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Abstract: Macrophages are critical for the development of non-alcoholic steatohepatitis (NASH).
Our previous findings in TSNO mouse livers showed that an iHFC (high-fat/cholesterol/cholate)
diet induced liver fibrosis similar to human NASH and led to the accumulation of distinct subsets
of macrophage: CD11c+/Ly6C− and CD11c−/Ly6C+ cells. CD11c+/Ly6C− cells were associated
with the promotion of advanced liver fibrosis in NASH. On the other hand, CD11c−/Ly6C+ cells
exhibited an anti-inflammatory effect and were involved in tissue remodeling processes. This study
aimed to elucidate whether an iHFC diet with reduced cholic acid (iHFC#2 diet) induces NASH
in C57BL/6 mice and examine the macrophage subsets accumulating in the liver. Histological and
quantitative real-time PCR analyses revealed that the iHFC#2 diet promoted inflammation and
fibrosis indicative of NASH in the livers of C57BL/6 mice. Cell numbers of Kupffer cells decreased
and recruited macrophages were accumulated in the livers of iHFC#2 diet-fed C57BL/6 mice. Notably,
the iHFC#2 diet resulted in the accumulation of three macrophage subsets in the livers of C57BL/6
mice: CD11c+/Ly6C−, CD11c−/Ly6C+, and CD11c+/Ly6C+ cells. However, CD11c+/Ly6C+ cells
were not distinct populations in the iHFC-fed TSNO mice. Thus, differences in cholic acid content
and mouse strain affect the macrophage subsets that accumulate in the liver.

Keywords: non-alcoholic steatohepatitis; inflammation; fibrosis; macrophage; Kupffer cell;
non-alcoholic fatty liver

1. Introduction

Non-alcoholic fatty liver disease is characterized by fat accumulation in hepatocytes
that progresses to hepatic steatosis and is often accompanied by mild inflammation [1].
Some patients with non-alcoholic fatty liver develop non-alcoholic steatohepatitis (NASH),
which involves hepatocyte damage, substantial inflammation, and fibrosis [2]. Recently,
new nomenclatures of these diseases were announced [3]. Non-alcoholic fatty liver dis-
ease and NASH have been replaced by metabolic dysfunction-associated steatotic liver
disease and metabolic dysfunction-associated steatohepatitis, respectively [3]. Hepato-
cytes, hematopoietic cells, and hepatic stellate cells closely interact and contribute to
NASH [4]. Recent studies have reported the role of macrophages in promoting NASH
development [5]. The liver contains two types of macrophages: Kupffer cells (KCs) and
recruited macrophages which are mobilized from the bone marrow to the liver during
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inflammation [6]. KCs express high F4/80 levels and low CD11b levels (F4/80Hi/CD11bInt),
whereas recruited macrophages exhibit F4/80Int and CD11bHi phenotypes [6]. Notably,
the livers of NASH patients have a unique tissue structure termed the hepatic crown-like
structure (hCLS), in which CD11c+-recruited macrophages surround dead hepatocytes [7].
The formation of the hCLS is involved in the development of liver fibrosis due to hepatocyte
death [8].

Some rodent models of NASH exhibit histological changes resembling human NASH,
including stage 3 bridging fibrosis [9]. A high-fat, cholesterol-cholate (iHFC) diet promotes
advanced liver fibrosis including stage 3 bridging fibrosis in Tsumura-Suzuki non-obese
(TSNO) mice [10]. In a previous study, we examined the phenotypes and dynamics of liver
macrophages in iHFC-fed TSNO mice [11]. Flow cytometric analysis revealed two distinct
subsets of the recruited macrophages: CD11c+/Ly6C− and CD11c−/Ly6C+ cells [11]. More-
over, our findings indicate that CD11c+/Ly6C− cells contribute to the progression of liver
fibrosis [11]. On the other hand, CD11c−/Ly6C+ cells are involved in anti-inflammatory
responses [11].

C57BL/6 mice have been frequently used as NASH mouse models in several studies.
The administration of carbon tetrachloride to these mice causes hepatic fibrosis followed
by hepatocyte necrosis [12]. A methionine- and choline-deficient diet has been frequently
used to induce NASH in animals [13]. NASH models also involve using mice deficient
in particular genes either with or without the administration of toxic agents [14–16], the
majority of which are of C57BL/6 mice.

This study aimed to determine whether an iHFC diet induces NASH in C57BL/6
mice and to investigate the differences in NASH pathogenesis in TSNO mice. We used the
iHFC#2 diet with reduced cholate content for C57BL/6 mice. Histological and quantitative
real-time PCR analyses revealed that the iHFC#2 diet promoted liver inflammation and
fibrosis characteristic of NASH in C57BL/6 mice. Similar to iHFC-fed TSNO mice, the
iHFC#2-fed C57BL/6 mice showed fewer KCs and more recruited macrophages compared
to mice fed a normal diet (ND). Interestingly, the iHFC#2 diet resulted in the accumulation of
three macrophage subsets in the livers of C57BL/6 mice: CD11c+/Ly6C−, CD11c−/Ly6C+,
and CD11c+/Ly6C+ cells. However, CD11c+/Ly6C+ cells were not distinct populations
in the livers of iHFC-fed TSNO mice. These findings suggest that differences in cholate
content and mouse strain affect the macrophage subsets that accumulate in the liver.

2. Materials and Methods
2.1. Animal Studies

All procedures involving animals were performed according to the ARRIVE reporting
guidelines for reporting study design and statistical analysis; experimental procedures;
experimental animals and housing and husbandry and the guidelines described in the
Proper Conduct of Animal Experiments, as defined by the Science Council of Japan. In
addition, the Ethics Committee for Animal Experiment of Toyama Prefectural University
approved the animal experiment protocols (No. R1-3 and R4-1).

Male C57BL/6J mice were acquired from Japan SLC (Hamamatsu, Japan) and main-
tained in SPF conditions at the animal facility of Toyama Prefectural University. Mice
had free access to food and water under standard light cycles (12/12 hlight/dark). Ten-
week-old male C57BL/6J mice were divided into two groups and fed either an iHFC#2
diet that was high in fat, cholesterol, and cholate (69.8% standard chow, 28.75% palm oil,
1.25% cholesterol, and 0.2% cholate) (Hayashi Kasei, Osaka, Japan) or a normal diet (ND)
(Oriental-Yeast, Tokyo, Japan). Mice were anesthetized using isoflurane upon completion
of the experiments. Blood and liver were collected for further analysis.

2.2. Plasma Chemistry

Plasma concentrations of alanine aminotransferase (ALT), triglyceride (TG), and total
cholesterol (T-CHO) were quantified using FUJI DRI-CHEM NX700 analyzer (Fujifilm,
Tokyo, Japan), as previously described [11].
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2.3. Non-Parenchymal Cell Isolation

Non-parenchymal cells were isolated from the livers using the Liver Dissociation Kit
(Miltenyi Biotech, Bergisch Gladbach, Germany), as previously described [11].

2.4. Flow Cytometry

Non-parenchymal cells (2 × 105) were pretreated with anti-mouse FcγR (2.4G2)
antibody for 20 min. Then, the cells were stained with their respective antibodies
(Table S1). Dead cells were excluded using 7-amino-actinomycin D (BD Biosciences, San
Diego, CA, USA). FACSCantoII (Becton Dickinson & Co., Mountain View, CA, USA)
was used for flow cytometry analyses. Data were analyzed using FlowJo software
(Version 10.8.1, BD Biosciences).

2.5. Quantitative Real-Time PCR

Total RNA was extracted using the NucleoSpin RNA Mini kit (Macherey-Nagel,
Düren, Germany). cDNA was obtained via a PrimeScript®® RT reagent kit (Takara Bio
Inc., Shiga, Japan). Quantitative real-time PCR was conducted using a FastStart Universal
Probe Master (Roche Applied Science, Mannheim, Germany), as previously described [11].
TaqMan probes used are provided in Table S2 (Applied Biosystems, Carlsbad, CA, USA).

2.6. Liver Histology and Immunohistochemistry

Hematoxylin and eosin, Sirius red, and immunohistochemical staining were per-
formed as previously described [11]. Positive areas for Sirius red, F4/80, CD11c, and Ly6C
were quantified using ImageJ software, Version 1.53t. Histological scores and grades were
assessed according to the previous literature [17]. All histological analyses were performed
in a blinded manner.

2.7. Statistical Analysis

Statistical differences were analyzed using Student’s t-test or Welch’s t-test for the
two groups’ comparison by GraphPad Prism 9 software (GraphPad; San Diego, CA,
USA). p < 0.05 was considered statistically significant. Statistical difference was deter-
mined as follows: *** p < 0.001, ** p < 0.01, * p < 0.05. Statistical results are expressed as
means ± standard deviation (SD).

3. Results
3.1. iHFC#2 Diet Induces Inflammation, Steatosis, Hepatocyte Ballooning, and Fibrosis in the
Livers of C57BL/6 Mice

We investigated whether iHFC#2-fed C57BL/6 mice exhibited NASH-related patholog-
ical changes. In preliminary experiments, an iHFC diet containing 0.5% cholate was found
to cause lethal liver injury in C57BL/6 mice. Therefore, we used a 0.2% cholate iHFC#2 diet
in this study. iHFC#2-fed mice had larger and paler livers than ND-fed mice (Figure 1A),
and their liver masses significantly increased compared with those from ND-fed mice
(Figure 1B). No significant difference was observed in the body mass between mice con-
suming the ND and iHFC#2 diets (Figure 1C, left). Significant differences in average daily
food intake were observed at 4 and 8 weeks between the ND and iHFC#2 diets (Figure 1C,
right). Plasma alanine aminotransferase (ALT) activity increased in mice following 4 weeks
of iHFC#2 diet feeding (Figure 1D). iHFC#2-fed mice exhibited consistently high plasma
total cholesterol (T-CHO) concentrations (Figure 1E, left) and lower plasma triglyceride
(TG) concentrations compared to ND-fed mice (Figure 1E, right).
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Figure 1. iHFC#2 diet induces increases in liver weight and plasma ALT levels. (A) Representative
photos of the livers from C57BL/6 mice fed with the normal diet (ND) or iHFC#2 diet for the indicated
time periods. Scale bars, 1 cm. (B) Liver weights of C57BL/6 mice (n = 3 to 6). (C) Body weights and
daily food intakes were measured for C57BL/6 mice fed with the ND or iHFC#2 diet for the indicated
time periods (n = 6 to 18). (D) Left, plasma ALT levels of C57BL/6 mice (n = 4 to 6). Right, plasma
ALT levels were normalized to liver weight (in grams) for calculation (n = 4 to 6). (E) Plasma T-CHO
and TG levels were measured for C57BL/6 mice fed with the ND or iHFC#2 diet for the indicated
time periods (n = 4 to 6). Data are shown as means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

Mild steatosis developed after 12 weeks of the iHFC#2 diet and worsened with a longer
feeding duration (Figure 2A,C). In addition, lobular inflammation was observed at weeks
12 and 24 (Figure 2A,C). Mild hepatocyte ballooning was observed in the iHFC#2 group
at both time points (Figure 2A,C). Furthermore, perivenular and perisinusoidal fibrosis
similar to human NASH was observed after 12 weeks of the iHFC#2 diet (Figure 2B,D).
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The fibrosis exhibited a progressive expansion, with the emergence of bridging fibrosis
becoming evident after 24 weeks on the iHFC#2 diet (Figure 2B,D). The areas positive for
Sirius red staining were significantly larger compared to mice fed an ND after 12 weeks
of iHFC#2 diet feeding (Figure 2E). These data demonstrate that the iHFC#2 diet induces
inflammatory and fibrotic changes characteristic of NASH in the livers of C57BL6 mice.
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M1 macrophage markers iNOS and CD11c (Nos2 and Itgax) exhibited a substantial in-
crease during the early stages of the iHFC#2 diet (Figure 3). Consistent with the histolog-
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Figure 2. iHFC#2 diet induces steatohepatitis and fibrosis. (A) Hematoxylin and eosin-stained
liver sections. Scale bars, 100 µm. (B) Sirius red-stained sections of the livers. Scale bars, 100 µm.
(C) Steatosis (0 to 3), lobular inflammation (0 to 3), and hepatocyte ballooning (0 to 2) were evaluated
(n = 6). (D) Liver fibrosis (0 to 4) was evaluated (n = 6). (E) Three locations were captured per
three liver sections for each group. Subsequently, the positive areas for Sirius red were quantified
at nine locations using ImageJ software, Version 1.53t. Data are shown as means ± SD. * p < 0.05,
*** p < 0.001.

3.2. iHFC#2 Diet Increases the mRNA Expression of Inflammation- and Fibrosis-Related Genes in
the Livers of C57BL/6 Mice

Next, we measured the expression levels of inflammatory and fibrotic genes in the
liver of ND- or iHFC#2-fed mice. The expression levels of TNF-α (Tnf ), CCL2 (Ccl2), and
M1 macrophage markers iNOS and CD11c (Nos2 and Itgax) exhibited a substantial increase
during the early stages of the iHFC#2 diet (Figure 3). Consistent with the histological
data (Figure 2B,D,E), the expression levels of collagen 1 (Col1a1) mRNA were higher in the
livers of iHFC#2-fed mice than in those of ND-fed mice (Figure 3). iHFC#2 feeding led to a
significant upregulation in the expression levels of Timp-1 (Timp1) mRNA, which plays
a role in regulating extracellular matrix degradation (Figure 3). There was a significant
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difference observed in the expression levels of TGF-β (Tgfb1) mRNA, which is associated
with extracellular matrix production, between the ND and iHFC#2 diet groups at 8 weeks
(Figure 3). Thus, the iHFC#2 diet increased the expression levels of inflammation- and
fibrosis-related genes in the livers of C57BL/6 mice.
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Figure 3. iHFC#2 diet elevates the expression levels of genes associated with inflammation and
fibrosis in the liver. RT-qPCR of TNF-α, iNOS, CCL2, CD11c, collagen type 1, TIMP-1, and TGF-β
mRNA in the livers (n = 4 to 6). Data are shown as means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. iHFC#2 Diet Induces the Infiltration of F4/80Int/CD11bInt-Hi-Recruited Macrophages in the
Livers of C57BL/6 Mice

The number of non-parenchymal cells exhibited a significant increase at 4 weeks of
iHFC#2 diet, followed by a gradual decline over time (Figure 4A). The iHFC#2 diet-fed
mice showed a higher proportion of CD45+ leukocytes, regardless of the feeding duration
(Figure 4B). The number of CD45+ cells reached its peak after 4 weeks of iHFC#2 diet
feeding, and then, gradually declined (Figure 4C, left). Significant differences in the
number of CD45− cells were observed at 8 and 24 weeks between the ND and iHFC#2 diets
(Figure 4C, right).

To investigate the roles of macrophages in the pathogenesis of iHFC#2 diet-induced
NASH, we examined the expression of the pan-macrophage marker F4/80 in the livers
of C57BL/6 mice. Immunohistochemical staining revealed a significant increase in the
F4/80+ area after 12 weeks of iHFC#2 feeding (Figure 5A,B). As KCs have high autofluo-
rescence [11] (Figure S1), two different gating strategies were used to examine the CD45+

cells, depending on whether KCs were included in the analysis (Figure S2) [11]. Similar to
iHFC diet-fed TSNO mice [11], C57BL/6 mice fed an ND also exhibited populations ex-
pressing F4/80 and/or CD11b in their livers (Figure 5C). These included F4/80−/CD11bHi

neutrophils, F4/80Int/CD11bInt-Hi-recruited macrophages, and F4/80Hi/CD11bInt KCs
(Figure 5C). The percentages of F4/80−/CD11bHi neutrophils showed no significant dif-
ferences between the ND- and iHFC#2-fed mice (Figure 5C). Significant differences in the
number of F4/80Hi/CD11bInt KCs were observed at 4 and 24 weeks between the ND and
iHFC#2 groups (Figure 5D, upper). The KC-specific marker TIM-4 was highly expressed
in F4/80Hi/CD11bInt KCs under normal conditions (Figure 5E) [18]. Consistent with pre-
vious findings [11,19], the proportion of KCs lacking TIM-4 expression showed a gradual
increase as the duration of iHFC#2-feeding extended (Figure 5E). Of interest, the iHFC#2
diet markedly increased the number of F4/80Int/CD11bInt-Hi-recruited macrophages, with
a peak at week 4 (Figure 5D, lower).
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3.4. Recruited Macrophages Include Three Subsets Characterized by Distinct Markers:
CD11c−/Ly6C+, CD11c+/Ly6C−, and CD11c+/Ly6C+ Cells

To identify the cell populations of F4/80Int/CD11bInt-Hi-recruited macrophages, we
examined F4/80+ live single cells, excluding KCs (Figure S3A,B), which mostly consist of
recruited macrophages. The F4/80+ macrophages, which excluded KCs, included three sub-
sets: CD11c−/Ly6C+, CD11c+/Ly6C−, and CD11c+/Ly6C+ cells, in the livers of iHFC#2-fed
mice (Figure 6A). In contrast to TSNO mice [11], C57BL/6 mice exhibited a higher percent-
age of CD11c−/Ly6C+ cells during ND feeding (Figure 6A). The number of this subset
increased significantly with iHFC#2 diet feeding at week 4 and 8 but gradually decreased
thereafter (Figure 6B, left). Additionally, the number of CD11c+/Ly6C− peaked at week
4 of the iHFC#2 diet, reaching approximately three times the number of CD11c−/Ly6C+

subsets (Figure 6B, middle). Interestingly, iHFC#2-fed C57BL/6 mice showed an increased
percentage of cells expressing both CD11c and Ly6C (Figure 6A), which was not distinct in
iHFC-fed TSNO mice [11]. Furthermore, the number of this subset peaked at week 4 of the
iHFC#2 diet and was the highest among the three subsets (Figure 6B, right).
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Figure 4. iHFC#2 diet induces the accumulation of CD45+ leukocytes in the livers of C57BL/6
mice. (A) Cell number of live non-parenchymal cells in the livers from C57BL/6 mice fed with the
ND or iHFC#2 diet for the indicated time periods (n = 3 to 6). (B) Representative flow cytometry
data of CD45 expression in live non-parenchymal cells of the livers from C57BL/6 mice fed with
the ND or iHFC#2 diet for the indicated time periods. (C) Cell number of CD45+ or CD45− live
non-parenchymal cells was determined by flow cytometry analysis done in (n = 3 to 6). Data are
shown as means ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. iHFC#2 diet leads to the accumulation of F4/80Int/CD11bInt-Hi-recruited macrophages in
the livers of C57BL/6 mice. (A) Histological images of F4/80 immunostaining. Scale bars, 100 µm.
(B) Three locations were captured per three liver sections for each group. Subsequently, the positive
areas for F4/80 were quantified at nine locations using ImageJ software, Version 1.53t. (C) CD11b
and F4/80 expression in CD45+ non-parenchymal cells. (D) Cell number of F4/80Hi/CD11bInt

KCs (upper) and F4/80Int/CD11bInt-Hi-recruited macrophages (lower) were calculated (n = 3 to 6).
(E) Representative flow cytometry data of TIM-4 expression in F4/80Hi/CD11bInt KCs of the livers
from C57BL/6 mice on the ND or iHFC#2 diet for the indicated time periods (n = 3 to 6). Data are
shown as means ± SD. * p < 0.05, ** p < 0.01.
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Figure 6. iHFC#2 diet leads to the accumulation of three types of recruited macrophage subsets in
the liver of C57BL/6 mice. (A) The expression of CD11c and Ly6C was analyzed in F4/80+-recruited
macrophages. (B) Cell number of CD11c+/Ly6C−, CD11c−/Ly6C+, and CD11c+/Ly6C+ cells were
calculated (n = 3 to 6). Data are shown as means ± SD. * p < 0.05.

CD11c-positive cell accumulation was observed after 12 weeks of iHFC#2 diet
feeding and significantly increased after 24 weeks (Figure 7A,D, left). Magnified images
of 24 weeks of iHFC#2-diet feeding revealed CD11c-positive cells forming hCLSs around
the lipid droplets (Figure 7C). Ly6C-positive cells accumulated after 12 weeks of iHFC#2
feeding (Figure 7B). However, no significant difference in the percentage of Ly6C-positive
cells was observed between the ND and iHFC#2 groups (Figure 7D, right). Unlike CD11c-
positive cells, Ly6C-positive cells did not form hCLSs (Figure 7C). These results suggest
that F4/80+-recruited macrophages consist of three different subsets, CD11c−/Ly6C+,
CD11c+/Ly6C−, and CD11c+/Ly6C+ cells, in the livers of iHFC#2-fed C57BL/6 mice
and CD11c+ and Ly6C+ cells are localized to different locations in the livers.
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Figure 7. iHFC#2 diet induces the accumulation of CD11c+ and Ly6C+ cells in the liver of C57BL/6
mice. (A,B) Representative histological images of CD11c (A) and Ly6C (B) immunostaining of the
livers from C57BL/6 mice on the ND or iHFC#2 diet for the indicated time periods. Scale bars,
100 µm. (C) Representative histological images of CD11c and Ly6C immunostaining of the livers
from C57BL/6 mice on the ND or iHFC#2 diet. Scale bars, 50 µm. (D) Five locations were captured
per three liver sections for each group. Subsequently, the positive areas for CD11c or Ly6C were
quantified at fifteen locations using ImageJ software, Version 1.53t. Data are shown as means ± SD.
*** p < 0.001.

4. Discussion

In this study, we analyzed NASH development in C57BL/6 mice fed a reduced cholate
iHFC#2 diet. After 24 weeks on the iHFC#2 diet, C57BL/6 mice developed stage 3 liver
fibrosis similar to iHFC-fed TSNO mice. Several diet-induced NASH models, such as a
methionine- and choline-deficient diet- or choline-deficient, L-amino acid-defined diet-fed
NASH model mice, exhibit body weight loss [20]. On the other hand, the iHFC#2-fed
C57BL/6 mouse model showed a gradual body weight gain (Figure 1C), indicating that
this model is considered an obese NASH model. Interestingly, C57BL6 mice had more
Ly6C+/CD11c− macrophages in their livers compared to TSNO mice on ND. Furthermore,
the iHFC#2 diet increased the number of CD11c+/Ly6C+ macrophages in C57BL/6 mice but
not in TSNO mice. These results demonstrate that different strains of mice have different
macrophage subsets in the liver at a steady state. Furthermore, the cholate content of the
iHFC diet and mouse strains may affect macrophage dynamics in the liver.

iHFC#2-fed C57BL/6 mice showed perivenular and perisinusoidal fibrosis as in iHFC-
fed TSNO mice (Figure 2B,D) [11]. C57BL/6 mice fed iHFC#2 for 24 weeks also showed
bridging fibrosis (Figure 2B). These results indicate that iHFC#2 feeding with a reduced
cholate content develops advanced liver fibrosis similar to human NASH. On the other
hand, iHFC#2-fed C57BL/6 mice showed less liver damage, lobular inflammation, and hep-
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atocyte ballooning than iHFC-fed TSNO mice (Figures 1D and 2C) [11]. Thus, differences
in cholate content and mouse strain may influence these pathological changes of NASH.

In our previous study, an iHFC-diet feeding resulted in the accumulation of
CD11c+/Ly6C− and CD11c−/Ly6C+ macrophages in the livers of TSNO mice [11].
CD11c+/Ly6C− macrophages accumulated in the livers of iHFC#2-fed C57BL/6 mice
and formed hCLSs, similar to those in iHFC-fed TSNO mice (Figures 6A and 7C) [11].
This indicates that CD11c+/Ly6C− macrophages play an important role in liver fibrosis,
regardless of the mouse strain or diet. In contrast, CD11c−/Ly6C+ macrophages in TSNO
mice accumulated in the livers after the iHFC diet, whereas a significant proportion of this
subset was resident in the livers of ND-fed C57BL/6 mice (Figure 6A). Several studies have
reported the role and dynamics of Ly6C+ macrophages in NASH pathogenesis [21–24].
Ly6C+ macrophages play anti-inflammatory roles in the liver by producing mediators such
as IL-10 and arginase-1 [22,23], which is consistent with our previous results [11]. Thus,
the milder liver damage, lobular inflammation, and hepatocyte ballooning associated with
NASH of C57BL/6 mice compared to TSNO mice may be attributed to the higher number
of CD11c−/Ly6C+ macrophages at steady state.

CD11c+ macrophages accumulate in the liver of not only obese but also lean NASH
models. A methionine- and choline-deficient diet-induced model is a commonly used
NASH animal model, but it causes weight loss early in the feeding period [20]. It has
been reported that CD11c-positive monocyte-derived macrophages accumulate in the liver
after the diet feeding [25]. Furthermore, it has been suggested that anti-inflammatory
macrophages also accumulate in the liver of this model [26], but it is unclear whether these
express Ly6C. The CD11c−/Ly6C+ macrophage may be a unique cell population of the
iHFC- and iHFC#2-diet-induced NASH model.

Interestingly, CD11c+/Ly6C+ macrophages were found in iHFC#2 diet-fed C57BL/6
mice (Figure 6A). The number of this subset, along with CD11c+/Ly6C− and CD11c−/Ly6c+

macrophages, peaked after 4 weeks of feeding and declined thereafter (Figure 6B). There-
fore, CD11c+/Ly6C+ macrophages may be the precursors or transitional cells of the other
two macrophage subsets. Future studies should investigate their gene expression profiles
to determine whether CD11c+/Ly6C+ cells exhibit an intermediate phenotype between
CD11c+/Ly6C− and CD11c−/Ly6C+ cells.

Changes in gut microbiota and bile acid composition also affect the progression of
chronic liver diseases [27–29]. We previously reported that changes in liver inflammation
and fibrosis induced by the iHFC diet in TSNO mice can be affected by modifications in
the gut microbiota and bile acid composition [30]. Further investigations are necessary to
explore the impact of these mechanisms on the development of NASH pathogenesis in
C57BL/6 mice fed the iHFC#2 diet.

In conclusion, our results provided valuable insights into the distinct subsets of liver
macrophage subsets using a NASH C57BL/6 mouse model. Our findings may provide
information that will aid in the development of therapeutic agents for NASH that target
the macrophage subsets. Since most gene-deficient mice are from a C57BL/6 background,
the iHFC#2-fed NASH model will be useful in analyzing the function of various genes in
obese NASH. This information will lead to a better understanding of NASH pathogenesis
and the development of therapeutic interventions.
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//www.mdpi.com/article/10.3390/biomedicines11102659/s1, Figure S1: Representative flow cytom-
etry data of CD45, TIM-4, F4/80, and CD11b expressions on live non-parenchymal cells of the livers
from C57BL/6 mice; Figure S2: Gating strategy for flow cytometry analysis of non-parenchymal cell
of the liver from C57BL/6 mice; Figure S3: Gating strategy for flow cytometry analysis of F4/80+
non-parenchymal cell, excluding KCs, of the liver from C57BL/6 mice; Table S1: Antibodies for flow
cytometry; Table S2: Primers for RT-qPCR.
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