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Abstract: Post Acute Sequelae of SARS-CoV-2 infection (PASC or Long COVID) is characterized by
lingering symptomatology post-initial COVID-19 illness that is often debilitating. It is seen in up to
30–40% of individuals post-infection. Patients with Long COVID (LC) suffer from dysautonomia,
malaise, fatigue, and pain, amongst a multitude of other symptoms. Fibromyalgia (FM) is a chronic
musculoskeletal pain disorder that often leads to functional disability and severe impairment of
quality of life. LC and FM share several clinical features, including pain that often makes them
indistinguishable. The aim of this study is to develop a metabolic fingerprinting approach using
portable Fourier-transform mid-infrared (FT-MIR) spectroscopic techniques to diagnose clinically
similar LC and FM. Blood samples were obtained from LC (n = 50) and FM (n = 50) patients and stored
on conventional bloodspot protein saver cards. A semi-permeable membrane filtration approach
was used to extract the blood samples, and spectral data were collected using a portable FT-MIR
spectrometer. Through the deconvolution analysis of the spectral data, a distinct spectral marker at
1565 cm−1 was identified based on a statistically significant analysis, only present in FM patients.
This IR band has been linked to the presence of side chains of glutamate. An OPLS-DA algorithm
created using the spectral region 1500 to 1700 cm−1 enabled the classification of the spectra into
their corresponding classes (Rcv > 0.96) with 100% accuracy and specificity. This high-throughput
approach allows unique metabolic signatures associated with LC and FM to be identified, allowing
these conditions to be distinguished and implemented for in-clinic diagnostics, which is crucial to
guide future therapeutic approaches.

Keywords: fibromyalgia; post-acute sequelae of SARS-CoV-2 (PASC)/long COVID; metabolic
fingerprinting; in-clinic disease diagnostics; chemometrics; blood

1. Introduction

The Post Acute Sequelae of SARS-CoV-2 infection (PASC), also known as Long COVID
(LC), is characterized by lingering symptomatology following the initial COVID-19 illness
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and is often debilitating. As described by the National Institute for Health and Care
Excellence (NICE) guidelines, it is defined as signs and symptoms that develop during
or after an acute infection consistent with COVID-19 that persists longer than 4 weeks [1].
More than 200 PASC/LC symptoms have been reported, which can affect multiple organ
systems and last weeks, months, or years [2–7]. Although there are no consensus diagnostic
criteria, generally, PASC is organized into two domains. The first is tissue or organ injury
identifiable through traditional laboratory or imaging technologies, usually following
severe acute COVID-19 illness and hospitalization, and the new onset of a major disease
like diabetes or myocardial infarction following the infection. These are typically called
post-COVID conditions. By contrast, LC is generally understood as a group of symptoms
persisting for more than 6 months that have significant functional impairment, usually
in the absence of identifiable major organ injuries. [1,8,9]. Patients with LC often suffer
from widespread pain, fatigue, post-exertional malaise, physical and cognitive dysfunction,
psychological factors, sleep disturbance, and autonomic dysregulation, amongst many
others [7–11]; LC can be seen in up to 10–30% of individuals following infection and
has also been recognized to develop in a small portion of individuals following SARS-
CoV-2 vaccination [7]. With over 65 million individuals affected by LC worldwide, as a
number that continues to grow, the treatment of LC is a global health crisis. Moreover, the
mechanism of chronic pain in LC has not been definitively defined [12,13].

Fibromyalgia (FM) is a chronic musculoskeletal pain disorder that often leads to func-
tional disability and may progress to a severe impairment of quality of life, affecting up to
5% of individuals worldwide [14–17]. As the etiopathogenesis of FM remains poorly un-
derstood, there is currently no biomarker, objective, or reliable test available for diagnosing
FM. The type of pain experienced by individuals with FM is chronic non-malignant pain;
it is essentially identical to the type of pain experienced by patients with LC. Despite this
common clinical phenotype, the underlying pathogenesis of these disorders varies greatly,
and particularly for FM, is not well understood. In addition, these disorders may frequently
overlap, making diagnosis even more challenging. Therefore, the absence of distinct diag-
nostic markers and similar clinical presentations in these conditions creates a conundrum
in terms of the ability to accurately differentiate and diagnose LC and FM [18–20].

LC and FM patients with poorly explained symptoms are often treated as individuals
with widespread pain and are subsequently inappropriately treated with narcotics. An
increase in opioid prescriptions for chronic non-malignant pain-related syndromes has been
seen and exacerbated in the United States since the onset of the COVID-19 pandemic [21–27].
This is vitally important to recognize since a large percentage of patients with chronic
non-malignant pain regularly seek and obtain analgesics for the treatment of their global
pain complaints. However, there is no evidence that opioids improve their status beyond
standard care and may contribute to a less favorable outcome [28,29]. A prior survey of
chronic pain patients has shown that 49% of patients taking opioids continued to report
severe pain (>7/10), and 41% of those surveyed meet current criteria for FM [30]. Although
this survey preceded the identification of LC, it is likely that similar numbers would be
seen in a LC cohort since the clinical characteristics and level of pain seen in this group are
comparable to those seen in FM and CFS/ME [10]. Over-reliance on opioids for chronic
pain disorders may be due to the complexity of managing chronic pain conditions [31–33].

Metabolic fingerprinting for accurate diagnosis is crucial to guide treatment ap-
proaches, utilize reliable biomarkers for the differentiation of clinically similar diseases, the
identification of at-risk populations, and the ability to administer targeted and appropriate
medication for specific treatment groups, all of which are urgently needed. Furthermore,
the elucidation of specific biomarkers holds promise for providing important clues for the
development of personalized treatment approaches in the future of these conditions [34,35].
Common analytic techniques for profiling metabolic fingerprints include nuclear magnetic
resonance (NMR) and mass spectrometry (MS) with enough selectivity and specificity [36].
However, these techniques are less amenable to being implemented in clinics due to the
demands of costly instrumentation, tedious sample preparation, and well-trained techni-
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cians [37]. Technique breakthroughs of vibrational spectroscopic techniques, specifically
FT-IR combined with chemometrics, have provided new opportunities to explore the
metabolic fingerprinting of diseases [34,38–40]. Chemometric analyses such as principal
component analysis (PCA), the soft independent modeling of class analogy (SIMCA), par-
tial least squares—discriminant analysis (PLS-DA), and support vector machine (SVM) are
commonly used to extract spectral fingerprints from other chemical properties of biological
samples [37]. In addition, since the last decade, portable FT-IR spectrometers have become
commercially available, advancing in optoelectronics, micro-electro-mechanical systems,
and (MEMS) production [41]. The applications of portable FT-MIR spectrometers with
high spectral resolution equivalent to benchtop instrument systems have the tremendous
potential to profile metabolic fingerprints, enabling in-clinic diagnosis.

Our group reported the first metabolomics studies to diagnose FM and related rheuma-
tologic disorders (rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and
osteoarthritis (OA) using vibrational spectroscopy [37,42,43]. A semi-permeable membrane
filtration extraction approach was standardized to isolate the low molecular weight fraction.
The significance of aromatic amino acids and peptide backbones was highlighted, and
aromatic amino acids might serve as candidate biomarkers for FM [37,42]. Since 2020,
some research has been conducted on the rapid diagnosis of COVID-19 using FT-IR spec-
troscopy, such as detecting the virus in blood samples [44], saliva [45,46], and pharyngeal
cell smears [47]. Lipids, proteins, and nucleic acids are strongly associated with COVID-19-
positive samples, serving as “chemical fingerprints” [46,47]. Dierckx et al. employed NMR
to evaluate the association of blood metabolites with disease severity in COVID-19 patients
and reported that a broad set of biomarkers, including amino acid concentration and inflam-
matory markers, were correlated with disease severity [48]. However, to date, metabolic
fingerprinting for the diagnosis of clinically similar LC and FM has not been investigated
and is, therefore, the objective of this study. In addition, unique metabolic fingerprinting
signatures associated with LC and FM were assessed through spectral deconvolution,
providing unique information for discriminating LC and FM.

2. Materials and Methods
2.1. Patient Sample Recruitment and Sample Storage

Approval from the University of Texas at the Austin institutional review board was
obtained prior to embarking on any study on human subjects. All studies adhered to the
Declaration of Helsinki principles. The IRB approval date was (study no. 2020030008)
19 June 2020. Following informed consent, blood samples were obtained from patients with
LC (n = 50), FM (n = 50), and healthy controls (NS, n = 6) at the University of Texas at the
Austin Post COVID Program and Fibromyalgia and Central Sensitivity Syndrome clinics
located at University Texas Health Austin Clinics, Austin, Texas. Bloodspots on LC subjects
were obtained between November 2022 to March 2023. Bloodspots on patients with FM and
healthy controls (HC) were obtained from September 2020 through March 2023. Samples
were collected and stored on bloodspot cards (Whatman 903Blood Protein Saver Snap
Apart Card, GE Healthcare, Westborough, MA, USA) at −20 ◦C until they were shipped
to the Rodriguez-Saona Vibrational Spectroscopy laboratory at The Ohio State University
Department of Food Sciences on dry ice and stored for subsequent analysis. Standardized
circles on the filter paper served as a guide to ensure the collection of approximately 50 µL
of blood per spot.

Questionnaires: All subjects with FM provided a self-report of symptoms through
the use of the Revised Fibromyalgia Impact Questionnaire (FIQR), a 10-item self-rating
instrument that measures physical functioning, work status, depression, anxiety, sleep,
pain, stiffness, fatigue, and wellbeing [49]. The Beck Depression Inventory (BDI) is a
21-item self-report rating inventory that measures characteristic attitudes and symptoms
of depression [50]. The Symptom Impact Questionnaire Revised (SIQR) is the FM-neutral
version of the FIQR and does not assume that the patient has FM [51]. The SIQR was
utilized as a measure of physical functioning, work status, depression, anxiety, sleep, pain,
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stiffness, fatigue, and wellbeing in all subjects with LC. All subjects with LC completed the
Fibromyalgia rapid screening tool (FIRST) questionnaire. The FIRST questionnaire is a 6-
item questionnaire that is used as a tool to detect the symptoms indicative of Fibromyalgia.
A cut-off score of 5 (corresponding to the number of positive items) gives the highest rate
of correct identification in patients (87.9%), with a sensitivity of 90.5% and a specificity
of 85.7% [52].

Criteria for the diagnosis of FM included: age 18–80 with a history of FM and meeting
current criteria for FM. [15] To become a patient in the Post-COVID-19 Program, individuals
were required to have reached a minimum of 12 weeks from the onset of their initial
COVID-19 illness. Documentation of a positive COVID-19 test was not required to receive
services, although all patients were screened by a dedicated nurse to validate that their
clinical history was consistent with a prior COVID-19 infection and that their symptoms are
likely associated with PASC and not an obvious alternative etiology. Sigmaplot v15.0 and
SigmaStat v4.0 software (Inpixon, Palo Alto, CA, USA) were utilized for the statistical
analysis of questionnaires.

2.2. Sample Preparation

Sample preparation was conducted following a washed semi-permeable membrane
ultrafiltration extraction approach with minor modifications [37]. One circle from the
bloodspot cards was punched and extracted with 1 mL of HPLC-grade water in a 15 mL
centrifuge tube. The mixture was sonicated (Sonic Dismembrator Model 100, Fisher,
Pittsburgh, PA, USA) for 30 min to ensure thorough mixing, and the dissolved blood
aliquots were subjected to the filtration process. The Amicon® Ultra-4 centrifugal filter
tubes (10 MWCO KDa) underwent a thorough washing process to eliminate the glycerol
that coated the filter membrane. Each filter tube was washed four times with 3 mL of HPLC
grade water via centrifugation (Sorvall™ Legend™ XFR Centrifuge, Thermo, Waltham,
MA, USA) at 4000 rpm for 10 min at a temperature of 4 ◦C. Then, the dissolved blood aliquot
was transferred to the washed Amicon® filter tube and centrifuged at 4000 rpm for 15 min
at 4 ◦C to remove proteins and the isolated low-molecular-weight-fraction (LMF) of the
human plasma proteome. Blood filtrate fluid with LMF as a significant source to identify
plasma-based biomarkers of disease [53] was dried on a film via vacuum centrifuging
(Vacufuge plus Concentrator, Eppendorf, Westbury, NY, USA).

2.3. Spectral Data Acquisition

Spectral data were collected using a 4500a series Agilent’s portable FT-MIR spectrome-
ter (Agilent Technologies, Santa Clara, CA, USA). This FT-MIR spectrometer was equipped
with a 3-bounce diamond attenuated total reflectance (ATR) crystal, a Michelson interferom-
eter, a zinc selenide beam splitter, and a thermoelectrically cooled dTGS detector, enabling
analysis across the spectral range from 4000 to 700 cm−1. The ATR crystal featured a 200
µm active area on a 2 mm diameter sampling surface, providing a penetration depth of
approximately 6 µm. For spectral collection, a dried blood plasma pellet was redissolved in
10 µL of HPLC-grade water. The redissolved plasma was vortexed to mix thoroughly, and
2 µL of it was pipetted onto the ATR sampling window for spectral acquisition. The excess
water was evaporated using the vacuum to obtain a film on the ATR sampling window to
avoid the interference of signals from water. A background was obtained between each
reading, and 128 scans were co-added with an 8 cm−1 resolution for spectral collection to
enhance the signal-to-noise ratio.

2.4. Chemometrics Analysis

Chemometrics analysis was used to analyze IR spectral differences, resolve unique
metabolic fingerprints, and classify spectra according to their assigned classes (FM and
LC). The spectra were imported into a chemometrics analysis software, Pirouette® version
4.5 (Infometrix Inc., Woodville, WA, USA), to perform Orthogonal Signal Correction-
Partial Least Squares Discriminant Analysis (OPLS-DA). OPLS-DA is a supervised learn-
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ing technique that calculates a regression relationship between IR fingerprinting data
and a response variable that contains known class memberships of FM (class 1) and LC
(class 2). Orthogonal signal correction (OSC), a data filtering technique, operates by identi-
fying and removing signal components that are orthogonal or unrelated to the response
variable of interest and minimizes interindividual variance [54]. PLS-DA extracts a se-
quence of factors/latent variables, maximizing the covariance from both X and Y and
reducing a large number of variables. Overall, by leveraging OPLS-DA, IR fingerprinting
data can be effectively utilized to distinguish and classify samples belonging to FM and
LC classes.

Spectral data were split into two sets randomly to train and external-validate a predic-
tive algorithm to diagnose FM and LC. The training set contained 80% of data with FM
(n = 40) and LC (n = 40). The remaining 20% of data formed an independent external vali-
dation set with FM (n = 10) and LC (n = 10). Spectral data were preprocessed to minimize
undesired variation or technical artifacts from raw data, improving the quality of spectral
data [55]. First, raw spectral data were normalized and smoothed using the Savitzky–Golay
filter (SG, 5-points), and second derivative-transformed (SG, 7-points). This pretreatment
effectively enhanced minor bands, resolved overlapping bands, and suppressed undesir-
able spectral features (i.e., scattering effects). Additionally, mean centering was performed
to alleviate multicollinearity [56]. The combination of SG filtering and mean centering
ensured that the spectral data were optimized for subsequent analysis.

Internal cross-validation (ICV) and external validation (EV) were used to assess the
discriminating ability of the OPLS-DA model [57]. ICV was performed using a leave-one-
out method, where each sample was excluded in turn to generate a model that could predict
class membership using the remaining samples [58]. The ICV provided diagnostic statistics,
such as misclassification and Rval, indicating the performance of the training model [59].

The results obtained from cross-validated OPLS-DA represent the classification of
samples within the training set. This approach assisted in selecting the optimal number
of latent variables (LVs) and provided insights into the classification performance of the
OPLS-DA model. For EV, an independent external validation set (20%) was employed.
This set was unseen by the training model and served to evaluate the model’s performance
in an unbiased manner. The EV assessment provided measures of predictive accuracy,
sensitivity, and specificity, resembling real-world applications in a clinical setting. Overall,
the performance of OPLS-DA models was evaluated using the standard error of cross-
validation (SECV), standard error of prediction (SEP), coefficient of determination (R2),
sensitivity, specificity, and accuracy. Additionally, a receiver operating characteristic (ROC)
curve was performed in R software [60] using the pROC package [61] from ICV and EV.

2.5. Spectra Deconvolution Analysis

The relative percentage area of each IR band in the region of 1500 to 1700 cm−1

was determined by the second-derivative transformation of raw absorption spectra to
resolve overlapping bands using OriginPro 2023 (Origin Lab, MA, Northampton, USA) [62].
Raw spectral data were first normalized, smoothed (SG, 5-points), second derivative-
transformed (SG, 7-points), multiplied by (−1) to invert second derivative IR bands, and
finally baseline-corrected. Then, absorbance spectra were fitted using full width at half
maximum (FWHM) Gaussian band profiles using the Multipeak option (Figure 1). In the
fitting process, the height and width of selected IR bands varied until the best fit with the
experimental curve (Chi-square tolerance value of 1 × 10−9, <400 iterations) was found.
The goodness of the fit was determined by observing the F-statistics and values of Chi-
square [63]. In order to test the statistical significance of the relative percentage area of each
IR band deconvoluted, one-factor analysis of variance (ANOVA) was performed using
OriginPro 2023 (Origin Lab, Northampton, MA, USA). The mean values were compared
using Tukey’s test at the 5% significance level.
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3. Results
3.1. Clinical Characteristics of Subjects

The clinical characteristics of patients with LC and FM are presented in Table 1. Table 1
shows that subjects with LC (n = 50, F: 32, M: 18) had a mean age of 49.5 ± 14.6 with a
range of 18–73. Their BMI was 29.5 ± 28.6, with a mean SIQR of 44.6 ± 21.4. Patients with
FM (n = 50, F: 50, M: 0) had a mean age of 45.0 ± 13.1 with a range of 18–72. Their BMI
was 31.2 ± 8.2, with a mean FIQR of 50.96 ± 22.0 and a mean BDI of 18.31 ± 9.9. Further
analysis of the LC group comparing males and females is shown in Table 2. There was no
statistically significant difference between the male and female LC subjects. Six control
samples (HC) were utilized as a further comparator. These subjects were on no medications
and did not have LC or FM. The Shapiro–Wilk normality test was conducted on the LC
subjects, and the test was not significant (p = 0.319), indicating the normal distribution of
the samples. Table 3 shows a comparison of p values between FIQR/SIQR, age, and BMI
between the full group LC and FM subjects. There was no statistically significant difference
in these parameters between the groups.

Table 1. Clinical characteristics of all subjects. Values expressed as mean ± /sd; N = number of
subjects, age (range). LC: Long COVID; FM: Fibromyalgia, BMI: body mass index. FIQR: Fibromyalgia
impact questionnaire revised. SIQR: Symptom Impact Questionnaire Revised. BDI: Beck Depression
Index. FIRST: Fibromyalgia rapid screening tool HC: Healthy control values reflect number of LC
subjects with values of 5 or greater.

Age N(M/F)
[%M/%F] BMI FIRST SIQR FIQR BDI

LC 49.5 ± 14.59 50 (18/32)
[36/64] 29.47 ± 8.3 18/50 44.63 ± 21.4

FM 44.9.0 ± 12.8 50 (0/50)
[0/100] 31.57 ± 8.0 49.52 ± 21.5 18.31 ± 9.9

HC 45.8 ± 19.1 6(4/2)
[67/33] 25.3 ± 2.4 13.95 ± 27.0 0.5 ± 0.5
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Table 2. Sub-analysis of Long COVID subjects. Values expressed as mean ± sd. p values represent one
tailed comparison between males and females for age, BMI and SIQR. The Shapiro–Wilk normality
test passed.

LC Age BMI SIQR

Male 51.8 ± 11.6 28.9 ± 4.8 41.1 ± 15.9

Female 48.6 ± 16.0 29.6 ± 10.0 44.8 ± 23.0

p value 0.232 0.389 0.301

Shapiro–Wilk normality test p = 0.319

Table 3. Comparison of FIQR/SIQR, age, and BMI between FM and LC subjects. p values represent
one tailed comparison between groups.

FIQR/SIQR Age BMI

p value 0.158 0.055 0.140

Table 4 provides a comprehensive view of all medications that subjects reported taking
prior to sample collection. The most frequently used medication in both groups was
gabapentin (12-LC, 13-FM). Tricyclic antidepressants were more prevalent in FM patients
than LC (LC: 3, FM: 15). Twelve subjects were taking opioid analgesics (LC: 5, FM: 7),
ten subjects were on selective serotonin reuptake inhibitors (SSRI) (LC: 6, FM: 4) and six
subjects reported taking Naltrexone (LC: 5, FM: 1; naloxone dosage between 1–4.5 mg).

Table 4. Medication log for subjects.

Medications a Medications a Medications a

Subject
No. LC FM Subject

No. LC FM Subject
No. LC FM

1 1, 3, 8, 10, 12 2, 4, 17, 18,
21 21 2, 7, 8, 10, 15 23, 26, 31 41 1 1

2 2, 5, 22 10, 26 22 2, 6, 13 4 42 2, 14, 15, 26 3, 18, 20, 21
3 8, 14, 23, 24 29 23 14, 17, 20, 24 2, 4, 26 43 X X
4 7, 13, 25 1, 2, 10 24 7 X 44 X 4, 21
5 4, 26 3 25 2, 5, 18, 20, 22 X 45 2, 9, 14, 27, 30 4

6 13, 15, 18, 19, 27 1, 8, 12, 15,
21 26 1, 2, 13, 15, 26 4, 12 46 10, 13, 14 3, 4, 16

7 2, 10, 18, 21, 23 X 27 X 2, 4, 5, 16, 30 47 4, 15, 21 21, 26
8 9, 19, 23 18, 24 28 12, 13, 14, 20, 23 X 48 7, 9, 20 2, 4, 26, 29
9 14, 16, 29 2, 5, 18 29 19 1, 4 49 X 2, 4, 7, 10, 20

10 15 2, 29 30 10 1, 2, 21, 27 50 2 X
11 6 26, 29 31 1, 15 1, 5, 10
12 4, 15 2, 7, 15 32 8 1, 3
13 7, 13, 22 2, 4, 21 33 2, 9, 15, 20 1, 3, 18
14 2, 13, 18, 19, 20 15 34 2, 9, 16 4
15 7, 12, 14, 20 2, 18 35 X 4, 7, 14, 20
16 21, 26 X 36 2, 13, 18, 19 11
17 X 4 37 8, 10, 18, 22, 23 17

18 8, 19, 29 3, 7, 12, 19,
20, 21 38 15, 19, 20, 21, 23,

24 12, 13, 26

19 15 3 39 X 2, 12, 14
20 5, 23, 26, 27 4, 10 40 24 9

a Medications listed were self-reported by subjects at the time of analysis. 1 = duloxetine, 2 = gabapentin,
3 = pregabalin, 4 = tricyclic antidepressants, 5 = fluoxetine, 6 = milnacipran, 7 = SSRI, 8 = bupropion, 9 = nal-
trexone, 10 = NSAIDs, 11 = topiramate, 12 = trazodone, 13 = antihistamines, 14 = stimulants, 15 = thyroid medica-
tions, 16 = testosterone, 17 = venlafaxine, 18 = benzodiazepines, 19 = statins, 20 = antihypertensives, 21 = proton
pump inhibitors, 22 = aspirin, 23 = sedative/hypnotics, 24 = lamotrigine, 25 = tamoxifen, 26 = opioid analgesics,
27 = diabetes meds, 28 = no medications, 29 = muscle relaxants, 30 = anxiolytic, 31 = ropinirole; 28 = X.
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3.2. IR Spectroscopy

Figure 2 shows a representative spectrum of extracted LMF from the blood of FM
and LC patients. The spectral profiles of all samples in both classes were similar through
visual inspection. A broad and strong band around 3600–3100 cm−1 was attributed to O–H
stretching, and the bands at 2800–3000 cm−1 were associated with the C–H stretching of
hydrocarbon chains [58]. The weak band at 2960 cm−1 and the peak at 2920 cm−1 were
attributed to the asymmetric stretching of sp3 and sp2 hybridized C–H groups, respectively,
while the band centered at 2850 cm−1 was associated with symmetric methyl and methylene
C–H stretching [64,65]. The band centered at 1740 cm−1 was related to C=O stretching,
probably from the ester linkage of lipids and cholesterol [66–68]. A sharp band at 1550 cm−1

with a slight shoulder at 1670 cm−1 were associated with amide II and amide I (C=O
stretch) conformations of the peptide backbone [37,67]. C–H umbrella deformations [69]
and the hyperconjugation effect on methyl bending modes contributed to the peak around
1400 cm−1 [68,70]. Vibrations of phosphodiester bonds in RNA and phospholipids were
related to the bands at 1245 cm−1 and 1088 cm−1 [68]. Additionally, the bands around
1000 cm−1 was associated with C–O–C stretching from cholesterol, phospholipids, and
triglycerides [68] and C–O stretching from nucleic acids and polysaccharides [67].
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Figure 2. Representative IR spectrum of extracted LMF from the blood of FM and LC patients.

Figure 3 shows a representative curve-fitted inverse second derivative for FM and LC
patients after the deconvolution procedure in the region from 1500 to 1700 cm−1. Four IR
bands were detected for FM patients in this spectral region, 1565, 1588, 1639, and 1670 cm−1,
and only three IR bands were detected for LC patients, 1581, 1635, and 1670 cm−1. A unique
spectral biomarker at 1565 cm−1 was identified in FM patients using the deconvolution of
spectral data. This peak has been linked to stretching vibrations of carboxylate groups of
amino acid side chains and, more specifically, to the presence of glutamate [71,72].

The relative percentage area of these deconvoluted IR bands is shown in Table 5. The
IR bands at 1639 and 1670 cm−1 were linked to β-sheets and α-sheets of amide I (C=O
stretch) [72] conformations of peptide backbone and were not statistically different between
diseases with an average relative percentage area close to 4.7 and 21.3%, respectively.
Nonetheless, the average of the relative percentage area of the IR band at 1580 cm−1 was
associated with the functional group –C=N and stretching vibrations of carboxylate side
chains [42] and was statistically significant between diseases and significantly higher for
LC patients (70.3% vs. 38.2%).
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Figure 3. Example of curve-fitted and inverted second derivative of the 1500 to 1700 cm−1 region (a)
and the IR bands deconvoluted show four IR bands (1565 cm−1, red band; 1588 cm−1, green band;
1639 cm−1, turquoise band; and 1670 cm−1, marine band) for FM patients and three IR bands (1581 cm−1,
red band; 1635 cm−1, green band and 1670 cm−1, marine band) for LC patients (b) obtained with full
width at a half maximum Gaussian fit. (–) Original spectral data, (. . .) Fitted area under the curve.

Table 5. Average wavenumber and relative percentage area of IR bands deconvoluted in the spectral
region from 1500 to 1700 cm−1.

Wavenumber
(cm−1) Area (%) Wavenumber

(cm−1) Area (%) Wavenumber
(cm−1) Area (%) Wavenumber

(cm−1) Area (%)

FM * 1565 a ± 3 # 36.1 A ± 18.1 1588 b ± 4 38.2 A ± 15.6 1639 d ± 5 4.7 C ± 1.6 1670 f ± 2 21.3 D ± 7.5
LC - - 1581 B ± 2 70.3 B ± 8.9 1635 e ± 7 9.9 C ± 9.2 1670 f ± 2 23.9 D ± 5.3

* Means (n = 40) with different lower and capital case letters are significantly different (p < 0.05). # Standard deviation.

The spectra of the six healthy subjects were also deconvoluted in the 1500 to 1700 cm−1

region, and an example is shown in Figure 4. The spectral biomarker at 1565 cm−1 detected
in FM patients was not present. Nonetheless, another IR band at 1545 cm−1 not detected in
FM and LC patients was clearly identified. This peak has been linked to C–N stretching
and N–H bending vibrations of amide II or deprotonated carboxylate groups of peptides.
The average relative percentage area of this band was close to 4.1% [71–73].

OPLS-DA was used to visualize the separation of LC and FM using pre-treated data.
In OPLS-DA analysis, a dummy Y matrix (variable vector) consisting of class 1 (FM) and
class 2 (LC) was correlated with the X matrix (spectral data [74]. In our study, the best
OPLS-DA model with 80% of the samples for LC and FM diagnosis was obtained using
the spectral region 1528 to 1624 cm−1, and the distinct spectral biomarker identified for
FM patients was located using spectral deconvolution. Raw spectra were pre-processed
(normalization, smoothing SG, 5 points), and the second derivative (SG, 7 points) was
applied with the use of one orthogonal signal correction (OSC) component, which made
the predictive quality of the model satisfactory.

The OPLS-DA model showed figures of merit (R and SECV/SEP) that were compat-
ible with high performance (Table 6) and low p-value (p < 0.05), suggesting significant
discrimination and significant differences between LC and FM patients. The score plot of
OPLS-DA regression models obtained from spectral data is presented in Figure 5a. The
score plots showed distinctive clusters of spectra from subjects with FM and LC. The first
LV for both FM and LC classes explained 75.9% of the variance and provided an excellent
regression coefficient of cross-validation (Rcv) at 0.98 (Table 6). One latent variable was
sufficient since it already correctly classified all samples with a low SECV value (0.10) and
no misclassification for the leave-one-out model.
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Figure 4. Example of curve-fitted-inverted second derivative of the 1500 to 1700 cm−1 region and
the IR bands deconvoluted showing four IR bands (1545 cm−1, red band; 1580 cm−1; pink band;
1639 cm−1, marine band and 1670 cm−1, turquoise band) obtained with a full width at half maximum
Gaussian fit for NS patients. (–) Original spectral data, (. . .) Fitted area under the curve.

Table 6. Figures of merit of OPLS-DA model for LC and FM diagnosis with one latent variable after
normalization, smoothed (SG, 5 points), second derivative (SG, 7 points) and one component of
orthogonal signal correction (OSC).

Figures of Merit Calibration Set
n = 80 Samples

Prediction Set
n = 20 Samples

SECV/SEP 0.10 0.18
R2 0.98 0.96

Sensitivity (%) 100 100
Specificity (%) 100 100
Accuracy (%) 100 100
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Figure 5. The score plot (a) with the first three latent variables (LVs) and the regression vector (b) of
the OPLS-DA model obtained from spectral data of FM and LC patients.

Regression vector (Figure 5b) analysis showed that the discriminating region was
dominated by the bands centered at 1560 and 1579 cm−1. By narrowing the spectral range
to the spectral region where the biomarker was located, systematic variation unrelated to
the disease was removed. Notably, our OPLS-DA model was able to correctly predict if the
patients suffered from LC and FM in 20 out of 20 of the samples used for the EV set, with
only one latent variable achieving 100% specificity, sensitivity, and accuracy (Table 6).
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ROC was used to assess the performance of our diagnostic test, evaluating all pos-
sible thresholds that determined the result as positive [75]. The area under the ROC
curve summarizes the predictive accuracy of the model, where a value closer to one
indicates good accuracy [75]. For both cross-validated and external-validated samples,
excellent prediction performances were obtained with an AUC of one, reflecting superior
accuracy (Figure 6).
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with cross-validated) samples.

4. Discussion

The findings of this pilot study are intriguing, although definitive conclusions are
limited by the size of the cohort. The clinical groups were generally similar in terms of age
and BMI. The FIQR is a validated surrogate marker of pain in subjects with FM. Similarly,
the SIQR is a FM-neutral questionnaire that asks identical questions but does not assume
that patients have FM. Patients with LC present with a wide array of clinical symptoms,
many of which mirror the symptoms and complaints of patients with FM. The values in
both groups were statistically similar, suggesting that there were similar levels of pain
experienced in the LC and FM groups. The FM group was 100% female, while the LC
group had 18 males and 32 females. An obvious limitation regards the statistical power and
generalizability of our data due to the size of the cohort, gender differences, and medication
usage, amongst others. The inclusion of a 100% female FM group versus a mixed-gender LC
group presents potential biases and lacks gender representation, impacting the reliability of
these results. However, we found there was no statistically significant difference between
the male and female LC subjects with regard to age, BMI, or SIQR, as noted in Table 2.
Furthermore, normality tests suggest that these data have a normal distribution, which
strongly suggests its potential for reproducibility. Medications of recruited patients were
recorded at the time of blood collection. This pilot study was not powered to determine
the effect of medications; however, spectroscopy data showed that there was no obvious
signal/influence from medications. With the relatively small n of 50 in each cohort, we
are not able to definitively eliminate medications as a confounding variable. There was
a general similarity with regard to medication usage between the LC and FM cohort,
particularly with regard to the use of gabapentin (12-LC, 13-FM), opioid analgesics (LC: 5,
FM: 7), and selective serotonin reuptake inhibitors (SSRI) (LC: 6, FM: 4). There were some
differences noted with tricyclic antidepressants being more prevalent in FM subjects than
LC subjects (LC: 3, FM: 15) and naltrexone use was noted more in LC subjects [LC: 5, FM:
1; naltrexone dosage between 1–4.5 mg]. Whether these changes could have affected our
spectral characteristics is unknown at this time and requires studies with larger cohorts for
further analysis, which we are currently undertaking. Future studies should also seek to
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mitigate possible medication effects in the analysis. We aim to record patient medication
usage, categorize the medication by type, and quantify it by the amount of usage. We
can associate medication usage with each metabolite biomarker through correlations or
logistic regression models. In addition, with a larger cohort, we can compare subjects on
similar medications, such as gabapentin, while eliminating confounder medications from
the analyses.

FT-MIR spectroscopy has been proposed as a feasible solution to investigate specific
biomarkers [76,77]. The deconvolution analysis of spectral data identified a unique spectral
band at 1565 cm−1 that was only present in FM patients. Selecting this specific spectral
region to build up the OPLS-DA algorithm allowed us to successfully develop the OPLS-
DA predictive algorithm to effectively distinguish between individuals with FM, LC, and
those who were healthy. This discriminating IR band was associated with the presence of
carboxylic amino acids, such as Glu and Asp. Glu/Asp side chain residues have a distinct
symmetric vibration located around 1556–1568 cm−1 [78]. Glutamic acid decarboxylase
(GAD) is a rate-limiting enzyme in the conversion of glutamate to gamma-aminobutyric
acid. We hypothesize that FM subjects have a decreased GAD expression or activity,
leading to symptoms that, in turn, appear to further decrease GAD expression and/or
activity [72]. It has been reported that this cycle is not easily interrupted by behavioral
or pharmacological interventions. The importance of glutamate has been speculated to
favor the dysregulation of pain processing in the central nervous system of FM patients,
which is particularly associated with an increase in cerebral glutamate levels. Furthermore,
there is evidence to support an association between increased glutamate levels and an
increase in FM symptoms [79]. In clinical studies, an increase in glutamate levels has
been observed in the brains of FM patients [80,81]. Furthermore, pregabalin has been
observed to reduce glutamatergic activity in the insula, and some subgroups of patients
with FM have responded to treatment with N-methyl-D-aspartate (NMDA) glutamate
receptor antagonists, suggesting an increase in glutamatergic activity. Parallel to this
clinical evidence, animal studies in the non-inflammatory pain model have shown increased
glutamate release in their spinal and ventromedial rostral cords [82]. Moreover, recent
studies have shown higher serum concentrations of several amino acids such as glutamate,
glycine, isoleucine, leucine, methionine, ornithine, phenylalanine, sarcosine, serine, taurine,
tyrosine, and valine in FMS patients when compared with healthy controls [83]. Our
healthy subjects did not have a distinct IR band at 1565 cm−1, which is potentially linked
to the presence of Glu in sufficient concentrations in the filtered blood samples to detect its
unique spectral signature. Nonetheless, another IR band detected at 1545 cm−1 could be
key to discriminating between LC and healthy patients.

Our pilot results must be interpreted with caution lest we run the risk of overgeneral-
ization. First of all, although our findings are intriguing, we will exercise caution rather
than extrapolate our results to be indicative for all individuals affected with LC since this
study is not powered to evaluate whether these signatures are characteristic of all affected
with LC or only a subset of specific variant. Indeed, it is unclear at this time whether all
LCs are the same or if it varies in severity between variants. Secondly, enrollment bias
could exist due to differences in male/female ratios in groups and medication differences
between groups amongst others. Future studies with much larger sample sizes should
mitigate these types of concerns.

5. Conclusions

The use of a portable FT-MIR spectrometer combined with the chemometric OPLS-DA
technique proved to be a promising tool for screening/diagnosis and the distinction of
individuals with LC from FM with simple operational procedures and providing excellent
accuracy, sensitivity and specificity. Additionally, the deconvolution of spectral data in
the 1500 to 1700 cm−1 region, allowed us to identify a unique biomarker for FM and for
NS patients that need to be further studied with metabolomics analyses via LC-MS/MS.
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Future studies with a larger number of samples need to be performed to further prove the
findings of our study.

Author Contributions: Conceptualization, K.V.H. and L.R.-S.; Data curation, K.V.H., S.Y., H.B.,
S.d.L.C. and L.R.-S.; Formal analysis, K.V.H., L.Y., M.M.O.-D. and K.R.S.; Methodology, S.Y., H.B.,
S.M.N., M.M.G. and L.R.-S.; Project administration, K.V.H., R.A. and W.M.B.; Resources, K.V.H., R.A.,
M.M.O.-D., W.M.B. and K.R.S.; Supervision, K.V.H.; Validation, S.Y., S.d.L.C., L.Y., M.M.G. and L.R.-S.;
Writing—original draft, K.V.H., S.Y., H.B., S.d.L.C., S.M.N., M.M.O.-D. and L.R.-S.; Writing—review
and editing, K.V.H., S.d.L.C., W.M.B., K.R.S., M.M.G. and L.R.-S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Institute of Health, grant number GR122808
(LRS) and NIH R61NS117211 (KVH).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this
study. Written informed consent for publication was obtained from all participants.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Acknowledgments: The authors are grateful to nurses, phlebotomists and administrative personnel
at the University of Texas at Austin, Dell Medical School and University of Texas Health Austin
Clinics, Dell Seton Ascension Clinics, Austin, Texas.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. National Institute for Health and Care Excellence; Scottish Intercollegiate Guidelines Network; Royal College of General Practi-

tioners. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. Available online: https://www.nice.org.uk/
guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742 (accessed on
12 May 2023).

2. Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global prevalence of post-coronavirus disease
2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review. J. Infect. Dis. 2022, 226, 1593–1607. [CrossRef]
[PubMed]

3. Fernández-de-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Florencio, L.L.; Cuadrado, M.L.; Plaza-Manzano,
G.; Navarro-Santana, M. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors:
A systematic review and meta-analysis. Eur. J. Intern. Med. 2021, 92, 55–70. [CrossRef] [PubMed]

4. Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al.
Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [CrossRef] [PubMed]

5. Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha,
R.M.; et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and
meta-analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [CrossRef]

6. Han, Q.; Zheng, B.; Daines, L.; Sheikh, A. Long-term sequelae of COVID-19: A systematic review and meta-analysis of one-year
follow-up studies on post-COVID symptoms. Pathogens 2022, 11, 269. [CrossRef]

7. Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev.
Microbiol. 2023, 21, 133–146. [CrossRef]

8. World Health Organization. COVID-19 Weekly Epidemiological Update on COVID-19. 4 January 2023. Edition 124. Available
online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-COVID-19-4.january-2023 (accessed
on 15 May 2023).

9. Komaroff, A.L.; Lipkin, W.I. ME/CFS and Long COVID share similar symptoms and biological abnormalities: Road map to the
literature. Front. Med. 2023, 10, 1187163. [CrossRef]

10. Haider, S.; Janowski, A.J.; Lesnak, J.B.; Hayashi, K.; Dailey, D.L.; Chimenti, R.; Frey-Law, L.A.; Sluka, K.A.; Berardi, G.
A comparison of pain, fatigue, and function between post–COVID-19 condition, fibromyalgia, and chronic fatigue syndrome:
A survey study. Pain 2023, 164, 385–401. [CrossRef]

11. Lambert, N.; Corps, S.; El-Azab, S.A.; Ramrakhiani, N.S.; Barisano, A.; Yu, L.; Pinto, M.D. COVID-19 surviors’ report of the timing
duration, and health impacts of Post-Acute Sequelae of ASRS-CoV-2 (PASC) infection. MedRxiv, 2021. [CrossRef]

12. Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVIDmechanisms, risk factors, and management. BMJ 2021,
374, n1648. [CrossRef]

https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742
https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742
https://doi.org/10.1093/infdis/jiac136
https://www.ncbi.nlm.nih.gov/pubmed/35429399
https://doi.org/10.1016/j.ejim.2021.06.009
https://www.ncbi.nlm.nih.gov/pubmed/34167876
https://doi.org/10.1136/bmjgh-2021-005427
https://www.ncbi.nlm.nih.gov/pubmed/34580069
https://doi.org/10.1016/j.cmi.2022.01.014
https://doi.org/10.3390/pathogens11020269
https://doi.org/10.1038/s41579-022-00846-2
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-COVID-19-4.january-2023
https://doi.org/10.3389/fmed.2023.1187163
https://doi.org/10.1097/j.pain.0000000000002711
https://doi.org/10.1101/2021.03.22.21254026
https://doi.org/10.1136/bmj.n1648


Biomedicines 2023, 11, 2704 14 of 16

13. El Tallawy, S.N.; Perglozzi, J.V.; Ahmed, R.S.; Kaki, A.M.; Naglub, M.S.; Lequang, J.K.; Hadarah, M.M. Pain Management in the
Post-COVID Era- An Update: A Narrative Review. Pain Ther. 2021, 12, 423–448. [CrossRef]

14. Galvez-Sánchez, C.M.; Reyes del Paso, G.A. Diagnostic Criteria for Fibromyalgia: Critical Review and Future Perspectives. J. Clin.
Med. 2020, 9, 1219. [CrossRef] [PubMed]

15. Ablin, J.N.; Wolfe, F. A Comparative Evaluation of the 2011 and 2016 Criteria for Fibromyalgia. J. Rheumatol. 2017, 44, 1271–1276.
[CrossRef] [PubMed]

16. Häuser, W.; Ablin, J.; Fitzcharles, M.-A.; Littlejohn, G.; Luciano, J.V.; Usui, C.; Walitt, B. Fibromyalgia. Nat. Rev. Dis. Prim. 2015,
1, 15022. [CrossRef] [PubMed]

17. Smith, H.S.; Harris, R.; Clauw, D. Fibromyalgia: An afferent processing disorder leading to a complex pain generalized syndrome.
Pain Physician 2011, 14, 217–246. [CrossRef]

18. Wolfe, F.; Fitzcharles, M.A.; Goldenberg, D.L.; Hauser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Jon Russell, I.; Walitt, B.
Comparison of physician-based and patient-based criteria for the diagnosis of fibromyalgia. Arthritis Care Res. 2016, 68, 652–659.
[CrossRef]

19. Wolfe, F.; Schmukler, J.; Jamal, S.; Castrejon, I.; Gibson, K.A.; Srinivasan, S.; Hauser, W.; Pincus, T. Diagnosis of fibromyalgia:
Disagreement between fibromyalgia criteria and clinician-based fibromyalgia diagnosis in a university clinic. Arthritis Care Res.
2019, 71, 343–351. [CrossRef]

20. Walitt, B.; Katz, R.S.; Bergman, M.J.; Wolfe, F. Three-quarters of persons in the US population reporting a clinical diagnosis
of fibromyalgia do not satisfy fibromyalgia criteria: The 2012 national health interview survey. PLoS ONE 2016, 11, e0157235.
[CrossRef]

21. Copley, M.; Kozminski, B.; Gentile, N.; Geyer, R.; Friedly, J. Post-Acute Sequelae of SARS-CoV-2 (PASC): Musculoskeletal
Conditions and Pain. Phys. Med. Rehabil. Clin. 2023. [CrossRef]

22. Mohabbat, A.B.; Mohabbat, N.M.L.; Wight, E.C. Fibromyalgia and chronic fatigue syndrome in the age of COVID-19. Mayo Clin.
Proc. Innov. Qual. Outcomes 2020, 4, 764–766. [CrossRef]
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