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Abstract: Complex diseases that affect the functioning of the central nervous system pose a major
problem for modern society. Among these, ischemic stroke (IS) holds a special place as one of the
most common causes of disability and mortality worldwide. Furthermore, Alzheimer’s disease (AD)
ranks first among neurodegenerative diseases, drastically reducing brain activity and overall life
quality and duration. Recent studies have shown that AD and IS share several common risk and
pathogenic factors, such as an overlapping genomic architecture and molecular signature. In this
review, we will summarize the genomics and RNA biology studies of IS and AD, discussing the
interconnected nature of these pathologies. Additionally, we highlight specific genomic points and
RNA molecules that can serve as potential tools in predicting the risks of diseases and developing
effective therapies in the future.

Keywords: ischemic stroke; Alzheimer’s disease; consecutive pathologies; functional genomics;
transcriptomics; non-coding RNAs

1. Introduction

Diseases that affect the functions of human higher nervous activity and are accom-
panied by severe cognitive impairment account for a significant proportion of diseases
recorded in human populations. The number of cases of such diseases has been rapidly
increasing in recent years, due to socio-economic cataclysms and the general aging of
the population [1,2]. Neuropathology is generally considered as one of the main health
problems, which determines the high social significance and relevance of research aimed
at elucidating the causes of such diseases, as well as developing systems for preventing
and correcting disorders of human brain activity. According to the World Health Organiza-
tion, ischemic stroke (IS) and Alzheimer’s disease (AD) occupy leading positions among
brain neuropathologies [3–5]. Clinically, IS is a consequence of a permanent or temporary
decrease in cerebral blood flow, mostly caused by the occlusion of cerebral arteries by
a thrombus or embolus [3,6–8]. AD, ranking first among neurodegenerative diseases in
the world, is characterized by loss of memory and other cognitive functions, and leads
to profound dementia [9,10]. The relationship between these diseases can be discussed
from several perspectives: clinical (as comorbidity), pathological (as shared pathological
processes) and genetic (as the overlap of genetic markers and transcriptomic changes).

IS is considered a risk factor for AD by, as an example, the American Stroke Asso-
ciation [11]. In a meta-analysis by Zhou et al. [12], pooled data showed that the risk of
AD after a stroke was increased by up to 60% (pooled effect size of 1.59). The reverse
causation, the occurrence of IS in AD patients, was not found to be significant in this
article or in another study [13], but was reported in a more recent meta-analysis by Pinho
et al. [14]. Additionally, all the mentioned papers demonstrated that AD is a risk factor for
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intracerebral hemorrhage (ICH) with a pooled effect size of 1.42–1.41. Furthermore, IS and
AD share many of the same risk factors, including hyperlipidemia, hypertension, heart
diseases, diabetes and obesity [15–17].

The profile of brain neurodegeneration observed after ischemia shares common fea-
tures with neurodegeneration in AD. Firstly, it is characterized by the accumulation of
beta-amyloid peptides in the extracellular space of the brain. This accumulation occurs due
to their influx from the blood and/or impaired clearance from the brain, which is caused
by the disruption of the blood–brain barrier (BBB) [18–21]. Additionally, ischemic brain
injury has been shown to lead to dysfunction of the tau protein, which can be initiated by
beta-amyloids, neuroinflammation or blood-borne tau infiltrated through the disrupted
BBB [22–24]. Furthermore, pathogenic consecutiveness comes from the fact that both AD
and IS diseases have common secondary pathological processes, such as neuroinflamma-
tion and excitotoxicity [25]. As a result, there are some similarities between the pathological
phenotypes [26].

At the molecular level, the profiles of neurodegeneration (brain damage) that form
during the development of AD are in many aspects similar to those observed after IS [27–34].
Currently, there are data on the role of molecular genetic factors in the development of
AD. However, the identified loci only account for a small proportion of the observed
phenotypic variations. This highlights the particular importance of using genomic analysis
methods to identify the so-called “lost” heredity, i.e., currently unknown, but potentially
significant, DNA sequence variants, patterns of genomic architecture and regulatory nodes
on a postgenomic level. Taking an integrated approach to studying the functioning of the
brain after IS can provide insights on the mechanisms of brain degeneration in AD and vice
versa, considering AD and IS as interconnected diseases.

In this review, our aim was to investigate the molecular crosstalk between IS and AD
and to illustrate its complexity. To achieve this, we summarized studies on the genomics
and transcriptomics of both diseases, paying special attention to role of non-coding RNAs,
as these molecules show promise as tools for diagnostics and treatment.

2. Materials and Methods

In this review, we included clinical trials published by PubMed until 20 June 2023.
The keywords used were “ischemic stroke”, “Alzheimer’s disease”, “genomics of stroke”,
“genomics of Alzheimer’s disease”, “ischemic stroke and transcriptomics”, “Alzheimer’s
disease and transcriptomics”, “microRNA” “microRNA” and “Alzheimer’s disease”, “mi-
croRNA and ischemic stroke”, “microRNA profiling”, “circRNA and Alzheimer’s disease”
and “circRNA and ischemic stroke”.

All included studies were selected from peer-reviewed journals. MicroRNA–mRNA
or circRNA–microRNA interactions in the corresponding sections and tables were obtained
only from the articles containing experimental validation of these interactions, not just
prediction by bioinformatic tools.

Articles from non-peer-reviewed journals, retracted studies, without available ab-
stracts or English translations were excluded.

3. Results
3.1. Alzheimer’s Disease (AD)

A significant challenge in the diagnosis and treatment of AD is that clinical symptoms
only become apparent several years after the onset of pathological processes in the brain.
By the time a diagnosis is made, there is already progressive degeneration of neurons
due to the destruction of their cytoskeleton. Most researchers suggest that AD may be
associated with the accumulation of beta-amyloid and the formation of neurofibrillary
tangles in the cerebral cortex and subcortical gray matter [21,35–37]. Specific cases of the
disease have been associated with mutations in the amyloid precursor protein gene, in the
presenilin genes and some others [38–41]. Additionally, the presence of the ε4 allele of the
APOE gene has found to be significant. However, only a small percentage of AD cases are
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hereditary [42–44]. The majority of cases (over 90%) are sporadic forms of AD with late
onset and an unspecified etiology [10,38].

3.2. Ischemic Stroke (IS) and AD

Recent studies have shown that acute IS may be a significant risk factor for the de-
velopment of sporadic forms of AD (as a common trigger for AD) [45–47]. Conversely, an
increase in the risk of IS has also been observed in the context of AD development [27–34].
Additionally, it has been reported that AD and IS often occur consecutively [30,32–34,48].
The profile of brain neurodegeneration observed after ischemia shares common features
with neurodegeneration in AD. Studies have found that cerebral ischemia, in both humans
and animals, leads to the accumulation of beta-amyloid peptides in the extracellular space
of the brain [18–21]. Moreover, the tau protein, which is an important marker of AD, may
exacerbate brain damage in an animal model of stroke by mediating excitotoxic Ras/ERK
signaling [34,49]. Additionally, it has been demonstrated that ischemic brain injury disrupts
the metabolism of the tau protein, which enters the brain when the blood–brain barrier
is disrupted [30,32–34,48]. However, a notable study by Koenig et al. was recently pub-
lished [50]. African American and non-Hispanic white stroke patients from Saint Louis,
MO and controls from an AD research center were studied using MRI, PET and other
clinical and cognitive measures [50]. The authors did not find evidence that preclinical AD
is a risk factor for stroke or predicts post-stroke dementia, supporting the idea that vascular
disease and amyloid pathology are separate disease mechanisms that may each lead to
dementia. The authors note some limitations of the representatives of APOE4 genetics in
cohorts as well as the limited statistical power due to the small number of participants [50].

3.3. Genome-Wide Association Studies of IS

The genetic component is of particular interest as hereditary variations can affect not
only the risk of stroke itself, but also determine the potential risk of traditional factors.
Therefore, this study focuses on the genes associated with the onset of IS in humans. Similar
to AD, it is increasingly clear that the influence of a number of molecular genetics needs
to be considered when assessing the development of IS [51,52]. Through candidate genes
analysis and genome-wide studies of single nucleotide polymorphism (Genome-Wide
Association Studies, GWAS), a number of genes associated with the risk of stroke have been
identified [53,54]. The first GWAS results demonstrated individual associations between
specific polymorphic variants with specific pathophysiological subtypes of strokes. For
instance, polymorphisms in the PITX2 and ZFHX3 genes were associated with cardioem-
bolic stroke, while markers in the 9p21 locus and the HDAC9 gene were associated with
atherothrombotic stroke [55–57]. Subsequent studies have already identified polymor-
phisms (genes) associated not only with individual IS subtypes, but also with strokes in
general [58,59]. Many of the identified loci also showed associations with other signs that
are risk factors for IS (blood pressure, atrial fibrillation, lipid levels, etc.) [53,58].

With an increase in the size of the analyzed groups of patients and controls, the
number of IS risk loci identified in studies has also increased. This increase made it possible
to discover new mechanisms and pathways involved in the development of stroke. For
example, within the largest GIGASTROKE project to date, 89 genomic loci were identified,
with 61 of them being described for the first time [60]. However, the clinical effectiveness
of these loci remains unclear, as they only account for a small percentage of the cumulative
phenotypic variations, ranging from 0.5 to 2% depending on the stroke subtype and
ethnicity of the analyzed population [58]. Losses are implied by the limitations of traditional
statistical methods based on conducting a huge number of single-marker tests that satisfy
a certain level of significance, and their inability to take into account the complexity of
relationships between genome elements, both due to the presence of linkage disequilibrium
and possible interactions between genes (epistasis) [61]. Artificial intelligence methods
are expected to help overcome these limitations and improve the results of GWAS. By
using more sophisticated data processing algorithms, these methods offer an alternative to
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classical statistics used in GWAS studies [62]. Using neural networks with the “autoencoder”
architecture, Chinese scientists predicted 10 new stroke candidate genes using the protein–
protein interactions (PPI) network and a list of stroke-associated genes [63]. Functional
analysis of the predicted genes revealed their relevance to stroke symptoms.

3.4. GWAS of AD

Similar GWAS studies have also been conducted in groups of patients with AD. To
date, approximately 95 loci have been identified, with polymorphisms associated with
the risk of developing AD [64]. Suggested in early GWAS, almost all pathways that
were critical to AD development, including the Aβ pathway (APP, PSEN1, and PSEN2),
inflammatory response (CR1, CD33, MS4A, ABCA7, EPHA1, TREM2 and CLU), lipid
metabolism (APOE, SORL1, ABCA7 and CLU) and endocytosis/vesicle transport (BIN1,
CD2AP, PICALM, EPHA1 and SORL1) [31,65–73]. Further progress in AD research was
achieved with the use of an alternative GWAS approach that includes not only subjects
with a defined disease (cases), but also subjects without a disease (controls) and their
relatives (proxy cases and proxy controls) [73–76]. Data from these larger GWAS, along
with functional genomics, have highlighted the significant role of microglia in AD. Recently,
variability in microglia-related genes has also been determined to be a major contributor
to AD heritability (accounting for 69–84% of total heritability), further emphasizing its
importance in AD development [77].

3.5. Crosstalk between GWAS of IS and AD

Recent studies have indicated that there are overlapping parameters in the genetic
architecture between AD and strokes [28,29,78]. Taylor et al.’s research suggested a common
genetic predisposition to AD and small vessel stroke, identifying four associated pathways,
including cholesterol transport and immune response [29]. Another study, based on the
analysis of two large GWAS statistics for AD (17,008 AD cases and 37,154 controls) and
IS (10,307 stroke cases and 19,326 controls) [78], identified 16 pleiotropic genes that were
significantly associated with both diseases. Many of them (EPHA1, MS4A4A, UBE2L3 and
TREM2) were related to the functioning of the immune system. These findings emphasize
the crucial role of the immune response in the pathogenesis of AD and IS. Notably, two
established AD susceptibility genes, MS4A4A and TREM2, were found to be significantly
altered in ischemic spleen and brain, respectively [78].

3.6. Transcriptomics of IS

With the rapid development of genome-wide analysis methods and multi-omics
technologies, studying of the post-genomic levels of regulation of gene functioning has
become possible. Transcriptome-level analysis is of significant importance, as it allows
for the comprehensive assessment of genomic loci that are involved in the formation of
disease-associated phenotypic parameters.

In 2006, Ford et al. conducted microarray profiling of two (permanent and tran-
sient) middle cerebral artery occlusion (MCAO) rat models [79]. This study identified
genes associated with each of the two IS models. Genes unique to transient MCAO were
mainly involved in the induction of inflammatory and oxidative stress, while permanent
MCAO led to the expression of genes more associated with metabolic activity and cell
signaling [79]. Subsequently, the transient MCAO (tMCAO) model was used to reveal the
differential expression of multiple genes not only in the focal areas, but also in adjacent
brain regions using RNA-Seq and NanoString nCounter technologies [79–86]. Recently,
transcriptome and immunohistochemical approaches have shown that acute IS triggers a
cellular senescence-associated secretory phenotype [87].

Interestingly, the gene expression profile after a stroke, as shown, is subject to temporal
control. A study on mice revealed changes in the mRNA level of cytokines. TNF-a, IL-1b,
IL-10 and TGF-b1 genes increase their expression level in the first hours after tMCAO,
but return to the healthy control level a day later. At the same time, the mRNA of the
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HSP-70 heat shock protein gene remains significantly elevated and 24 h after occlusion [88].
A microarray of RNA from rat blood samples was conducted at 0, 1, 2, 3, 6 and 24 h
after tMCAO. Multiple stereotyped and time-dependent profiles of gene expression were
identified within 24 h. As noted in the study, temporally overlapping profiles have the
potential to provide a biological “stroke clock” to stroke prevention [89]. Additionally,
mRNA expression of genes for inflammatory Iba-1, CD68, CD16 and CD86 proteins was
increased in the ipsilateral olfactory bulb compared to the contralateral side 3 days after
tMCAO in rats [90]. Recently, gene expression changes in cells during neuroinflammation
were identified 24 h after tMCAO using single cell sequencing (scRNA-Seq). The authors
identified 17 principal brain clusters with cell-type specific gene expression patterns as well
as specific cell subpopulations and their functions in various pathways [91]. In addition, the
next study discovered at least six microglial subsets in the stroke-aged brain (19–20 months
old mice), including a potentially stroke-specific subtype using scRNA-Seq and transcranial
tMCAO [92].

3.7. Transcriptomics of AD

As part of the study of the molecular genetic mechanisms of AD, studies of gene ex-
pression were carried out under the conditions of the corresponding models of transgenic
mice. Different authors have shown a predominant increase in the expression of immune
system genes with the development of amyloid plaques in the hippocampus and cerebral
cortex [93–97]. Using microarrays under conditions of four lines of “amyloid” transgenic
mice (mutant human APP gene, PSEN1 or APP/PSEN1) and the transgenic mice “TAU”
(mutant human MAPT gene), researchers have demonstrated that the expression of im-
mune system genes correlated with the presence of plaques. Conversely, genes associated
with synaptic signaling showed a negative correlation with neurofibrillary tangles [98].
Transcriptome analysis of the APPswe/PS1 L166P and Thy-TAU22 models in mice showed
that the APOE, CLU, INPP5D, CD33, PLCG2, SPI1 and FCER1G genes, which are among
the AD risk genes, significantly upregulate expression when exposed to beta-amyloid.
Furthermore, sequencing of single microglia cells confirmed noticeable transcriptional
changes in microglia, including an increase in the proportion of activated microglia, caused
by the pathology of amyloid beta, not the tau protein [99]. This study indicates that the
risk of sporadic AD is associated with genes expressed in microglia, which respond to
beta-amyloid deposition. At the same time, astrocytes, neurons and oligodendrocytes also
exhibit different genome responses to amyloid plaques [100]. A recent large-scale analysis
of spatial transcriptomics (ST) and in situ sequencing (ISS) methods on the brain samples
of mice and humans, revealed a coordinated genome response in AD conditions. Two main
groups of genes were identified. The first group consisted of genes related to myelination
and the functioning of oligodendrocytes (Plp1, Mbp, Mobp, Cldn11, Mal, Apod, Cnp, Trf, Fth1,
etc.), which showed early changes in activity. The second group included genes associ-
ated with complement systems, lysosomes, inflammation and the response to oxidative
stress. They exhibit activity in a noticeably later phase of AD [101]. Transcriptomic data
on AD are currently enriched to a large extent using new single-cell sequencing methods
(single-cell/single-nucleus RNA-Seq) [102,103].This data have already allowed researchers
to propose novel potential treatment strategies, such as treatments based on ferroptosis
inhibition [104].

3.8. Crosstalk between Transcriptomic Data of IS and AD

Researchers have attempted to compare the transcriptomic profiles of IS and AD.
There are at least two papers where whole-transcriptome comparative data are provided.
Liu et al. conducted a study on a large subset of peripheral blood samples of patients
with IS and AD [105]. They identified 74 genes that are differentially expressed in both
diseases, including APOE, SOD1 and RPS3. Many of the genes were found to be related
to the immune system. The authors call it the “crucial mechanism behind the correlation
between AD and IS”. Another group performed a comparison between tMCAO and 5xFAD
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mice [106]. In total, 401 genes were identified, including recently reported common genes
such as TREM2 [107]. The functional annotations of these genes were also related to the
immune system.

3.9. MicroRNAs in IS and AD

To date, it has been demonstrated that not only coding mRNAs, but also various
types of non-coding RNAs (ncRNAs), molecules with significant regulatory potential,
are involved in the response to pathological effects [108–112]. One of the extensively
studied types of ncRNAs is microRNAs (miRNAs). MiRNAs are RNA molecules that are
18–24 nucleotides in length, often transcribed from intron regions of genes and capable of
degrading the target mRNA or limiting its translation. Bioinformatically, more than 60% of
mammalian mRNAs have conserved target sites for at least one miRNA [113].

To date, there is a significant amount of data available on the differential expression
of miRNAs in pathological conditions. For IS, miRNA profiles are provided in the blood
of patients [114,115] and in brain tissues [116]. MiRNA profiles were also obtained for
rats after tMCAO in the blood and in various tissues, including different areas of the
brain [117]. Profiles are also available for oxygen glucose deprivation/re-oxygenation
(ODG/R)-induced cell cultures, including astrocytes [118]. For AD, miRNA profiles are
also revealed in serum and cerebrospinal fluid (CSF) [119] and the hippocampus [120]
of AD patients. For various patient tissues, expression data are provided by Takousis
et al. [121] and Yoon et al. [122]. MiRNA expression profiles have also been obtained for
in vivo models—such as for the cortex of APP/PS1 mice [123]. Several reviews can provide
a systematic understanding of the role of miRNAs in IS [124] and AD [125,126] and can
serve for obtaining transcriptomic data.

Table 1 highlights crosstalk in miRNA-mediated regulation between IS and AD. The
inclusion of miRNA in the table were based on the availability of the information about
expression changes in both diseases (or in their models), the presence of experimentally
confirmed mRNA-targets encoding pathologically significant proteins and confirmed inter-
actions with differentially expressed circRNAs in the respective diseases.

Table 1. MiRNAs associated with both IS and AD *.

MiRNA Disease Differential Expression
Data *

Validated
Targets Target Function References

MiR-7
IS tMCAO rats ↓ α-Syn Promotes neuronal death [127]

AD PBMCs of AD patients ↑ BACE1
Required for the generation of all

forms of Aβ, including Aβ42 [128–131]

MiR-125
IS OGD/R triggered BV2 cells ↓

IGFBP3 Promotes apoptosis [132]

GDF11 Promotes apoptosis via the
TGF pathway [133]

AD Neuro2a APPSwe/∆9 cells;
AD patients ↑

PTGS2,
CDK5

Represses neurite outgrowth but
promotes cell apoptosis [134]

MiR-103
IS tMCAO rats ↑

VEGF Regulates the angiogenesis [135]
NCX1 Regulates Ca2+ and Na+ homeostasis [136]

AXIN2
Reduces apoptosis through regulating

the mitochondria-associated
apoptosis signaling pathway

[137]

AD Mouse model of AD, CSF of
AD patients ↓ PTGS2 Promotes neurite outgrowth and

suppresses cells apoptosis [138]

MiR-142
IS AIS patients, primary mouse

astrocytes and A172 cells ↓ TIPARP Inhibits astrocyte activation via
macroautophagy/autophagy [139]

AD Aβ42-treated SH-SY5Y cells
and AD patients ↓ PTPN1 Regulates VEGFR2 and Akt signaling [140]
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Table 1. Cont.

MiRNA Disease Differential Expression
Data *

Validated
Targets Target Function References

MiR-211

IS OGD/R triggered C12 cells,
penumbra of tMCAO mice ↓ PUMA Promotes apoptosis [141]

AD APPswe/PS1∆E9 mice ↑
SIRT1/Nrf2/HO-1 SIRT1 pathway attenuates

ROS-induced oxidative stress [142]

NUAK1 Regulates cortical neuron
differentiation and survival [143]

MiR-23-3p
IS Cortex of C57/BL6 tMCAO

mice ↑ CXCL12 Suppresses apoptosis [144]

AD Cortex of APP/PS1 mice ↓ GSK-3β Implicated in tau pathology [145]

MiR-138

IS OGD/R induced astrocytes ↓ p65 Essential for NF-κB dimerization [146,147]

AD N2a/APP and HEK293/tau
cell lines ↑

SIRT-1
Mediates synaptic function and APP

processing via
macroautophagy/autophagy

[148,149]

MiR-335
IS tMCAO mice ↓ TIPARP Astrocyte activation [150]

ROCK2 Promotes apoptosis [151]

AD tissues of AD patients ↓ JNK3 Has key role in AD, mediated by
many mechanisms [152]

MiR-328
IS Serum of IS patients ↓

No validated
targets in IS
conditions

Role in IS development is yet
unknown, but connection between

serum levels and short-term
prognosis of stroke had been reported

[153]

AD SK-N-SH and SK-SY5Y cell
lines ↓ BACE1 Required for the generation of all

forms of Aβ, including Aβ42 [154]

* IS—ischemic stroke, AD—Alzheimer’s disease, tMCAO—transient middle cerebral artery occlu-
sion, OGD/R—oxygen glucose deprivation/re-oxygenation, PBMCs—peripheral blood mononuclear cells,
CSF—cerebrospinal fluid, Aβ—amyloid-β peptide, APP—amyloid precursor protein. Arrows (↑↓) indicate
reported direction of expression change (↑—increase, ↓—decrease).

It is important to note that some miRNAs are associated with IS and AD due to the
commonality of the pathological processes underlying both diseases (apoptosis, neuroin-
flammation, oxidative stress). For instance, miR-125 and miR-211 are associated with
apoptosis, and miR-125 regulates inflammation in both diseases (Table 1). Additionally,
certain miRNAs are involved in disease-specific pathologic processes. An example is
miR-23a-3p. Jiang et al. showed that this miRNA interacts with the mRNA of GSK-3β, a
kinase important for tau protein phosphorylation in AD conditions; whereas, in IS model
conditions, the pro-apoptotic role of miR-23a-3p was shown. Another unique function of
this miRNA in IS is the prevention of oxidative stress after reperfusion [155]. For miR-103,
its role in the regulation of apoptosis has been shown in animal models of both diseases;
however, miR-103 interaction with vascular endothelial growth factor (VEGF) mRNA, as
well as preventing excitotoxicity by targeting the transcript of the Na+/Ca2+ exchanger
gene (NCX1), has been shown only in IS. Overall, five of the nine described miRNAs have
disease-specific functions reported to date, and we can expect new evidence about these
unique contributions of miRNAs in IS and AD.

Third, six of nine miRNAs change their expressions in opposite ways. Possible expla-
nations are limited by the fact that all models, in which these changes are observed, are not
completely comparable. One model may show the compensation state of some pathological
process, while another will show the decompensation state. As an example, even in one
animal model we have significant spatial [117] and temporal [156] transcriptomic changes.

3.10. Circular RNAs in IS and AD

MiRNAs regulate the expression of target miRNA, but they themselves are also
regulated by various types of non-coding RNAs (ncRNAs). A new type of covalently
closed molecules of non-coding RNAs (circular RNAs, circRNAs) has attracted special
attention due to their properties, which are fundamentally different from those of other
types of RNA. First, circRNAs have increased metabolic stability, as the lack of free 5′ and
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3′ ends [157,158]. Second, circRNAs often originate from protein-coding genes along with
mRNA, but do not code proteins and may be subject to a different regulation of expression
than mRNA [159,160]. Third, circRNAs are highly abundant in brain tissue cells [161–165].
Fourth, it has been shown that circRNAs are actively expressed under various disease
conditions [156,166–170]. Additionally, circRNAs are highly homologous in humans and
rodents (common model animals) [171]. Therefore, circRNAs are an important focus of
translational research. The functional significance of circRNAs continues to be actively
studied. The ability of circRNAs to interact with miRNAs, neutralize their activity and
thereby prevent the miRNA-mediated repression of protein-coding transcripts has been
most proven [165,172].

CircRNA expression and their functions in different pathological conditions are ac-
tively studied. On one hand, there is strong evidence of their importance and therapeutic
perspectives [173]. On the other hand, there is lack of sufficient data, lack of established
approaches and even a lack of consensual nomenclature. The paper by Vromman et al. [174]
can provide a good presentation of these problems, and all of them can be perceived as
important and actual research goals.

For IS, circRNA expression data are available for tMCAO rats [156] and the blood
of IS patients [175]. There are also some up-to-date reviews that can lead to a deeper
understanding of circRNA’s contribution to IS [176,177]. Table 2 illustrates some circRNAs
associated with IS. All of them have some validated targets and functions in IS conditions.

Table 2. CircRNAs associated with IS *.

circRNA Differential
Expression Data

Validated
Targets Reported Axis Function References

ciRS-7 (CDR1as) tMCAO mice ↓ miR-7/α-Syn
(SNCA)

CDR1as overexpression suppressed α-Syn
protein induction, promoted motor function
recovery, decreased infarct size, curtailed the

markers of apoptosis, autophagy and
inflammation in the post-stroke brain

[178]

CircUCK2
(Circ_001128)

tMCAO mice ↓,
OGD HT-22 cells ↓

miR-125b-5p/
GDF11

Upregulated circUCK2 levels decreased
infarct volumes, attenuated neuronal injury

and improved neurological deficits
[133]

CircHECTD1
(Circ_0000375)

tMCAO mice ↑,
plasma of acute IS patients ↑,

OGD-R A172 cells ↑

miR-142/
TIPARP

circHECTD1 leads to the inhibition of
expression with subsequent inhibition of

astrocyte activation via
macroautophagy/autophagy

[139]

CircTLK1
(circ_0004442) tMCAO mice ↓ miR-335/

TIPARP

Knockdown of circTLK1 decreased infarct
volumes, attenuated neuronal injury, and

improved neurological deficits
[150]

CircCDC14A tMCAO mice ↓ miR-23a-3p/
CXCL12

Knockdown of circCDC14A suppressed
MCAO-induced cerebral infarction and

neurological damage, as well as the brain
tissue damage and neuronal apoptosis

in vivo

[144]

* IS—ischemic stroke, tMCAO—transient middle cerebral artery occlusion, OGD/R—oxygen glucose
deprivation/re-oxygenation, arrows (↑↓) indicate reported direction of expression change (↑—increase,
↓—decrease).

For example, ciRS-7 encoded by the CDR1 gene is involved in the miR-7/α-Syn
(SNCA) axis; the overexpression of ciRS-7 suppresses α-Syn protein induction and pro-
motes motor function recovery, decreases infarct size and curtails the markers of apoptosis,
autophagy and inflammation in the post-stroke brain [178]. Additionally, circTLK1 is in-
volved into miR-335/TIPARP axis. The knockdown of circTLK1 decreased infarct volumes,
attenuated neuronal injury and improved neurological deficits in tMCAO mice [150]. A
similar effect can be achieved with the knockdown of circHECTD1; it is involved in the
miR-335-3p/TIPARP axis. Gene TIPARP, regulated by this axis, is involved in astrocyte
activation [139].
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For AD, there are experimental data available for the frontal cortex [179]. Computa-
tional analysis has revealed circRNAs, which may be associated with AD pathology [180].
There are also reviews about circRNAs in AD [181]. Table 3 illustrates some circRNAs
associated with AD.

Table 3. CircRNAs associated with AD *.

circRNA Differential Expression Data Validated Targets Reported Axis Function References

ciRS-7
(CDR1as)

Hippocampal region of AD
patients ↓

miR-7/
UBE2A

Drives amyloid accumulation and the
formation of senile plaque deposits [131,170,182]

Circ_0000950
(circAKT1S1)

NGF-stimulated PC 12 cells,
primary cerebral cortex neurons

from rat embryo cells—no
expression changes

miR-103/
PTGS2

Regulates neuron apoptosis, neurite
outgrowth and IL-1β, IL-6 and

TNF-α levels
[138]

CircHDAC9
Serum of AD patients and

individuals with mild cognitive
impairment ↓

miR-138/
Sirtuin-1

Mediates synaptic function and APP
processing in AD [148]

CircHIST1H4E
(circ_0001588)

Streptozotocin-induced rat model
of AD ↓

miR-211-5p/
SIRT1/Nrf2/HO-1

Control of reactive oxygen species
production and malonaldehyde levels,

regulates superoxide dismutase and
glutathione levels

[142]

CircAXL
(Circ_0002945)

AD serum and amyloid beta
Aβ25-35-stimulated SK-N-SH cells

and human primary neurons
(HPNs) ↑

miR-328/
BACE1

Regulates apoptosis, neurite outgrowth
and inflammatory cytokines in cellular

AD models
[154]

miR-431-5p/
TNFAIP1

Controls Aβ25-35-induced cell apoptosis
and endoplasmic reticulum stress. [183]

* AD—Alzheimer’s disease, Aβ—amyloid-β peptide, APP—amyloid precursor protein. Arrows (↑↓) indicate
reported direction of expression change (↑—increase, ↓—decrease).

In AD conditions, there is a reported age-dependent loss of circHDAC9. This circRNA
is known to be part of circHDAC9-miR-138-APP/PS, and the decreased expression of its
target protein activated Aβ production.

Several differentially expressed circRNAs reported to be differentially expressed in IS
and AD are presented in Tables 2 and 3, respectively. These data are presented separately
because only one circRNA is reported to be differentially expressed in both conditions.
However, each of the shown circRNA has a validated interaction with miRNA involved in
both IS and AD (and described in Table 1). In both tables, the majority of circRNAs have
lowered expression compared to one in a healthy state. This aligns with the experimental
results obtained in our lab: whole-genome RNA sequencing revealed 377 downregulated
circRNAs and only 18 upregulated circRNAs in the rat brain under tMCAO conditions [156].
An expression of target miRNA may be expected to change in the opposite direction from
its circRNA “sponge”. It can be observed that this assumption is often (but not always)
consistent with the data provided in Tables 2 and 3.

The only circRNA reported to be differentially expressed in both IS and AD is ciRS-7,
one of the first and most described molecules of this type [184]. However, due to the lack
of data, especially on circRNAs in AD, it is possible to believe that more similarities are yet
to be discovered.

4. Discussion

The relevance of studying the mechanisms underlying the commonality of brain
diseases is driven by the current demographic transition, advances in medicine and the
increase in the average life expectancy of the population. As a result, the older population
is experiencing a wider range of diseases that often overlap, modifying disease trajectories.
Therefore, investigating the genetic basis of non-random combinations of multifactorial
diseases, such as AD and IS, is not only important for understanding the underlying
pathogenetic mechanisms, but also for the development of new approaches to assess and
prevent risks for both patients and their relatives. To further advance our understanding of
the genetic relationship between AD and IS, it is necessary to apply functional genomics
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methods to study AD risk genes in the context of ischemic brain damage and, conversely,
IS risk genes in conditions of AD. Although studies focused on the role of the tau protein
have been conducted [27,48,185,186], the available research data are insufficient for a
comprehensive understanding of the relationship between the etiology of AD and strokes.
Therefore, it is a prospective task to investigate the structure and function of the genes
involved in AD and IS, in both humans and in model systems using comparative genomics,
transcriptomics, biomedicine, as well as innovative approaches from the fields of physical
and computer science.

A modern search for methods to prevent IS and AD should also consider utilizing
the properties of new RNA types. The contribution of experimentally validated miRNA-
circRNA axes to the pathogenesis of IS and AD is graphically summarized in Figure 1.
Although these data are illustrative and focus only on two types of ncRNAs, there are much
more relevant types of ncRNAs, such as long non-coding RNAs [187,188]. Nevertheless, it
is sufficient for understanding the importance and perspectives of further studying the role
of ncRNAs in IS and AD.
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It is important to note that the data were obtained from different models. tMCAO rats
are considered suitable for preclinical stroke research [189,190], while the APP/PS1 mice
model is used for AD research [191]. Although the suitability of IS [192] and AD [193] mod-
els is still being debated, we still need to refer to them to obtain most of the transcriptomics
data. It is important to consider all limitations when translating these results to humans.
Another limitation is the conflict on the direction of expression changes in different models.
As shown in Table 1, there are molecules that change expression in opposite ways in ani-
mals, cell models and human cells. This controversial fact is discussed further below. We
can speculate about the significance of these RNA axes in the corresponding diseases, but
more data on circRNA expression and changes in pathology are still needed.
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As seen in Figure 1, there are several common pathological processes involved in
both IS and AD, such as apoptosis, oxidative stress and neuroinflammation. Genes that
are involved in the development of these processes are sometimes regulated by the same
miRNAs. For example, the miR-7, miR-335 and miR-125 target genes are involved in
apoptosis, while mir-142 regulates genes related to neuroinflammation in both conditions.
However, there are differences in the circRNAs that interact with these miRNAs, between
IS and AD. This may highlight the differences between these two pathological conditions:
as an example, circAXL/mir328/BACE1 regulates Aβ production, and this process is AD-
specific. So, circRNA can contribute to the development of disease-specific changes in the
transcriptome level. However, we can also expect more similarities in the circRNA profiles
yet to be found, as shown in the CirS-7/miR-7 axis, involved in regulation apoptosis in
both AD and IS. Both common and unique circRNAs and circRNA–miRNA–mRNA axes
may have important implications in the diagnostics and treatment of brain disorders.

The study and application of the circRNAs properties in the context of IS and AD is
highly relevant. This is primary due to the diverse and unique properties of circRNAs,
which hold promise for enhancing the existing methods for preventing IS and AD as well
as managing the consequences of these diseases [194,195]. Moreover, the properties of
circRNAs as new important regulators in the nervous system may underlie the phenomenon
of the interconnectedness of neuropathologies, in particular IS and AD. This aspect, in our
opinion, is particularly promising and warrants further investigation.

It should be noted that, currently, there are very few safe and effective therapies
for IS and AD therapy [196,197]. However, many believe that there may be circRNAs
with potential therapeutic properties. For example, Yang et al. showed that circSCMH1,
when delivered via extracellular vesicles, binds to the MeCP2 protein, leading to the
removal of the repression of downstream MeCP2 target genes. There is a significant
increase in neuroplasticity and the inhibition of glial reactivity and peripheral immune
cell infiltration in rodents and primates after a stroke [198]. Additionally, the delivery of
circDYM via extracellular vesicles alleviates depressive-like behavior induced by chronic
unpredictable stress in mice [199]. Indeed, the world is still far from a safe and effective
technology for circRNA-based therapies, and there is a clear lack of fundamental scientific
data. Nevertheless, as the review shows, there are convincing perspectives to overcome
these data gaps.

5. Conclusions

From the analysis of the literature, it becomes clear that the combination of genomic
and transcriptomic approaches is one of the effective ways to study the features of the
genesis of complex socially significant diseases, including AD and IS. RNA molecules and
their axes can play a regulatory role in genome functioning and pathogenesis in brain cells.
circRNAs can serve as new potential regulators in the brain during IS and AD. It is possible
that the properties of this class of RNAs may underlie the phenomenon of the IS and AD as
interrelated pathologies. Thus, circRNAs can be a promising tool in predicting the risks of
disease and creating effective therapies in the future.
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