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Abstract: This review will focus on epigenetic modifications utilizing the DNA methylation mech-
anism, which is potentially involved in the pathogenesis of heart failure with preserved ejection
fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis,
myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative–nitrosative stress, mito-
chondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial
fibrillation will be examined from the perspective of DNA methylation.
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1. Introduction

Despite significant progress in its diagnosis and treatment, heart failure (HF) continues
to be associated with a high prevalence and high rates of morbidity and mortality [1]. Heart
failure has been categorized into groups based on left ventricular ejection fraction (EF),
which includes HF with preserved EF (HFpEF), HF with reduced EF (HFrEF), and HF with
mid-range EF (HFmrEF) [2,3]. Heart failure with compromised ejection fraction has usually
been attributed to a loss of cardiomyocytes, which occurs from acute processes such as
myocardial infarction or myocarditis [2,3]. HFpEF is a complex disease due to its various
purported pathophysiologies and subtypes [4–7] and accounts for approximately half of all
HF cases [1]. The search for new avenues to understand and treat heart failure has begun to
focus on the role of epigenetic regulation of gene expression and activity in the pathogenesis
of heart failure. Epigenetic modifications present clues to the pathogenesis of heart failure,
and multiple epigenetic pathways have been proposed that might lead to the development
of heart failure (HF) [8–12]. Epigenetic modifications refer to changes in gene regulation
that are independent of alterations in DNA sequence, including DNA methylation, ATP-
dependent chromatin remodeling, histone modifications, and microRNA mechanisms [13].
A risk model based on both clinical and DNA methylation data outperformed a model
based on just clinical data from the electronic health care record for the prediction of the
development of HFpEF [14]. This review will focus on epigenetic modifications utilizing
the DNA methylation mechanism, which is potentially involved in the pathogenesis of
HFpEF. These putative pathways of HFpEF will be discussed: myocardial fibrosis, my-
ocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative–nitrosative stress,
mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging
and atrial fibrillation will be examined from the perspective of DNA methylation.

2. DNA Methylation

DNA methylation is catalyzed by a family of DNA methyltransferases that transfer a
methyl group to cytosine residues that are followed by guanine (CpG) [15,16]. In the major-
ity of cases, DNA is methylated at the C5 position of cytosine in CpG dinucleotides or CpG
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sites that tend to be in clusters in the genome called CpG islands [17]. DNA methyltrans-
ferase enzymes (DNMTs) include DNMT1, DNMT2, DNMT3A, and DNMT3b [15,16,18].
DNMT3a and DNMT3b are sometimes referred to as de novo DNMTs because they can
establish a new methylation pattern in unmodified DNA [16]. Mammalian DNA methyl-
transferases are encoded by their own single gene and consist of catalytic and regulatory
regions (except DNMT2) [15]. Non-CpG methylation can occur, but its role is not completely
defined [16]. The hypermethylation of a promoter prevents transcription factor binding
or recruits repressor complexes, resulting in gene repression, whereas hypomethylation
results in gene expression [19].

DNMT3A/3B enzymes are most relevant in the heart because of the low rates of DNA
synthesis in adult cardiomyocytes [20]. DNMT3A has been identified as the main cardiac
DNMT because of its high transcript abundance in cardiomyocytes relative to the other
isoforms [21]. The consequences of DNA methylation include gene silencing or activation,
depending on the methylated regions [22].

3. DNA Methylation in Cardiomyocytes and the Heart

Genomic regions are differentially methylated during cardiomyocyte development
and maturation [23]. De novo methylation by DNA methyltransferases 3A/B induces a
repression of fetal cardiac genes, including essential components of the cardiac sarcom-
ere [23]. The similarity of the DNA methylation patterns of cardiomyocytes in HF to
neonatal methylation patterns suggests that heart failure is associated with a ‘reversion’ to
neonatal gene expression patterns in heart failure [23].

In human-induced pluripotent stem cell-derived cardiomyocytes, the knockout of
DNMT3A was found to have three main consequences: (i) gene expression changes in
contractile proteins; (ii) aberrant activation of the glucose/lipid metabolism regulator perox-
isome proliferator-activated receptor gamma; and (iii) hypoxia-inducible factor 1α protein
instability that was associated with impaired glucose metabolism and lower glycolytic
enzyme expression [21].

Pepin et al. examined DNA methylation in left ventricle tissue obtained from seven
patients with end-stage HF (HFrEF) and three donor hearts without heart failure [24].
Hypermethylated promoters were associated with genes involved in oxidative metabolism,
specifically acetyl-CoA acetyltransferase 1, isopentenyl-diphosphate ∆-isomerase, farnesyl
diphosphate synthase, and 3-hydroxy-3-methylglutaryl-CoA synthase 1. Heart failure
was also associated with promoter hypomethylation of enriched glycolytic pathways and
anaerobic metabolic processes, including phosphofructokinase (PFKL and PFKP), enolase
(ENO1, ENO2, and ENO3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [24].
Supporting the role of DNA methylation in heart failure, there are data that demonstrate
that overexpression of DNMT3A reduces the expression of oxidative metabolic genes in
H9c2 rat cardiomyoblasts [24]. There is also binding-site competition via hypermethylation
of the nuclear respiratory factor 1 (NRF1) motif, an upstream regulator of mitochondrial
biogenesis [24].

Liao et al. studied 36 patients with end-stage HF, 12 with ischemic cardiomyopathy
(ICM), 24 with non-ischemic dilated cardiomyopathy (NICM), and 7 controls without heart
failure [25]. DNA methylation profiling identified 2079 differentially methylated gene
(DMP) positions in the myocardium of patients with ICM, of which 625 were hypermethy-
lated and 1454 DMPs were hypomethylated [25]. A total of 261 DMPs were differentially
methylated in the myocardium of patients with NICM compared to the controls, of which
117 DMPs were hypermethylated and 144 were hypomethylated [25]. There were common
hypermethylated (n = 67) and hypomethylated (n = 125) sites in ICM and NICM [23]. The T-
box transcription factor TBX3 was the only protein-coding gene common to ICM and NICM
with DNA hypermethylation and transcriptional downregulation [25]. Interestingly, DNA
methylation of transcription factor binding sites is involved in ventricular development [26].
LINC0088 (long intergenic non-protein coding RNA 881), which is abundantly expressed in
the adult human heart, is hypermethylated in heart failure, including both ICM and NICM,
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and is associated with the downregulation of LINC00881 gene expression [23]. Data suggest
that it is a regulator of cardiomyocyte calcium cycling and an upstream transcriptional
regulator of several key calcium channel and sarcomere organization genes [25].

There are data suggesting that DNMT3a and DNMT3b are not operative in heart
failure, as DNMT3a/3b ablation in mice did not increase in heart failure after increased
cardiac loading from aortic constriction [20]. Promoters of upregulated genes were largely
unmethylated in DNMT3a/3b knockouts compared to control mice [20]. The abundance of
human data [24,25], would outweigh the data from that animal model.

While studies have investigated the impact of DNA methylation on cardiac function
and heart failure with reduced ejection fraction [20,21,24–27], the epigenetic role of DNA
methylation in the pathogenesis of HFpEF has not been well characterized. An analysis of
this subject will address the different putative pathways leading to HFpEF. The objectives
of this study were to explore how epigenetic changes related to DNMT3A/B can modulate
or induce HFpEF. By doing so, we hoped to clarify how epigenetic mechanisms may be
considered in the pathophysiology and future treatment of HFpEF.

4. Myocardial Fibrosis

HFpEF is linked to increased myocardial collagen as well as collagen-dependent and
titin-dependent stiffness [28,29]. Excess tissue fibrosis is a general response to injury [30],
but it has specific consequences in the heart, where it increases myocardial stiffness—a
fundamental feature of diastolic dysfunction [29]. DNA methylation has been linked
to cardiac fibroblast activation and cardiac fibrosis [31]. Cardiac fibrosis consists of an
excessive accumulation of extracellular matrix in the myocardial interstitium [32].

The pathophysiology of cardiac fibrosis can be triggered in response to myocardial
insults such as myocardial hypoxia or inflammation. Hypoxia-induced cardiac fibro-
sis is associated with DNA hypermethylation and increased expression of DNMT1 and
DNMT3B [33]. Hypoxia can stimulate human cardiac fibroblasts to express HIF-1α, leading
to the activation of pro-fibrotic genes, which has been linked to the upregulation of DNMT1
and DNMT3a/3b [33,34].

DNA methylation has been implicated in the development of cardiac fibrosis. This can
occur through various pathways. In cardiac fibroblasts, the hypoxia-induced inactivation
of RASSF1A along with the activation of ERK1/2 produces fibroblast proliferation and
cardiac fibrosis [35]. Two Ras family members have been implicated in these processes.
In the human heart, cardiac fibrosis correlates with aberrant RAS protein activator like 1
(RASAL1) promoter methylation, transcriptional RASAL1 suppression, increased Ras-GTP
activity, and increased expression of EndMT markers [36]. These data suggest aberrant
Rasal1 promoter methylation and hydroxymethylation are regulatory factors involved in
cardiac fibrosis [36]. A reduction in DNMT3A produces an increase in Ras association
domain family member 1 (RASSF1A) expression in activated cardiac fibroblasts, which
upregulates p-ERK1/2 [37]. Thus, the downregulation of RASSF1A, which can occur
through DNA methylation, is associated with cardiac fibrosis and fibroblast activation [37].

DNMT1 is also operative in cardiac fibrosis. DNMT1 hypermethylation reduces
the expression of microRNA-152-3p (miR-152-3p) and promotes the Wnt1/beta-catenin
signaling pathway, leading to the proliferation and activation of cardiac fibrocytes [38].

Histone lysine-specific demethylase 1 (LSD1) was significantly increased, threefold,
in HF from dilated cardiomyopathy [39]. LSD1 was upregulated in Angiotensin II (Ang
II)-treated neonatal rat cardiac fibroblasts, which was reversed by LSD1 silence [39]. LSD1
inducible knockout in vivo, in mice, significantly alleviated cardiac fibrosis as well as sys-
tolic dysfunction and cardiac hypertrophy, after transverse aortic constriction [39]. The loss
of LSD1 in Ang II-induced myofibroblasts involved the intracellular upregulation of TGFβ1
(transforming growth factor β1), its downstream effectors Smad2/3 phosphorylation, as
well as the phosphorylation of p38, ERK1/2, and JNK, but also reduced the supernatant
TGFβ1 secretion [39]. Some of these relationships can be summarized graphically (Figure 1).
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Figure 1. Increased DNA methylation by DNMT1 and DNMT3 leads to changes in fibroblast proteins
and miR-152-3p expression, leading to cardiac fibrosis (through various signaling pathways) and
the development of HFpEF. Red arrows represent a decrease and green arrows represent an increase.
(Fibroblast image: Fibroblasts/Laboratoires Servier/Creative Commons Attribution-Share Alike
3.0 Unported).

Blockade of DNMT3B expression by siRNA significantly reduced collagen 1, and the
DNMT inhibitor (5-aza-2′-deoxycytidine) suppressed the pro-fibrotic effects of TGFβ [31].
5-aza-2′-deoxycytidine, 5-azacytidine, and some selective histone deacetylase inhibitors
can inhibit cardiac fibrosis. [34].

5. SR Calcium ATPase

A less frequently considered pathway in the production of HFpEF involves the sar-
coplasmic reticulum Ca2+-ATPase (SERCA). Cardiac relaxation is regulated by SERCA2a
and its isoforms because they are responsible for the majority of calcium reuptake into the
sarcoplasmic reticulum (SR) [40,41]. The loss of SERCA2a activity reduces the amount and
rate of calcium removal from the cytoplasm into the SR, reducing cardiac relaxation and
producing diastolic dysfunction, which underlies HFpEF [42].

Cytokine levels, specifically TNF-α and interleukin-6 (IL-6), correlate with diastolic
function in critically ill patients, and diastolic function improves significantly in association
with decreased levels of these cytokines [43]. TNF-α and IL-6 are amongst the factors that
downregulate SERCA2 gene expression [43,44]. Increased methylation of the SERCA2a
promoter region can be induced by TNF-α, which increases the expression of DNA methyl-
transferase 1, leading to lower levels of SERCA2a RNA and protein in cardiomyocytes [45].
Some of these relationships can be summarized graphically (Figure 2).
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which is present in HFpEF. Green arrows represent an increase.

It is possible to reverse cardiac dysfunction by increasing SERCA2a through gene
transfer [46]. A possible treatment of HFpEF that warrants further investigation is the use
of hydralazine. In HL-1 cardiomyocytes, hydralazine increased intracellular Ca2+ transients
and SR Ca2+ contents [47]. Hydralazine decreased the expression of DNA methyltrans-
ferases, decreased methylation in the SERCA2a promoter region, and increased the RNA
and protein expressions of SERCA2a [47]. In addition, treatment of isoproterenol-induced
heart failure rats with hydralazine decreased the promoter methylation of SERCA2a and
increased SERCA2a RNA expression [47].

While some animal data suggest that hydralazine plus sodium nitrite significantly
attenuated the severity of HFpEF [48], the combination of hydralazine with isosorbide dini-
trate in patients with HFpEF appears to have deleterious effects on myocardial remodeling
and submaximal exercise, findings that do not support the routine use of hydralazine in
patients with HFpEF [49].

6. Myocardial Inflammation

Cardiac fibrosis, a fundamental aspect of HFpEF, can be triggered in response to my-
ocardial inflammation [28,29]. The myocardium of patients with HFpEF has inflammatory
cells (macrophages) that express the profibrotic growth factor TGF-β [50]. There is an asso-
ciated accumulation of cardiac collagen and a reduction in matrix metalloproteinase-1 [50].
HFpEF is also associated with increased numbers of CD3+, CD11a+, and CD45+ cells, as
well as VCAM-1 [50]. There is a direct correlation between the number of inflammatory
cells and the degree of diastolic dysfunction, linking myocardial inflammation to cardiac
fibrosis and, consequently, diastolic dysfunction [50].

Inhibition of DNA methylation by 5-azacytidine produces a shift in the type of
macrophage to those with an anti-inflammatory phenotype [51]. The effect of DNA
methylation inhibition includes the sumoylation of interferon regulatory factor-1 (IRF1) in
macrophages [51]. SUMO (small ubiquitin-related modifier) proteins are ~10 kD polypep-
tides that function as reversible post-translational protein modifiers. They form isopeptide
bonds with E-amino groups of acceptor Lys residues in hundreds of target proteins in
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a process termed sumoylation [52]. Thus, the inhibition of DNA methylation may op-
erate through IRF1 sumoylation to inhibit cardiac fibrosis [51], while DNA methylation
accentuates cardiac fibrosis through this mechanism.

Epigenetic changes in cardiac myocytes are associated with heart failure [53]. Heart
failure in the Dahl salt-sensitive rat, an animal model of HFpEF [54,55], is linked to increases
in the expression of 12/15-LOX [56]. Alox15, which encodes the protein 12/15-LOX, was
markedly upregulated in failing hearts compared with control hearts [56]. LOXs are a
family of lipid-peroxidizing enzymes that metabolize the oxidation of polyenolic fatty acids
into their corresponding hydroperoxy derivatives [57]. Transgenic mice that overexpressed
12/15-LOX manifested increased cardiac fibrosis with macrophage infiltration [56]. Thus,
in an animal model of HFpEF with hypertension, 12/15-LOX causes heart failure by
promoting cardiac inflammation and fibrosis [56].

5-lipoxygenase (5-LOX) is the key enzyme in the biosynthesis of leukotrienes, which
are pro-inflammatory lipid mediators derived from arachidonic acid [58]. The expression
of 5-LOX mRNA in heart tissue is about fifty times greater than in brain tissue [59]. 5-LOX
expression is regulated by DNA methylation [56,58–61]. Some of these relationships can be
summarized graphically (Figure 3).
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Figure 3. Chronic inflammation has been linked to metabolic stress and chronic inflammation,
and each factor separately, as well as together, induces HFpEF [60]. (Some images sourced from
biorender.com).

Increased DNA methylation shifts macrophages away from an anti-inflammatory
phenotype, leading to increased cardiac fibrosis and HFpEF. Green arrows represent an
increase.

Chronic inflammation has been linked to metabolic stress and chronic inflammation,
and each factor separately, as well as together, induces HFpEF [62].

7. Mitochondrial and Metabolic Defects

Mitochondrial dysfunction is purported to be involved in the pathophysiology of
HFpEF through a number of different pathways, including increased reactive oxygen
species (ROS) production, reduced cardiac creatine phosphate/adenosine triphosphate
(ATP) ratio, and loss of normal protein function [63–65]. Some of these relationships can be
summarized graphically (Figure 4). In a risk model predicting the development of HFpEF,
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25 CpGs had key functions related to energy metabolism as well as intracellular signal-
ing [12]. Superoxide dismutate (SOD) significantly attenuates RASSF1A gene methylation
and can alleviate cardiac fibrosis induced by hypoxia [33]. Another factor operating in this
system is the miR-29 family, which can prevent hypoxia-dependent hypermethylation via
downregulation of DNMTs [66].
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Figure 4. Increases and decreased DNMT3A methylation can have different kinds of impacts on
mitochondrial energy metabolism and production of factors that can reduce cardiac function and/or
limit the heart’s ability to sustain injury, leading to HFpEF. Red arrows represent a decrease. (Some
images sourced from biorender.com).

In HF, the pathways that regulate the elimination of dysfunctional mitochondria
are also disrupted, resulting in a buildup of damaged mitochondria and cardiomyocyte
death [67]. DNMT3A may be involved in maintaining normal mitochondrial function,
structure, and lipid metabolism [21]. DNMT3A was knocked out of human-induced
pluripotent stem cells (hiSC) and engineered into heart tissue (EHT) after differentiation
into cardiomyocytes [21]. On transmission electron microscopy, abnormal cristae structure,
swollen mitochondria, and an accumulation of lipid droplets in pre-apoptotic cells without
sarcomeres were observed in KO EHTs vs. wild-type (WT) EHTs. ATP production, basal
and maximal respiration, and non-mitochondrial respiration were also significantly lower in
the KO cells [21]. KO EHTs had significantly lower levels of mitochondrial DNA (mtDNA)
and mRNA transcripts encoded by mtDNA than WT EHTs [21].

However, in an article by Pepin et al. [27], DNMT3A was suggested to increase in HF
and differentially hypermethylate genes associated with oxidative phosphorylation, while
the promoters of genes involved in glycolysis and other anaerobic metabolic pathways
were hypomethylated. DNA methylation can have consequences on cardiomyocyte signal
transduction pathways [68]. DNMT3A hypermethylation can decrease fatty acid oxidation
occurring in the myocardium and favor the switch to glycolysis, which is consistent with



Biomedicines 2023, 11, 2815 8 of 14

the observed metabolic changes in HFpEF [69]. Despite this, DNMT3A KO EHTs were
shown to have lower mRNA transcripts of enzymes involved in glycolysis, including
HIF-1α, and only KO EHTs functionally declined in glucose-only serum compared to WT,
suggesting impairments in glycolysis [21]. Glycolysis was also impaired in KO EHTs when
the serum was depleted of small molecules, and the addition of small molecules such as
the basic fibroblast growth factor and endothelial growth factor prevented the functional
decline of the KO EHTs and stabilized HIF target gene expression [21]. This suggests that
the contrasting results from Pepin et al. [27] may also be explained by other factors besides
an increase in DNMT3A.

Heart failure is characterized by a switch in mitochondrial metabolism from the utiliza-
tion of fatty acids to glucose metabolism, and specifically by an ‘uncoupling’ of glycolysis
and pyruvate oxidation by downregulation or inactivation of pyruvate dehydrogenase
(PHD) [70,71]. While these metabolic alterations have been characterized best in HFrEF,
there is evidence that diastolic dysfunction, the basis of HFpEF, induced by angiotensin II
or phenylephrine, is associated with reduced glucose oxidation [72].

Another factor that plays a key role in cellular energy metabolism is the peroxisome
proliferator-activated receptor gamma coactivator (PGC-1α), which is a member of a family
of transcription coactivators [73]. As a transcriptional coactivator, PGC-1α contains no
discernible DNA-binding domain. Moreover, no enzymatic activity has been attributed
to this protein. Thus, mechanistically, PGC-1α relies on the selective interaction with
transcription factors to be recruited to target genes and subsequently serve as a protein
docking platform to recruit other complexes [73]. PGC-1α is a key factor that coordinately
regulates the expression of a subset of mitochondrial genes and participates in the overall
mitochondrial function in the cell [74]. PGC-1α functions as a coactivator of NRF1, NRF2,
and ERR-α/β/γ, which are involved in mitochondrial biogenesis; PPAR-α and δ, which
are involved in fatty acid oxidation; TR-β, which is involved in CPT-1 induction; and GR,
HNF 4α, and FOXO1, which are involved in gluconeogenesis [73].

The forced expression of PGC-1α in cardiac myocytes induces the expression of
nuclear and mitochondrial genes involved in mitochondrial energy transduction/energy
production pathways, increased cellular mitochondrial number, and stimulated coupled
respiration [75].

The absence of PGC-1α leads to blunted mitochondrial enzymatic activity and de-
creased levels of ATP in the heart, which is linked to reduced systolic contractile function
as well as reduced diastolic function or relaxation (−ve dp/dt) [76]. PGC-1α−/− mice
are predisposed to developing heart failure as their hearts display myofibrillar disarray
and increased fibrosis [77]. The hypermethylation of PGC-1α decreased the expression
of cardiac PGC-1α and induced cardiomyopathy in male rats that was likely operative
through the impairment of cardiac mitochondrial function [75]. DNA hypermethylation of
PGC-1α contributes to cardiomyopathy in male rats [78].

PGC-1α is sensitive to environmental factors such as environmental chemicals [79].
Thus, it may be one of the pathways whereby environmental factors may play a role in
producing HFpEF.

Reduced DNMT3A-mediated methylation in the heart is associated with aberrant
activation of the glucose/lipid metabolism regulator peroxisome proliferator-activated
receptor gamma, which is associated with an accumulation of lipid vacuoles within car-
diomyocytes [21].

Knockout studies of the main cardiac DNMT, DNMT3A, were associated with a
lower protein abundance of HIF-1α [21]. As we have summarized previously [80], HIF-
1α has been implicated in playing a role in myocardial injury. HIF-1α protects against
acute myocardial ischemia reperfusion injury by “promoting aerobic glycolysis, decreasing
mitochondrial oxidative stress, activating d hexokinase II, and inhibiting mitochondrial
permeability transition pore opening” [81]. The basic fibroblast growth factor may exert its
cardioprotective effect by upregulating HIF-1α mRNA in the ischemic myocardium [82].
Thus, an impairment or reduction in DNMT3A-mediated DNA methylation, which pro-
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duces a reduction in HIF-1α [21], should limit the heart’s ability to sustain injury leading
to heart failure. The complexity of the relationships between methylation of key cardiac
factors can differentially affect the processes leading to HFpEF. Some of these relationships
are illustrated graphically in Figure 4.

8. Obesity

Obesity can be a major factor in HFpEF [4,83]. The analysis of HFpEF subtypes by
some investigators concluded that there was a specific subtype of HFpEF associated with
obesity [4,83]. Obesity is produced by a complex dynamic of energy consumption, expendi-
ture, and metabolism. It can be induced by increased dietary fat intake, which, in animals,
is reproduced by feeding a high-fat diet (HFD) [84]. The hearts of mice treated with a high-
fat diet demonstrate alterations in the levels of DNA methylation/hydroxymethylation
along with decreased mitochondrial mass, a reduction in α-ketoglutarate, and augmented
oxidative stress [84]. These changes do not occur in the brain, indicating that the influence
of high-fat diets on DNA methylation/hydroxymethylation is not a general process [84].

Obesity is associated with an increase in several inflammatory markers, suggesting
that it is a chronic, low-grade inflammation [85]. As discussed above, inflammation in the
heart or its surrounding epicardial fat [86] can lead to HFpEF.

DNA methylation has been implicated in the pathogenesis of obesity, and the modu-
lation of DNA methylation caused by diet and the environment has also been proposed
as a therapeutic strategy to prevent or treat obesity and its complications [87,88]. These
relationships can be summarized graphically (Figure 5).
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9. Aging, Atrial Fibrillation, and Other Comorbidities of Patients with HFpEF

HFpEF is linked to aging, as the incidence of HFpEF increases in older age groups [4,89].
DNA methylation occurs during aging and has been proposed to contribute to the aging
process [90,91]. Increased epigenetic age acceleration in whole blood was a risk marker
for heart failure independently of chronological age and traditional CVD risk factors [92].
The demonstration of epigenetic deregulation during aging has suggested that “epigenetic
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rejuvenation” may be an approach to delaying or reversing cardiovascular conditions such
as heart failure [92].

Atrial fibrillation has been linked to HFpEF [93,94]. In a multivariate analysis consid-
ering age, the left atrial volume index, the E/A and E/e’ ratios, and the left ventricular
internal diameter (LVID), only age and the left atrial volume index were significant indepen-
dent factors related to the presence of atrial fibrillation in HFpEF [94]. DNA methylation
has been implicated in the pathogenesis and maintenance of atrial fibrillation [9]. In a rat
model of heart failure, the atrium in heart failure induced by isoproterenol manifested
increased Pitx2c promoter methylation with increased DNMT 1 and decreased Pitx2c pro-
tein levels [95]. Pitx2c can alter the expression of the potassium inward rectifying channel
(Kir 2.1), which can lead to arrhythmias [96]. Increased cardiac fibrosis, which has been
discussed above, is present in the atrium, and atrial fibrosis is a common feature in the
development of atrial fibrillation [97]. Taken together, the increase in DNA methylation
in the atrial tissue of patients with atrial fibrillation [9] and DNA methylation in the left
ventricle of patients with HFpEF (discussed above) suggests that DNA methylation may be
a common mechanism leading to both HFpEF and atrial fibrillation.

There are other factors associated with HFpEF, such as coronary artery disease and
diabetes mellitus, that have been linked to DNA methylation [98,99]. Their interrelationship
bears further study.

10. Conclusions

This review compared studies that investigated the effect of DNA methylation in
the heart in order to arrive at a clearer concept of how epigenetic changes can contribute
to the pathogenesis of HFpEF. HFpEF is characterized by a complexity of phenomena
that, on a global level, are represented by diastolic dysfunction and left ventricle (LV)
diastolic stiffness, but on a cellular level, involve alterations to cardiomyocyte elements
(mitochondria and SR) and cardiac fibroblasts. We argue that DNA methylation plays a
role in HFpEF through its regulatory actions on mitochondrial proteins, which leads to
impairments in glycolysis and mitochondrial metabolism, decreased cardiac contractility,
and cardiac fibrosis (see graphical summary).
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