borrelia detection in the future.
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1. Introduction

Lyme disease (LD), or Lyme borreliosis, is caused by a bacterial infection from Borrelia
burgdorferi sensu lato (B. burgdorferi s.l.). This vector-borne zoonotic disease is primarily
spread by ticks from the genus Ixodes. The typical clinical manifestation of early infection is
erythema migrans (EM) rash at the site, which occurs in >80% of patients in both Europe and
the United States [1]. LD symptoms may range from asymptomatic to severe and develop
into encephalitis and arthritis without prompt treatment. Other non-specific symptoms
include fever, malaise, and myalgia; hence they are often misdiagnosed or left untreated.
Currently, LD is prevalent in the United States and Europe [1], but diagnosing LD has
become challenging as clinical manifestations vary between B. burgdorferi genospecies
and disease progression differs between patients [2–4]. For example, rheumatological
manifestations of LD are common in North America, while neurological manifestations are
customary in Europe. In addition, acrodermatitis chronica atrophicans and lymphocytomas,
usually caused by Borrelia afzelii or Borrelia garinii, are common in Europe and Asia but
extremely rare in the United States [5,6]. In the United States, the new species Borrelia
mayonii was recognized in the Upper Midwest region [7].

The global impact of LD has recently expanded to previously undetected regions
and countries due to the booming international tourism in endemic nations, where the
disease is under-reported by local healthcare practitioners [8]. For instance, LD cases have
been documented among tourists in Brazil, Canada, Australia, and Japan [9–13]. The LD
reservoir and vector hosts have migrated from their native habitats following the effect of
climate change in the north, thus allowing B. burgdorferi to expand its territory northward
by 250–500 km in the next 30 years [14]. Several studies have reported increasing LD
incidences in various parts of Canada, Europe, and Asia, particularly China [14–18].

Malaysia has a tropical climate and abundant wildlife in local forests, making it an
ideal breeding ground for ticks. Ixodes granulatus, a vector for the Borrelia pathogen, has
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been recorded in numerous areas throughout Peninsular Malaysia, but local LD occurrence
is not well-reported [19–24]. In addition, Borrelia yangtzensis was isolated from I. granulatus
ticks discovered on rodents in Selangor’s recreational forests (18.1%) and Sarawak’s oil palm
plantations (72.2%) [21,25]. Clinical case reports from Japan and China have associated
these new Borrelia genospecies with LD [26,27]. Moreover, unpublished data from the
Acarology Unit, IMR, have reported that 47.4% of Borrelia spp. was isolated from ticks
collected from four coastal locations in Selangor, and 73.3% of ticks from recreational forests
in Malaysia carried Rickettsia and Borrelia. Therefore, the risk of Borrelia infection in the
Malaysian population remains high despite the small number of confirmed LD infections,
owing to underdiagnosis or a lack of sensitive detection tools.

Several seroprevalence studies in Malaysia reported that 153 serum samples from
patients exhibiting various infectious disease symptoms showed that 16.3% of IgM and
3.3% of IgG were reactive to the complete antigen of B. afzelii. Meanwhile, 8.1% of serum
samples among the aborigines in Peninsular Malaysia were reactive to B. burgdorferi s.l.
genospecies [28]. These findings indicate the occurrence of co-infections and mixed infec-
tions in LD patients, such as leptospirosis, tick typhus, and melioidosis.

The LD diagnostic test comprises a two-tier serology test recommended by the Food
and Drug Administration (FDA). Alternative detection assays with various sensitivities
are employed in private laboratories as a confirmation tool for this disease. Currently, the
direct detection test for LD is not easily accessible to the public. Therefore, this review
discusses the existing direct detection methods of LD and the potential of aptamer technol-
ogy integrated with a biosensor for Borrelia detection in various samples to enhance the
sensitivity of detection tools.

2. Current Guidelines for LD Diagnostic Test

Two types of enzyme immunoassay, known as standard or modified, two-tiered
serology testing (STTT/MTTT), are used to detect immunoglobulin (IgM or IgG). These
methods differ in terms of the second confirmation assay; the STT uses western blotting,
whereas the second enzyme immunoassay (EIA) is utilized for MTT when the sample is
positive or ambiguous. Figure 1 summarises the difference between the two-tier STTT and
MTTT testing [29–32].

The STTT sensitivity for LD is less than 50% in early localized infections, whereas the
sensitivity can reach up to 100% in the late stages of the disease. The MTTT is consistent
and more sensitive in early localized LD than STTT and demonstrated similar sensitivity
in detecting late infections and specificities to STTT [33]. The two-tier testing is sufficient
to rule in LD among patients who have tested positive in the early stages, but the tool
has low predictive value to rule out LD, which necessitates retesting after 30 days [34].
Nevertheless, LD sensitivity in recovering patients treated at stage 1 remained low after
30 days. Resultantly, the diagnosis and treatment of early localized LD solely depend on
the clinical symptoms of individuals with a history of exposure to black-legged ticks.

Early LD can be difficult to diagnose, as some individuals with localized B. burgdorferi
infections do not have an EM rash and may exhibit symptoms similar to those of other
diseases. As both STTT and MTTT cannot distinguish between active and past infection,
B. burgdorferi antibodies can persist for months to years after the initial infection [35].
Despite the higher sensitivity than STTT, MTTT sensitivity is still <90%. Thus, patients
with early localized LD should be treated based on their clinical presentation rather than
serologic data [33].

The main pitfall of this assay is that it requires a complex laboratory infrastructure,
producing inter- and intra-laboratory result variability, a long turnaround time, and a high
cost for the immunoblot assay [36]. Eventually, this assay will only be based on yes-or-
no results for routine cases of suspected Lyme disease. Other limitations include a high
background rate of seropositivity in the endemic area, antibody cross-reactivity with other
related bacterial infections, and false-positive results due to other medical conditions [37].
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3. Direct Detection Method of Borrelia
3.1. Nucleic Acid Amplification

Most commercial kits are developed to target and conserve the genomic sequences
of Borrelia species using two-step PCR (nested PCR). Borrelia species can be directly de-
tected in patients’ samples, such as synovial fluids, cerebrospinal fluid (CSF), and blood,
using polymerase chain reaction (PCR). The PCR assay targets several genes located on the
genome sequence or linear plasmid of Borrelia species, such as flagellin B (flab), outer sur-
face protein A (OspA), OspC rpoB, and 16S rDNA [38–40]. These target genes are also useful
for phylogenetic analysis of Borrelia from ticks. Nevertheless, this method demonstrates
various sensitivity ranges (4–100%) with 93–100% specificity [41]. Furthermore, the sensi-
tivity ranges between 5 and 50% for EM skin biopsies compared to the CSF samples [42,43].
The low DNA recovery in patients’ samples, particularly for younger patients with limited
samples, reflects the unsatisfactory sensitivity of the assay.

Several PCR protocols have been established to enhance the sensitivity of the detec-
tion method in combination with the enrichment step. For instance, the loop-mediated
isothermal amplification (LAMP) assay targets the 16S rRNA and has higher sensitivity
(0.2 to 0.02 pg of DNA) in detecting B. burgdorferi s.l. isolated from field-collected ticks
compared to conventional and nested PCR [44]. In another study, the LAMP assay targeted
the flagellin (fla) gene to detect as few as 20 copies of DNA per reaction and cross-react
with 11 related bacteria [45]. Thus, the success rate of the LAMP assay is equivalent to
nested PCR. Furthermore, the high amplification efficiency of the LAMP assay is due to the
continuous amplification under isothermal conditions, yielding magnesium pyrophosphate
as a by-product. The white-coloured precipitation is easily observed by the naked eye or
by real-time turbidity monitoring using the conventional photometer [46].

Recombinase polymerase amplification (RPA) is another example of an isothermal
amplification method that utilizes the recombinase protein to unwind the double-stranded
DNA molecules and the strand-displacing activity to amplify DNA targets. This process
takes 20–30 min from 37 ◦C to 42 ◦C [47]. The detection limit of the RPA assay target-
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ing the recA gene is five copies, while the sensitivity is 50 femtograms of B. burgdorferi
genomic DNA [48].

Even though the PCR sensitivity is high, this assay cannot differentiate between live
and dead bacteria within the samples. The positive PCR result is unable to distinguish
live bacteria in patients with persistent arthritis after antibiotic therapy [49]. In addition,
PCR sensitivity is also highly variable depending on the type of starting materials, DNA
extraction methods, target gene location, and PCR amplification method [50–54]. Thus,
further evaluation of the PCR assay is still required to improve the assay sensitivity, and
the method must be standardized to provide unambiguous diagnostic results.

3.2. Direct Antigen Detection

Borrelia antigen detection is a dependable, quick, accurate, and sensitive method for
early LD diagnosis and improved patient care before acquiring disseminated LD. These
assays are performed using Borrelia polyclonal antibodies, with the shed surface antigens
detectable in the urine, blood, and various organs of infected hosts [55]. Nonetheless, the
assay sensitivity, specificity, and accuracy in detecting several antigenic moieties (31 kDa,
34 kDa, 39 kDa, and 93 kDa) are reportedly low in invalidated clinical samples [56]. The
assay can be enhanced by performing high-speed centrifugation to separate Borrelia mem-
brane proteins from the rest of the serum proteins. B. burgdorferi cells that have been broken
will release membrane vesicles containing membrane proteins into the blood. Precisely,
high-speed centrifugation contributes to a low protein detection limit at approximately
4.0 fmol of ospA/mg of serum protein [57].

Hydrogel microparticles are widely used in biomedical research, such as being incor-
porated with chemical bait to mediate small target molecule sequestration and entrapment.
This method helps concentrate the target molecules in the solution and eliminate other
molecules through sieving. For instance, Douglas et al. reported that Acid Black 48 dye
effectively acts as bait to concentrate the B. burgdorferi OspA and OspB proteins at a limit of
detection (LOD) of 700 pg/mL in 10 mL of urine [58]. In another study, Remazol Brilliant
Blue dye was used as bait for the Nanotrap technology. The Nanotrap particles were
coupled with a Borrelia monoclonal antibody that targeted epitope OspA 236–239, with
a detection rate as low as 1.7 pg/mL of Borrelia antigen. These studies supported the
shedding of urinary OspA protein, which strongly correlates with the clinical diagnosis of
the early and active stage of LD [59].

An earlier study found ten highly conserved amino acids in OspC that are significantly
immunodominant and potential immunogens for anti-OspC antibody production [60].
In addition, this peptide contains a common sequence (PVVAESPKKP) found in most
pathogenic Borrelia [60,61]. A solid-phase immobilized epitope immunoassay (SPIE-IA)
of OspC protein was recently developed [62], despite the high variability of this protein
within and between the Borrelia species. The developed SPIE-IA recorded a LOD as
low as 17 pg/mL for OspC from infected animal blood samples. Moreover, the study
detected a mean value of 10 ng/mL OspC in the plasma of infected mice at seven days
post-infection [62].

3.3. Biosensor

Several single multiplexed assays have been developed to replace the second tier
of serology assays. For example, the mChip-Ld assay targeted three Borrelia antigens
(VlsE, PepVF, and OspC) and showed a sensitivity range between 80% and 100% in sample
patients with early Lyme disease and Lyme arthritis, respectively [36]. Several biosensor
applications have been developed to detect Borrelia antigen, including field-effect transis-
tors (FETs) and microfluidics [63,64]. The attachment of B. Burgdorferi flagellar antibodies
(p41) to nanotubes effectively detected antigens in buffer (1 ng/mL) using atomic force
microscopy [63,64]. The assay utilized the turnoff voltage measurement following antigen
exposure, which involves shifting the threshold voltage towards the more negative region.
Furthermore, the device is highly selective for the target antigen on the flagellar protein.
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In a different study, the PPO triplex test (rP100 + PepVF + rOspC-K)-based microfluidic
diagnostic device (mChip-Ld) was developed for antibody detection during early and
late LD stages. The assay recorded 84% sensitivity and 92% specificity, comparable to the
lab-based C6 peptide ELISA [64]. Figure 2 summarises the method used for direct detection
of genetic material and soluble antigens of Borrelia.
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4. Aptamer for Borrelia Antigen Detection

The aptamer is a single-stranded nucleic acid (RNA or DNA) that can bind with vari-
ous target molecules, including surface proteins, viruses, bacteria, nanoparticles, and small
analytes. The aptamer can bind to target molecules with low nanomolar and picomolar
affinity and distinguish the target molecule from other similar molecular structures or
functional groups [65]. Furthermore, the aptamer can form a compatible tertiary structure
that fits into the binding pocket of the target molecules through hydrogen bonds and
hydrophobic interaction.

The aptamer can be isolated in vitro via the Systematic Evolution of Ligands by
Exponential Enrichment (SELEX). This method allows large oligonucleotide libraries to
undergo several enrichment cycles of bound aptamer, which involves binding, washing,
and eluting, to produce the best aptamer with high affinity and specificity towards the
target molecules.

The use of aptamers as diagnostic tools has been widely explored in managing in-
fectious diseases. Xenobiotic nucleic acid (XNA) is a new aptamer variety that has been
extensively studied due to its intrinsic resistance to cellular nucleases [66]. The direct
evolution of specialized XNA polymerase has promoted the enzymatic production and
enrichment of XNA libraries to synthesize XNA sequences from DNA templates before
being transcribed into the DNA [67–69]. Aptamer detection has been applied to various
targets of infectious diseases, such as SARS-CoV, SARS-CoV-2, Mycobacterium tuberculosis
(M. tb), and melioidosis [70,71]. Several aptamers targeting tick-borne diseases have been
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developed, such as surface protein E of the tick-borne encephalitis virus (TBEV) and the
B. burgdorferi outer surface protein (ospA, ospC, and BmpA) associated with LD [72].

There are several advantages to the application of aptamers as a diagnostic tool, such
as ease of chemical synthesis and modification, low manufacturing costs, thermal stability,
and minimum batch-to-batch variation for mass production. Despite the susceptibility to
nuclease degradation, the sugar ring, nucleotide bases, and phosphodiester bond modifica-
tion can improve aptamer structural stability in the nuclease environment and enhance the
binding affinity to the target molecules [73]. The aptamer can be modified at the 3′ or 5′

end with functional groups (thiol, amine, carboxyl) or biomolecules (biotin, fluorophore)
for capturing and detection purposes [reviewed by [74–76].

Regarding the detection of Borrelia antigen, the aptamer can be used to detect the
presence of soluble proteins released by the bacteria or whole bacteria in the collected
samples. Until now, various samples have been tested to detect the presence of Borrelia
directly or indirectly from blood serum, cerebrospinal fluid (CSF), urine, skin biopsy,
and synovial fluid [77–79]. This bacteria’s antigen is often shed into the body fluids,
which can later be detected using the aptamer. Interestingly, aptamers can function as
reporters and capture agents for direct detection. Several surface proteins of Borrelia have
potentially been used, such as OspA, OspC, flagellin, BBK32, PepVF, VlsE, BmpA, DbpA,
and DbpB [64,80,81].

5. Current Aptamer Development for Borrelia Antigen Detection

Only one study has used aptamer technology to directly detect Borrelia antigen using
surface-enhanced Raman spectroscopy (SERS) [82]. SERS is an ultrasensitive method
for single-molecule detection, which is a powerful tool for biosensing applications in
various fields. Furthermore, SERS peaks have narrow bandwidths and a characteristic
molecular “fingerprint” compared to other techniques; thus, this method is ideal for
multiplex detection. The unique surface plasmon resonance of metallic nanoparticles is
utilized in this technology, which operates as signal-amplifying substrates and eliminates
the need for pathogen culture [83]. Surface-bound, highly affine capture biomolecules
provide a layer of specificity to these particles, allowing whole-cell pathogen fingerprinting.

The design of highly sensitive Raman aptasensors requires rigorous control of the
three-dimensional assembled configuration to maximize SERS enhancement, particularly
the local amplification of the electromagnetic (EM) field. Moreover, SERS aptasensors were
developed by combining SERS probes with highly sensitive and selective aptamers for
recognizing target molecules [84]. In a recent study, SERS accurately identified 91% of
serum samples from Lyme patients and 96% of serum samples from symptomatic controls
with a LOD of 1 × 10−4 ng/mL, more than four orders of magnitude lower than serum
samples from early LD patients [82].

This assay demonstrated a 50% improvement in sensitivity without significantly
reducing specificity, unlike the existing Lyme diagnostic assay. In other studies, SERS
identified bacteria from complex solutions with a high capture efficiency for S. aureus
(88.89%) and E. coli (74.96%) within 15 min [85,86]. The latest applications of the other SERS-
based aptasensor include the detection of the SARS-CoV-2 virus, Salmonella Typhimurium,
H3N2 virus, Vibrio parahaemolyticus, Staphylococcus aureus, and influenza A [87–92]. Table 1
compares the available detection methods for Lyme disease and their sensitivity.
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Table 1. The comparison of the type of detection, assay sensitivity, and limit of detection for Lyme
disease diagnostic and Borrelia direct detection.

Detection Methods Target Molecules Sensitivity LOD Reference

Nested PCR
p66, 16S rRNA gene, fla gene, 23S
rRNA gene, 5S rRNA-23S rRNA

gene spacer, recA gene, OspA gene
4–100% ND [41–43]

LAMP
16S rRNA 32.7% 0.2 to 0.02 pg [44]

fla gene 37.5% 20 copies [45]

RPA recA gene 90% 50 femtograms [48]

Hydrogel microparticles B. burgdorferi OspA and OspB ND 700 pg/mL [58]

Nanotrap technology OspA 236–239 87.5% 1.7 pg/mL [59]

SPIE-IA OspC ND 10 ng/mL–17 pg/mL [62]

mChip-Ld VlsE, PepVF, OspC 80% to 100% ND [36]

FETs p41 Unavailable 1 ng/mL [63]

Microfluidics rP100, PepVF, rOspC-K 84% ND [64]

SERS (aptasensor) OspA 91–96% 1 × 104 ng/mL [83]

6. Future Direction of the Use of LD Aptasensor

Integrating the aptamer technology with the available sensor platform might improve
the sensitivity and specificity for direct detection of Borrelia antigen. As discussed previ-
ously, several biosensor platforms have been developed for direct antigen detection for LD
using the antibody, such as microfluidics, lateral flow assays (LFAs), vertical flow assays
(VFAs), surface plasmon resonance, and biochips [93]. This antibody-based biosensor can
be replaced by an aptamer that might give better performance. The aptamer can easily
be modified to conjugate with any nanoparticle, such as gold, graphene oxide, and fluo-
rescence dye, which can later be used as capturing or reporter agents [94–96]. Nowadays,
the label-free aptamer is used with quencher molecules such as graphene oxide that can
turn “on” the sensor when the aptamer binds to a specific target with a detection limit of
1.26 pg/mL [97]. The yes-or-no test might suit LD diagnosis when a low amount of antigen
is present in the samples and eliminates the need for an enrichment step. Other than
that, aptasensor development for direct detection of Borrelia might be able to differentiate
between live and dead bacteria. This could be performed using the whole-bacteria aptamer
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) using live Borrelia
and heat-killed Borrelia. This whole-cell SELEX was successfully developed to detect
live Salmonella Typhimurium and Lactobacillus acidophilus down to 600 CFU mL−1 and
106 CFU mL−1, respectively [98,99]. This aptasensor might give a superior result compared
to PCR, which is unable to differentiate dead bacteria from viable bacteria. The use of
aptamers for direct detection of Borrelia integrated with available or new sensor technology
might change the way LD is diagnosed in the near future.

7. Conclusions

The direct detection of Borrelia antigen or whole bacterial cells is a promising tool
in the early identification of LD for improved patient management. The aptamer is an
advanced technology with the potential for Borrelia antigen detection. Notably, combining
the latest technology with the aptamer could enhance test sensitivity and detection limits
and reduce the time required to complete the assay. Furthermore, the test can function
alone or complement the conventional serological test practiced in most laboratories. In
summary, a fast and convenient assay may facilitate the diagnosis of the fever-like symptom
possibly caused by Lyme Borrelia infection.
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40. Cerar, T.; Ružić-Sabljić, E.; Glinšek, U.; Zore, A.; Strle, F. Comparison of PCR methods and culture for the detection of Borrelia spp.
in patients with erythema migrans. Clin. Microbiol. Infect. 2008, 14, 653–658. [CrossRef]

41. Aguero-Rosenfeld, M.E.; Wang, G.; Schwartz, I.; Wormser, G.P. Diagnosis of lyme borreliosis. Clin. Microbiol. Rev. 2005, 18,
484–509. [CrossRef] [PubMed]

42. Mygland, Å.; Ljøstad, U.; Fingerle, V.; Rupprecht, T.; Schmutzhard, E.; Steiner, I. EFNS guidelines on the diagnosis and
management of European Lyme neuroborreliosis. Eur. J. Neurol. 2010, 17, 8–16.e1–4. [CrossRef] [PubMed]

43. Picha, D.; Moravcova, L.; Zdarsky, E.; Maresova, V.; Hulinsky, V. PCR in lyme neuroborreliosis: A prospective study. Acta Neurol.
Scand. 2005, 112, 287–292. [CrossRef] [PubMed]

44. Yang, J.; Guan, G.; Niu, Q.; Liu, Z.; Li, Y.; Liu, J.; Ma, M.; Ren, Q.; Liu, A.; Luo, J.; et al. Development and application of a
loop-mediated isothermal amplification assay for rapid detection of Borrelia burgdorferi s. l. in ticks. Transbound. Emerg. Dis. 2013,
60, 238–244. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/pubmed/22299462
https://doi.org/10.1016/S2221-1691(11)60057-9
https://www.ncbi.nlm.nih.gov/pubmed/23569714
https://doi.org/10.3390/pathogens9100846
https://doi.org/10.4269/ajtmh.2007.77.1124
https://www.ncbi.nlm.nih.gov/pubmed/18165534
https://doi.org/10.1111/1469-0691.12532
https://doi.org/10.1093/cid/cir464
https://doi.org/10.1128/JCM.00874-16
https://doi.org/10.1093/cid/ciw427
https://www.ncbi.nlm.nih.gov/pubmed/27358358
https://doi.org/10.1128/JCM.01943-17
https://www.ncbi.nlm.nih.gov/pubmed/29743307
https://doi.org/10.14745/ccdr.v46i05a05
https://www.ncbi.nlm.nih.gov/pubmed/32558809
https://doi.org/10.1371/journal.pone.0168613
https://doi.org/10.1086/322669
https://doi.org/10.1128/JCM.01142-19
https://doi.org/10.1371/journal.pone.0235372
https://doi.org/10.1186/s12917-015-0501-y
https://doi.org/10.1111/j.1469-0691.2008.02013.x
https://doi.org/10.1128/CMR.18.3.484-509.2005
https://www.ncbi.nlm.nih.gov/pubmed/16020686
https://doi.org/10.1111/j.1468-1331.2009.02862.x
https://www.ncbi.nlm.nih.gov/pubmed/19930447
https://doi.org/10.1111/j.1600-0404.2005.00482.x
https://www.ncbi.nlm.nih.gov/pubmed/16218909
https://doi.org/10.1111/j.1865-1682.2012.01335.x
https://www.ncbi.nlm.nih.gov/pubmed/22587441


Biomedicines 2023, 11, 2818 10 of 12

45. Zhang, L.L.; Hou, X.X.; Geng, Z.; Lou, Y.L.; Wan, K.L.; Hao, Q. Combination of Loop-Mediated Isothermal Amplification Assay
and Nested PCR for Detection of Borrelia burgdorferi sensu lato in Human Serum Samples. Biomed. Environ. Sci. BES 2015,
28, 312–315.

46. Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived
from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 2001, 289, 150–154. [CrossRef]

47. Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal.
Chem. 2018, 98, 19–35. [CrossRef]

48. Liu, W.; Liu, H.-X.; Zhang, L.; Hou, X.-X.; Wan, K.-L.; Hao, Q. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase
Polymerase Amplification with Lateral Flow Detection. Int. J. Mol. Sci. 2016, 17, 1250. [CrossRef]

49. Li, X.; McHugh, G.A.; Damle, N.; Sikand, V.K.; Glickstein, L.; Steere, A.C. Burden and viability of Borrelia burgdorferi in skin and
joints of patients with erythema migrans or lyme arthritis. Arthritis Rheum. 2011, 63, 2238–2247. [CrossRef]

50. van Dam, A.P. Molecular diagnosis of Borrelia bacteria for the diagnosis of Lyme disease. Expert Opin. Med. Diagn. 2011, 5,
135–149. [CrossRef]

51. Bonin, S. Diagnostic Tools for Assessment in Humans. Open Dermatol. J. 2016, 10, 62–69. [CrossRef]
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