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Abstract: Cervical cancer (CC) is a serious global health issue, and it is well-known that HPV infection
is the main etiological factor that triggers carcinogenesis. In cancer, chemokine ligands and receptors
are involved in tumor cell growth, metastasis, leukocyte infiltration, and angiogenesis; however,
information on the role played by E6/E7 of HPV16/18 in the modulation of chemokines is very
limited. Therefore, this study aimed to determine whether chemokines are differentially expressed in
CC-derived cell lines; if E6/E7 oncoproteins from HPV16 and 18 are capable of mediating chemokine
expression, what is the expression profile of chemokines in tissues derived from CC and what
is their impact on the overall survival of patients with this pathology? For this purpose, RNA
sequencing and real-time PCR were performed on SiHa, HeLa, and C33A tumorigenic cell lines, on
the non-tumorigenic HaCaT cells, and the E6/E7 HPV-transduced HaCaT cell models. Furthermore,
chemokine expression and survival analysis were executed on 304 CC and 22 normal tissue samples
from The Cancer Genome Atlas (TCGA) repository. The results demonstrate that CXCL1, CXCL2,
CXCL3, and CXCL8 are regulated by E6/E7 of HPV16 and 18, are overexpressed in CC biopsies, and
that their higher expression is related to a worse prognostic survival.

Keywords: chemokines; HPV; E6; E7; cervical cancer; CXCL; prognosis marker; HaCaT cells; HeLa;
SiHa; C33A

1. Introduction

Cervical cancer (CC) is recognized as the fourth most common female carcinoma
worldwide, and its frequency is notably higher in many low- and middle-income countries
(LMICs) [1]. In 2020, 604,127 new cases and 341,831 deaths were reported globally [2];
approximately, 84% of the new cases and 90% of the deaths occurred in LMICs [3]. In fact, in
Mexico, about 7900 new cases are diagnosed annually, which situates cervical cancer in the
third and second place in incidence and mortality, respectively, in pathologies associated
with cancer in women [4].

The cervix can be divided into two mature epithelia, the squamous epithelium (ecto-
cervix) and glandular epithelium (endocervix), and the region where both types of cells
converge is defined as the transformation zone, which is highly susceptible to human
papillomavirus (HPV) infection and tumor development [5].

Unfortunately, women with early-stage HPV infections are often asymptomatic, and
clinical indications of tissue damage typically only appear in the advanced stages [6]. HPV
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is the most common sexually transmissible infection worldwide as a sexually active person
will get infected at least once in their lifetime [7]. HPV belongs to the Papillomaviridae family
of non-enveloped DNA viruses of which roughly 450 genotypes have been identified [8],
and fifteen are considered carcinogenic to humans (high-risk HPV) [9]. Persistent infection
of high-risk HPV is a necessary cause of CC as it is associated with nearly 99% of CC
cases [10,11]; among the high-risk genotypes, HPV16 and HPV18 are identified as the most
prevalent due to a correlation of their presence with 70% of CC cases [12].

The carcinogenic potential of high-risk HPVs is derived from the early expression
of two dynamic and versatile oncoproteins, E6 and E7, which manipulate the host cell to
transform itself and establish a proper tumor niche [13]. Indeed, cervical cancer persistence
requires the constant presence of E6 and E7 oncoprotein activity [14]. Another report
describes that cancer cells could go into senescence or apoptosis in the absence of E6/E7
functions [15]. The most important functions of these oncoproteins are the inactivation
of the tumor suppressor proteins p53 and pRB [16,17]; the activation of hTERT (human
telomerase reverse transcriptase) associated with cell immortalization [18]; the loss of the
cell polarity and cell–cell unions due to the linkage of E6 and the membrane-associated
guanylate kinase proteins (E6/MAGUK) [19,20] and the suppression effect of E7 on the
antigen processing pathway through the transporter associated with antigen protein 1
(TAP1) [20,21]. In summary, both oncoproteins act cooperatively in the disease; E7 controls
early carcinogenesis while E6 hastens progression towards malignancy [22,23]. On the
other hand, E6 and E7 oncoproteins can regulate the expression of immune mediators in
host cells [24], such as cytokines and chemokines, to promote immune cell recruitment,
modulation of the tumor microenvironment [25], angiogenesis, inflammation [26], and
tumor cell proliferation [27].

Chemokines are a group of nearly 50 small proteins with fundamental chemotactic
functions, such as adhesion, migration, localization, and cell–cell interactions by bind-
ing with their G protein-coupled receptors [28]. A common subgroup of chemokines is
secreted without stimuli, called homeostatic chemokines, and are related to immune surveil-
lance [29]; however, under particular circumstances, i.e., cancer, inflammatory chemokines
released will act as chemotactic agents for circulatory leukocytes at the highest concentra-
tion site [30].

In cancer, tumors are characterized by wide cell heterogenicity that communicate to
each other in a complex signaling network [31]. This crosstalk involves the expression both
chemokine ligands and receptors by tumor cells, stromal cells (fibroblasts and endothelial
cells), and infiltrating immune cells. In the tumor niche, transformed cells have the capabil-
ity to develop new features to produce growth-promoting chemokines and increase the
expression of chemokine receptors [32], creating a feedback loop that can cause more cancer
cells to divide and hijack multiple processes, such as: tumor cell proliferation [33–35],
metastasis [36,37], leukocyte infiltration [38–40], and angiogenesis [41].

In relation to pre-cancerous cervical lesions, Bhatia et al. tested the expression of
31 chemokines on cervical liquid-based cytology samples from cervical intraepithelial neo-
plasia (CIN grades 1–3 related to tumor progression); their findings suggest a change in the
chemokine panel related to the worsening of CC [42]. Their research precedes the beginning
of the formation of a biomarkers panel based on chemokines in the interest of ascertaining
the CC prognosis. Despite the available knowledge, whether there is a relation between the
expression E6 and E7 oncoproteins and the increase in chemokines is still inconclusive.

The present work aimed to evaluate the chemokine profile in CC-derived cells and
tissues, whether the expression of chemokines is mediated by E6 and E7 from HPV16 and
18 oncoproteins, and to assess the correlation of the expressed chemokines with the overall
survival of CC patients. All the previous aims are in the pursuit of identifying potential
prognostic biomarkers for earlier stages of the disease.
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2. Materials and Methods
2.1. Cell Culture

Non-tumorigenic keratinocytes (HaCaT), SiHa, HeLa, and C33A cell lines were obtained
from the CIBO-IMSS cell bank repository. All cell lines were previously authenticated using
the Multiplex Human Cell Line Authentication Test at Multiplexion GmbH (Friedrichshafen,
Germany). The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with GlutaMAX™, D-glucose (1 g/L) (Cat. No. 10567-014 Gibco, Thermo Fisher
Scientific, Waltham, MA, USA), penicillin (100 U/mL), streptomycin (100 µg/mL), sodium
pyruvate (110 mg/L), and 10% fetal bovine serum (FBS). Cells were grown at 37 ◦C in a 5%
CO2 atmosphere.

HaCaT models expressing the oncogenes E6/E7 from HPV16 and HPV18 were previ-
ously established as described by Castro-Amaya, AM. et. al., 2022 [27]. HaCaT-derived
models were named as follows: HaCaT with empty vector (HaCaT pLVX), HaCaT cells
transduced with E6/E7 from HPV16 (HaCaT E6/E7 HPV16), and HaCaT cells transduced
with E6/E7 from HPV18 (HaCaT E6/E7 HPV18). Expression of E6/E7 was confirmed via
real-time PCR, the amplicons were run via electrophoresis on 2% agarose gels (as shown in
Figure S1).

2.2. Quantitative PCR

Total RNA was isolated from approximately 107 cells using the Quick-RNA miniprep
plus kit (Cat. No. R1058, Zymo Research, Irvine, CA, USA) according to manufacturers’
instructions. The cDNA synthesis was performed with the Transcriptor First Strand cDNA
Synthesis Kit (Cat. No. 04 379 012 001, Roche Diagnostics, Basel, Switzerland). Quantitative
PCR (qPCR) was performed on the LightCycler 2.0 platform (Roche Diagnostics, Basel,
Switzerland) using the LightCycler FastStart DNA Master plus SYBR Green I Kit (Cat. No.
03515869001, Roche Diagnostics, Basel, Switzerland). To normalize the expression data,
the RPS18 and RPLP0 were taken as reference genes. The results were examined with the
LightCycler Software 4.1. Relative expression was calculated using the 2-∆∆Cp algorithm
and transformed to Log2FC. Primers were designed using the NCBI-Primer-BLAST applica-
tion (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 9 December 2021);
primers’ set sequences are listed in Table S1.

2.3. RNAseq

RNA extracted from two independent samples was shipped for the Next-generation
RNAseq sequencing service from the Novogene Corporation Inc. (Sacramento, CA, USA),
who perform library preparation and sequencing in a NovaSeq 6000 (Illumina, San Diego,
CA, USA). All datasets were deposited in the GeoData repository with the accession
numbers GSE241703 and GSE241704.

2.4. Bioinformatics

The open-source platforms RStudio (v2023.06.1+524) and Galaxy (https://www.
usegalaxy.org, accessed on 10 July 2023) were used to analyze the Illumina raw data.
The quality of the reads was performed through the FastQC tool (v0.12.1) [43]. All the
reads were mapped using the Aling aligner of the Rsubread package (v2.14.2) [44] and
the Human Genome Reference (GRCh38.p14 v43) [45]. The resulting outputs were BAM
files, of which the number of reads per gene were determined via the featureCounts tool
(v2.0.3) [46]. Count tables generated via the featureCounts tool were used to perform a
differential expression analysis using the DESeq2 tool (v2.11.40.8) [47]. The differential
gene expression measurements were normalized using DESeq2’s median of ratios (median
of ratio of gene counts relative to geometric mean per gene) method. All chemokine genes
with an adjusted p-value (adj p) ≤ 0.05 and fold change (Log2FC) ≥ 1 were selected as
differentially expressed genes (DEGs).

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.usegalaxy.org
https://www.usegalaxy.org
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2.5. Expression Profile

The expression profile of the selected chemokines (CCL2, CCL28, CXCL1, CXCL2,
CXCL3, CXCL6, CXCL8, CXCL10, and CXCL11) in CC samples’ expression analysis was
conducted through the OncoDB platform (https://oncodb.org/index.html, accessed on
19 June 2023) [48]. This was based on “The Cancer Genome Atlas” (TCGA) database
(https://www.cancer.gov/tcga, accessed on 19 June 2023), where the data of cervical
squamous cell carcinoma (CESC) together with normal tissue were extracted (n = 304 and
n = 22, respectively) and compared.

2.6. Survival Analysis

The correlation between chemokine panel expression and overall survival (OS) was
performed with the Kaplan–Meier Plotter platform (http://kmplot.com/analysis/index.
php?p=service&cancer=pancancer_rnaseq, accessed on 25 June 2023) [49]. This was based
on 304 CESC samples from the TCGA database, with a follow-up threshold of 60 months.

2.7. Statistical Analyses

All experiments were completed with at least twofold independent replicates. For qPCR
analysis to determine the differences between groups, an analysis of variance (ANOVA)
and Dunnett’s test were performed. Regarding the expression profile, the Student’s t-test
with Welch’s correction were selected to demonstrate the disparity between the control and
CC samples. All the output results from the statistical instruments previously mentioned
were expressed as mean ± standard deviation (SD), and p-value (p) ≤ 0.05 was designated
as statistically significant, furthermore, all data were processed in GraphPad Prism v8.0.1
software. Concerning differential expression analysis, all the genes investigated for each
cellular model and cell line were accomplished with the following criteria: adjusted p-value
(adj p) ≤ 0.05 and fold change value of at least 1 compared to the control group. For this data,
the statistics were acquired through the Galaxy platform.

3. Results
3.1. Differential Chemokines Expression between Cervical Cancer-Derived Cell Lines and
Non-Tumorigenic Keratinocytes

To ascertain if there is differential chemokines expression between CC-derived cell lines
and non-tumorigenic keratinocytes, we assessed the RNA sequencing of SiHa (HPV16+), HeLa
(HPV18+), C33A (HPV−) and as control the non-tumorigenic HaCaT cells (HPV−), taking
HaCaT cells as the calibrator, as depicted in Figure 1a. The results show 18 chemokines were
differentially expressed with statistical significance (adj p≤ 0.05); those that were determined to
be overexpressed in both HPV+ cell lines were: CCL20, CXCL2, CXCL3, CXCL10, and CXCL11;
while those observed as strongly downregulated were: CCL2, CCL17, CCL22, CXCL1, CXCL6,
CXCL8, and CXCL16. In that sense, the fold-changes observed were from 6.45 to −11.03. On
the other hand, the C33A cell line presents a predominant tendency to downregulation, and
the overexpressed chemokines in the SiHa and HeLa cell lines are shown in C33A cells as
non-differentially expressed. All this allows us to infer that HPV’s presence in CC-derived
cell lines could modify the chemokine expression.

3.2. E6/E7 HPV16 and 18 Modulate the Chemokines Expression

To determine if the mere presence of the E6/E7 oncogenes of HPV16 and 18 can
modulate the expression of chemokines, the non-tumorigenic keratinocytes (HaCaT cells)
were transduced with E6/E7 from each HPV. They were used as cell models to evaluate
the impact of the oncoproteins on chemokine expression. The cell models were named
as follows: HaCaT pLVX (transduced with empty vector), HaCaT E6/E7 HPV16, and
HaCaT E6/E7 HPV18. RNAseq analyses using HaCaT pLVX as the calibrator identified
14 differentially regulated chemokines of statistical significance (adj p ≤ 0.05), as shown
in Figure 1b. As opposed to the previous SiHa, HeLa, and C33A findings, most of the

https://oncodb.org/index.html
https://www.cancer.gov/tcga
http://kmplot.com/analysis/index.php?p=service&cancer=pancancer_rnaseq
http://kmplot.com/analysis/index.php?p=service&cancer=pancancer_rnaseq
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chemokines have an overexpression tendency, with fold-change values ranging from 1.18
to 6.63.
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Figure 1. Differentially expressed genes in cervical cancer-derived cell lines and in E6/E7 HPV16
and 18-transduced HaCaT cells. (a) The heat map shows the fold-changes (log2FC) of the modulated
chemokine genes in each SiHa, HeLa, and C33A cell line. Each group has been contrasted against the
expression of HaCaT, taking it as the calibrator. (b) The heat map depicts the fold-changes (log2FC) of
the chemokines identified in the HaCaT models E6/E7 HPV16 and E6/E7 HPV18. Each group has been
compared against the expression of HaCaT pLVX (empty vector), taking it as the calibrator. The color
of the cells in both heat maps ranges from blue to red according to their expression, with statistical
significance (adj p ≤ 0.05). The white cells depicted with NS show a non-significant differential
expression. DEGs: differentially expressed genes.

Remarkably, the E6/E7 HPV18 model triggers the overexpression of a higher quantity and
rate of chemokines, albeit CCL2, CCL28, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10
are highlighted since they maintain the same trend in both models. In addition, CXCL3, CXCL11,
CXCL14, and CXCL17 were significantly increased only in HaCaT E6/E7 HPV18.

To confirm previous findings, we decided to validate the data utilizing quantitative
real-time PCR (qPCR), using HaCaT pLVX cells as the calibrator (set as 0). Normalization
was performed using RPLP0 and RPS18 as reference genes. Primers of all genes, whose
expression was observed to increase in the HaCaT E6/E7 HPV18 model, were designed
and synthesized; however, not all of them were amplified adequately and specifically.
Therefore, the genes in which their expression could be validated with a statistically
significant differential expression in both cell models were CCL2, CCL28, CXCL2, CXCL3,
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CXCL6, CXCL8, CXCL10, and CXCL11. CXCL1 exhibited a statistically significant increase
only in HaCaT E6/E7 HPV18 cells, see Figure 2.
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Figure 2. Real-time PCR assays were performed on the HaCaT cell models. Graphs show the
relative expression (Log2FC) determined in each of the chemokines measured in HaCaT pLVX (empty
vector), HaCaT E6/E7 HPV16, and HaCaT E6/E7 HPV18) employing the LightCycler 2.0 System;
RPLP0 and RPS18 were used as reference genes. The expression of the chemokines in HaCaT pLVX
was used as a calibrator. Statistical significance (p-value < 0.05 obtained through Dunnet’s test) is
shown with an asterisk (*), (ns) indicates statistically non-significant.

3.3. High Expression of Chemokines in Cervical Cancer Tissues

Once the expression of the various chemokines was evaluated in the HaCaT models,
we were interested in elucidating whether the expression of the genes modulated by HPV16
or 18 was also reflected in biopsies derived from cervical cancer.

For this purpose, cervical squamous cell carcinoma (CESC) and normal cervical tissue
data were downloaded from TCGA (n = 304 and n = 22, respectively) and compared to
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illustrate the local cervical environment better and show the relevance of the chemokines
in that pathology.

As depicted in Figure 3, except for CCL2, all chemokines in CC maintained an ex-
tremely high expression with statistical significance, in contrast to normal tissues. The
Log2fold-change observed in each of them were as follows: CCL28 (0.69), CXCL1 (4.84),
CXCL2 (1.58), CXCL3 (2.41), CXCL6 (2.14), CXCL8 (5.22), CXCL10 (5.72), and CXCL11 (3.94).
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Figure 3. Relative Expression Profiles of Chemokines Determined in Cervical Cancer Tissues. The
graphs exhibit the relative expression of each chemokine determined in 304 samples with cervical
squamous cell carcinoma (CESC) versus 22 healthy tissues (Normal). The database was downloaded
from The Cancer Genome Atlas Program (TCGA) repository through the OncoDB platform. (*) indicates
statistical significance with a p-value < 0.05 obtained through Student’s t-test with Welch’s correction.
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3.4. Prognostic Outcome Linkage with Chemokines Expression in Cervical Cancer Patients

To determine whether the chemokine expression was linked to survival, Kaplan–Meier
analyzes were performed on the same samples included in the TCGA-CESC database; the
patient’s samples were divided into low- and high-expression groups and the ratio of death
probability (hazard ratio—HR), and the statistical significance values were retrieved from a
medium-term of 60 months. As can be observed in Figure 4, the analyzed data showed that a
worse survival was linked to a high expression of CXCL1 (HR = 2.52), CXCL2 (HR = 2.57),
CXCL3 (HR = 2.49), and CXCL8 (HR = 3.2); patients who show a high expression of each of
these genes could have a two to three times higher probability of presenting with deterioration
or complications during the first 60 months of the course of the pathology. On the other hand,
a better survival was detected in the group of patients with a higher expression of CXCL10.
Finally, non-statistically significant values were noted for CCL2, CCL28, CXCL6, and CXCL11.
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4. Discussion

A crucial component in CC biology is the tumor microenvironment (TME) which
functions as bidirectional communication among stromal and tumoral cells, leading to
tumor initiation, progression, metastasis, and therapeutic response. Paracrine molecules,
such as cytokines and chemokines, drive the crosstalk in the TME. Chemokines regulate
various tumor cell properties, including stem-like cell features, proliferation, invasiveness,
and neoangiogenesis in stromal cells [50,51]. Furthermore, they control immune cell biology
characteristics such as activation, recruitment, phenotype, and function by controlling their
location and interactions in lymphoid tissues and the TME [52,53]. The role of chemokines
is complex, as their expression is regulated by immune cells, stromal cells, and tumor
cells, contributing to both anti- and pro-tumorigenic immune responses, relying on various
factors [54].

On the other hand, as previously mentioned, the most critical risk factor for women
developing CC is persistent HPV infections, mainly by high-risk genotypes. The role
of HPV oncoproteins like E6 and E7 in carcinogenesis involves intricate pathways that
modulate a significant group of molecules [55], such as chemokines [27,56]. In our work,
we investigated the expression of chemokines in CC-derived cell lines, the impact of E6/E7
oncoproteins in their expression level, and their effect on overall survival.

To make it easier to discuss the results, we made a summary table of all the results,
shown in Table S2. Our results revealed that expression of CXCL1, CXCL2, CXCL3, and
CXCL8 increases in the presence of E6/E7 of HPV16 and 18, are overexpressed in CC
biopsies, and that their higher expression is related to a worse prognostic survival in
cervical cancer. In the literature, few studies evaluate the effect of HPV oncoproteins,
specifically on chemokines. A study very similar to ours is the one carried out by Dai
et al. [57], in which they also obtained models of HaCaT cells that overexpress E6/E7 from
HPV16, however, they used a different vector. In that work, in the Supplementary Material
they reported an overexpression of CXCL1, but an under-expression of CXCL2 in their
E6/E7 HPV16 expression HaCaT model.

In regard to CXCL1, it has been reported with an increased expression in cervical
tumors [58], as well as in the serum of CC patients [59]. Another significant finding is
its impact on survival in patients with this pathology, as its overexpression correlates
with a worse prognosis. This could be due to the fact that CXCL1 expression is related to
increased proliferation and immortalization [60], the migration of carcinogenic cells [61],
and angiogenic activation [62], as well as more severe cancer progression [63,64].

Concerning CXCL2, its participation has been constantly related to different types of
cancer such as prostate, colon, and bladder [65–67], allowing a better understanding of its
role in the tumor microenvironment. According to Jiang et al., E6 splicing increases CXCL2
expression and is linked to the infiltration of common lymphoid progenitor, neutrophils,
and T γδ lymphocytes, while dendritic and CD8+ cells are absent [68]. In addition, CXCL2
expression has been positively correlated with lymph node metastasis [69,70].

Regarding CXCL3, their roles reported in CC are related to the induction of prolif-
eration and migration through the activation of ERK signaling pathway genes [71]. In
addition, CXCL3 promotes cell growth and movement via autocrine/paracrine mechanisms
involving Jak-STAT and MAPK signaling pathways in prostate [72] and oral squamous cell
carcinoma [73].

In the case of CXCL8, in agreement with our results, analysis of cervical mucus in
patients with CIN or CC revealed that HPV positivity was associated with increased
expression of CXCL8 [74], and low levels were linked with longer overall survival in
CC patients [58]. Furthermore, Yan et al. demonstrated that its mRNA expression and
protein concentration was exclusively from cervical cancer cell lines compared to cervical
epithelial cell lines, and its protein levels significantly correlate to clinical stage, metastasis,
histological type, and grade [75]. Moreover, through an autocrine mechanism, CXCL8
increases cell viability and proliferation under low-oxygen conditions in HeLa and SiHa
cells [76].
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In relation to CXCL10, we found it highly expressed in all the models analyzed; in
agreement with that observation, similar results were obtained in tumoral tissue, where
protein levels were higher at the tumor site than in the adjacent tissue [58]. On the other
hand, its high expression was correlated with a better prognosis in overall survival analysis.
These findings could be explained by Zhao et al.’s report of the chemokine’s relation to the
inhibition of angiogenesis, a decrease in proliferation, S phase transition, and stimulation
of apoptosis combined with radiotherapy [77]. Additionally, CXCL10 has been related to
the exosomal expression of PD-L1 by fibroblasts; the upregulated expression of PD-L1 was
observed only in HPV-positive patients via microarray analysis [78]; this mechanism could
contribute to viral immune escape and carcinogenesis.

Expression of CXCL6 was observed to be highly expressed in the E6/E7 HPV16 and 18
HaCaT models, as also reported by Dai et al. [57] In addition, its expression was observed
with the same tendency in and CC tissues. The biological role of CXCL6 in CC is to
promote tumor growth, metastasis, and aggressiveness [79]. Moreover, the co-expression
of a glycosylating enzyme, GALNT2, and CXCL6 indicates poor overall survival of the
disease [80].

CXCL11 is usually associated with cancer promotion, including proliferation, migra-
tion, angiogenesis, and T-cell infiltration [81–83]. Higher levels of CXCL11 were found in
tumoral tissue compared to adjacent tissue in CC samples [58]. Moreover, EphA2 mediated
a relationship between high levels of CXCL11 and PD-L1, as reported by Zhao et al. [84].
However, studies have also shown that low levels of this chemokine can be associated with
the severity of cervical lesions [85] and high-risk scores for cervical, ovarian, and urogenital
cancers [86].

CCL2 plays a vital role in activating and recruiting macrophages in cancer progression.
As a result, it is relevant in multiple types of cancer and has been associated with poor
prognosis in digestive, head and neck, respiratory, and urogenital cancers [87]. In CC,
high expression levels of CCL2 have been linked to proliferation, migration, epithelial-
mesenchymal transition, and perineural invasion [88].

The results found for CCL28 show increased expression in the E6/E7 HaCaT models
but only slightly increased in cervical biopsies, so its impact on the survival of patients
with CC is not significant. However, Yan, J. et al. demonstrated that CCL28 has the ability
to regulate the progression of pancreatic ductal adenocarcinoma through its autocrine
activity [89]. It is also involved in the migration of pancreatic tumor cells, Treg cells, and
pancreatic stellate cells, associating the CCL28 overexpression with a worse prognosis in
these patients [90]. In CC, CCL28 expression was identified as being higher in high-grade
CIN compared to HPV-negative samples and those with normal cytology [42].

As previously mentioned, chemokines are highly involved in the carcinogenic pro-
cesses of different types of cancer in such a way that our study allows us to approach the
plethora that triggers the presence of the E6 and E7 oncoproteins of HPV16 and 18. It
is important to highlight that one limitation of the study was that the expression of the
oncogenes in the E6/E7 HPV16 HaCaT model was not as efficient as that observed in the
E6/E7 HPV18 HaCaT model, which could explain the differences observed in chemokine
modulation by the oncoproteins of both HPV genotypes.

5. Conclusions

This study revealed that the presence of HPV16 and 18 oncogenes significantly alter
the expression of CCL28, CXCL1, CXCL2, CXCL3, CXCL6, CXCL8, CXCL10, and CXCL11;
overexpression of those chemokines was also confirmed in cervical cancer biopsies. Fur-
thermore, the overexpression of some of them, CXCL1, CXCL2, CXCL3, and CXCL8, was
linked to an unfavorable prognosis; meanwhile, expression of CXCL10 has the opposite
effect. This evidence gives us an approach to the usefulness of a chemokine’s levels on a
patient’s fate. The directions we have to continue in with this research are to determine the
expression of each of these genes at the protein level in the HaCaT-transduced cell models
and cervical cancer-derived cell lines, as well as in samples of cervical swabs from women
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with low-grade cervical lesions, who will be undergoing colposcopic follow-up every six
months, to assess their potential as a marker for predicting progression.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biomedicines11102655/s1: Supplementary Figure S1 depicts the amplifica-
tion curves and CPs derived from real-time-PCR utilizing specific primers for E6 and E7 oncogenes from
HPV16 and 18 for the validation of E6/E7 expression on HaCaT-transduced cell models. Supplementary
Table S1 presents a table of the detailed primers sequences, product length, and annealing temperature
used in qPCR. Supplementary Table S2 presents a summary table of the results of each analysis assessed
in the present study to make it easier to discuss the results.
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