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Abstract: The multifaceted nature and swift progression of Amyotrophic Lateral Sclerosis (ALS)
pose considerable challenges to our understanding of its evolution and interplay with comorbid
conditions. This study seeks to elucidate the temporal dynamics of ALS progression and its interaction
with associated diseases. We employed a principal tree-based model to decipher patterns within
clinical data derived from a population-based database in Taiwan. The disease progression was
portrayed as branched trajectories, each path representing a series of distinct stages. Each stage
embodied the cumulative occurrence of co-existing diseases, depicted as nodes on the tree, with
edges symbolizing potential transitions between these linked nodes. Our model identified eight
distinct ALS patient trajectories, unveiling unique patterns of disease associations at various stages of
progression. These patterns may suggest underlying disease mechanisms or risk factors. This research
re-conceptualizes ALS progression as a migration through diverse stages, instead of the perspective
of a sequence of isolated events. This new approach illuminates patterns of disease association across
different progression phases. The insights obtained from this study hold the potential to inform
doctors regarding the development of personalized treatment strategies, ultimately enhancing patient
prognosis and quality of life.

Keywords: Amyotrophic Lateral Sclerosis (ALS); principal tree; disease progression; clinical data;
disease trajectory

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a rare but devastating neurodegenerative
disease that affects upper and lower motor neurons, primarily observed in men. The disease
is typically diagnosed around the age of 62, and the median survival time for patients with
ALS is approximately three years [1]. Patients often succumb to respiratory complications
such as bronchopneumonia or pneumonia [2–4] In Taiwan, the average annual incidence
and prevalence rates were 0.51 and 1.97 per 100,000 individuals, respectively. Furthermore,
the economic burden of ALS management was significantly higher than average healthcare
costs [5]. Despite the diverse clinical phenotypes of the disease, the pathophysiology of ALS
remains unknown [2]. Although substantial efforts have been made, viable interventions to
halt or slow down the progression of the disease remain elusive, underscoring the inherent
complexity of ALS [6].

Studies have found comorbidities in patients with ALS at frequencies that differ
from the general population [7]. These comorbidities may modulate disease progression.
For example, diabetes and hypertension correlated with delayed onset of ALS, while
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specific cardiovascular disorders could influence the course of the disease positively or
negatively [7–10]. However, most of these potential risk factors related to ALS were often
assessed in isolation, stressing the need for an integrated approach to understand the
intricate relationships between comorbidities and ALS [11].

Given the progressive nature of ALS, understanding the comprehensive course of
the disease is crucial for optimal clinical management [12]. However, many studies often
restricted the prediction of the disease to a single progression event or categorize patients
into static progression phenotypes [13,14]. Such methodologies fall short of capturing the
dynamic narrative of disease progression and interactions with comorbidities. Furthermore,
traditional analysis methods [15–20] often interpreted disease trajectories as a chain of
disease events, potentially overlooking the simultaneous presence of comorbidities in ALS
patients.

Recent developments in unsupervised machine learning algorithms such as Elastic
Principal Graphs (ElPiGraph) have paved the way for a more comprehensive analysis of
complex multidimensional data. These techniques, widely applicable in various fields in-
cluding biology and medicine, offer opportunities to construct robust and scalable models of
intrinsic dataset geometry. This enables the identification and analysis of high-dimensional
data points and their respective relationships [21].

Our study leverages the capabilities of the ElPiGraph method to unravel the associ-
ations between ALS and its comorbidities. We introduce a novel perspective that views
ALS trajectories as a succession of disease stages characterized by cumulative disease
occurrences and transitions. By transforming patient records into the same multidimen-
sional space, our approach aims to bridge the gap between individual patient experiences.
It provides a more comprehensive and nuanced interpretation of ALS progression and
extracts more insightful knowledge from the available data.

2. Materials and Methods
2.1. Taiwan’s ALS Dataset

This study utilized anonymized data from 83 patients diagnosed with Amyotrophic Lateral
Sclerosis (ALS) obtained from a cohort dataset of one million enrollees of Taiwan’s National
Health Insurance Research Database (NHIRD) over an 18-year span (1996–2013) [22]. Of these
patients, 51 (61.45%) were male and 32 (38.55%) were female. The age of their first ALS
diagnosis ranged from 34 to 70 years, with an interquartile range (IQR) between 44 and 62
years. The dataset includes 50,613 related medical records documenting hospital, outpatient,
and emergency visits for the 83 ALS patients. Each record includes the date and diagnosis, as
represented by the International Classification of Diseases, Ninth Revision (ICD-9) [23].

Given the heterogeneity of ALS, we focused on cases representing definitive diagnoses
involving both upper and lower motor neurons (ICD-9 335.20). Alongside these cases, we
assembled a control group consisting of four-fold subjects with age- and gender-matched
individuals for each ALS patient within a three-year age range (1000 days). This control
group consisted of 332 patients without ALS, with a total of 158,677 corresponding medical
records.

2.2. Study Design

This study consisted of four key stages for trajectory analysis based on principle tree
approaches, including the following:

1. transformation of patient medical records into a quantifiable multi-dimensional space;
2. application of principal trees to reveal the concealed data geometry and topology;
3. identification of diseases associated with ALS across different pathways and stages to

highlight comorbidity interaction;
4. extraction of different trajectories from the ALS patient group progressing to various

final states.
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2.2.1. Transforming Patient Medical Records into a Multidimensional Space

Each medical record includes three essential elements: (1) patient identifier (PID),
(2) visit date, and (3) diagnosis of the disease according to ICD-9. We transformed each
diagnosis into a one-hot encoding format, which is a binary representation where each
unique diagnosis was encoded as a separate feature. The evolution of diseases was then
reflected based on each patient’s cumulative count of disease occurrences (we counted each
diagnosis once per patient per day).

The process of transforming patient medical records into a multidimensional space is
outlined in Figure 1. The original table of patient records was first converted into a one-hot
table, where each unique diagnosis was represented by its own column. For example,
the number “1” indicates the presence of the diagnosis for a given patient on a particular
date, while a “0” indicates its absence. This one-hot table was then transformed into its
corresponding cumulated version, accumulating the count of each diagnosis over time for
each patient.

Figure 1. Schematic representation of transforming patient medical records into a multidimensional
space. The process consists of three steps. (A) The original table of patient records, with each
record featuring the patient identifier (PID), the hospital visiting date, and the disease diagnosis.
(B) Conversion of the original table into a one-hot table, with each unique diagnosis represented as
a separate column. In this format, a ‘1′ signifies the presence of the diagnosis for a given patient
on a particular date, while a ‘0′ denotes its absence. (C) Transformation of the one-hot table into a
cumulative table, aggregating the occurrence count of each diagnosis over time for each patient. This
cumulative representation forms the basis for further multidimensional data analysis.

We standardized the features by scaling and centering the data to unit variance. We
then conducted a principal component analysis (PCA) using 60 components, as determined
by the elbow rule—a method used to choose the optimal number of components by locating
the “elbow” in the plot of explained variance versus the number of components [24,25]. This
analysis transformed 50,613 initial records for 83 ALS patients with 493 unique diagnoses
into 22,981 records in 60 dimensions.

2.2.2. Application of Principal Tree to Reveal ALS Progression Pathway

A principal tree serves as an effective data approximator, capturing complex relation-
ships within a data space that may not be attainable with linear segments alone [26]. It
helps reveal the underlying structure in the disease progression data that might remain
obscured and ignored. We utilized the ElPiGraph library [21] to construct the principal
trees, aiming to grasp the intricate topology and progression patterns of ALS.

Once the principal tree was constructed, we analyzed the directionality of the edges
connecting the nodes. This analysis enables us to map the trajectories representing the
progression of ALS. We designated the root node as the node representing the state before
any diagnosis, where all cumulative counts were initially zero. As we moved further away
from the root node, the nodes represented progressively advanced stages of the disease for
ALS subjects, and we could determine the directions of edges accordingly. The terminal
states of the trajectories were then marked as the tree’s leaf nodes.
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2.2.3. Exploring Disease Associations and Comorbidity Interaction in ALS

To differentiate between disease progression and various pathways, we adopted an
approach that located diseases during state transitions. This strategy involved three main
tasks: detection of potential diseases that either contribute to or arise from ALS, extraction
of diseases that show increased occurrences during state transitions, and identification of
unique diseases associated exclusively with each branch.

To identify diseases significantly associated with ALS, we used the odds ratio, a
statistical measure widely employed in epidemiological studies. The odds ratio assesses
the likelihood of an event occurring in one group compared to another, thereby indicating
the effect size [27,28]. In our analysis, we set an odds ratio threshold of 2 and required a
95% confidence interval that did not include zero to ensure the clinical significance of the
identified associations [29,30].

Subsequently, we identified diseases associated with each edge of the principal tree,
specifically those where the number of diagnoses increased during a state transition. This
approach does not only highlight disease dynamics but also helps characterize different
progression pathways. Additionally, we pinpointed “branch-only” diseases, those unique
to a particular branch and not inherited from ancestral branches or shared with others. Iden-
tifying these unique diseases enriches our understanding of distinct disease interactions
within each trajectory.

2.2.4. Extraction and Classification of ALS Disease Trajectories

We constructed disease trajectories from previous principal branches, which are paths
that extend from the root node to the leaf nodes in the multidimensional space defined
by cumulative counts of disease occurrences. Each patient’s final medical record is trans-
formed into a point within this space. The “nearest” node, determined by the shortest
geometric distance, is used to map each patient’s final observed state within this network
of disease trajectories. If a patient’s last observed state aligns with a single trajectory, we
assigned them to that specific category. However, if the patient’s final state overlapped with
multiple trajectories—potentially due to truncated observable trajectories—we assigned
these patients to an uncategorized group for further analysis.

3. Results
3.1. Identification of Diseases Associated with ALS

Our analysis identified several diseases with a significant association with Amy-
otrophic Lateral Sclerosis (ALS), as indicated by odds ratios (ORs) and 95% confidence
intervals (CI) displayed in Table 1. Each listed disease varies in ORs, highlighting the
relative likelihood of simultaneous diagnosis in ALS patients compared to non-ALS indi-
viduals.

Of these diseases, 28 were present at one or more state transition edges, suggesting
their potential involvement in disease progression. Additionally, 26 diseases were des-
ignated as “branch-only”, appearing exclusively within certain branches and not being
traceable to ancestral lines. These “branch-only” diseases suggest distinctive ALS-related
disease pathways. Furthermore, 23 diseases were linked exclusively to a specific edge,
reinforcing the idea of specialized disease trajectories.

Seven diseases showed an infinite OR, implying a solid association with ALS. These
included “dislocation of the jaw”, “chromosomal anomalies”, “late effects of acute po-
liomyelitis”, “acute poliomyelitis”, “encephalitis myelitis and encephalomyelitis”, “muscu-
lar dystrophies and other myopathies”, and “disorders of other cranial nerves”.

Other diseases, such as “other diseases of spinal cord” and “Parkinson’s disease”,
demonstrated high ORs, indicative of a significant connection with ALS. “Malignant
neoplasm of prostate” and “diseases of white blood cells” also suggested a meaningful
relationship with ALS, despite broad 95% CIs.
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Table 1. Diseases significantly associated with Amyotrophic Lateral Sclerosis (ALS). Diseases are
denoted by the International Classification of Diseases (ICD-9) codes and listed alongside their
respective odds ratios (ORs) and 95% confidence intervals (CIs).

ICD-9 Disease Name OR 95% CI

038 Septicemia 2.85 1.28–6.17
045 Acute poliomyelitis inf 1.68–inf
138 Late effects of acute poliomyelitis inf 6.10–inf
185 Malignant neoplasm of prostate 16.6 1.61–827.73
242 Thyrotoxicosis with or without goiter 3.35 1.26–8.64
276 Disorders of fluid electrolyte and acid–base balance 4 1.86–8.54
288 Diseases of white blood cells 16.6 1.61–827.73
290 Dementias 4.39 1.58–12.24
300 Anxiety, dissociative, and somatoform disorders 2 1.20–3.37
311 Depressive disorder, not elsewhere classified 3.23 1.16–8.71
323 Encephalitis myelitis and encephalomyelitis inf 1.68–inf
331 Other cerebral degenerations 5.07 1.25–21.58
332 Parkinson’s disease 18.35 4.78–103.91
333 Other extrapyramidal disease and abnormal movement disorders 4.44 1.67–11.78
336 Other diseases of spinal cord 24.93 5.28–236.30
343 Infantile cerebral palsy 8.48 1.77–53.57
344 Other paralytic syndromes 5.1 2.34–11.17
345 Epilepsy and recurrent seizures 3.29 1.01–10.30
348 Other conditions of brain 7.9 2.30–30.90
349 Other and unspecified disorders of the nervous system 3.66 1.85–7.18
351 Facial nerve disorders 6.98 1.33–45.92
352 Disorders of other cranial nerves inf 2.70–inf
353 Nerve root and plexus disorders 5.4 2.97–9.83
354 Mononeuritis of upper limb and mononeuritis multiplex 3.33 1.76–6.23
355 Mononeuritis of lower limb and unspecified site 3.82 1.54–9.34
356 Hereditary and idiopathic peripheral neuropathy 15.36 6.77–37.64
357 Inflammatory and toxic neuropathy 6.82 2.92–16.47
358 Myoneural disorders 7.86 3.08–21.27
359 Muscular dystrophies and other myopathies inf 16.82–inf
360 Disorders of the globe 4.93 1.51–16.50
427 Cardiac dysrhythmias 2.11 1.17–3.73
434 Occlusion of cerebral arteries 3.15 1.64–5.99
436 Acute, but ill-defined, cerebrovascular disease 5.06 2.28–11.32
438 Late effects of cerebrovascular disease 2.59 1.21–5.39
459 Other disorders of circulatory system 4.98 1.39–18.48
518 Other diseases of lung 6.28 2.73–14.81
590 Infections of kidney 2.75 1.01–7.14
714 Rheumatoid arthritis and other inflammatory polyarthropathies 2.49 1.10–5.42
718 Other derangement of joint 3.22 1.28–7.86
721 Spondylosis and allied disorders 2.35 1.40–3.99
722 Intervertebral disc disorders 2.18 1.28–3.71
728 Disorders of muscle ligament and fascia 2.49 1.46–4.23
729 Other disorders of soft tissues 3.59 1.70–8.47
758 Chromosomal anomalies inf 1.68–inf
813 Fracture of radius and ulna 3.42 1.13–10.00
830 Dislocation of jaw inf 1.68–inf
891 Open wound of knee, leg (except thigh), and ankle 2.18 1.08–4.29
952 Spinal cord injury without evidence of spinal bone injury 8.48 1.77–53.57

Several neurological conditions, including “hereditary and idiopathic peripheral neu-
ropathy”, “infantile cerebral palsy”, and “other conditions of brain”, showed strong associ-
ations with ALS, reinforcing its neurological nature. Interestingly, conditions not directly
related to the nervous system, like “septicemia”, “infections of kidney”, and “cardiac
dysrhythmias”, were also associated with ALS, pointing to the disease’s potential systemic
impacts.
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3.2. Decoding ALS Pathways through the Principal Tree

When exploring the pathways of progression of ALS, we used a principal tree to
capture the courses of disease progression. As shown in Figure 2, the tree begins with a root
node (0), representing the state of the disease prior to diagnosis. The tree then bifurcates
into multiple pathways, ending in 12 leaf nodes, each representing a distinct potential path
of disease progression.

Figure 2. Principal tree illustrating heterogeneous pathways of progression of ALS disease. The
tree originates from a root node labeled as “0”, and it is split into multiple pathways that end at
twelve leaf nodes. Each leaf node represents a unique trajectory of progression of ALS. The tree
captures the presence of “branch-only” diseases along specific routes, highlighting distinct disease
progression pathways. The numbers shown within the nodes serve as identifiers and possess no
intrinsic meaning. The nodes are linked by edges, the width of edge corresponding to the number
of patients following a particular pathway. The presence of a disease is indicated by its ICD-9 code.
Points scattered throughout the figure represent individual patient medical visits, color-coded for
patient differentiation.
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Table 2. Distribution of diseases and patients across unique pathways in the ALS progression
principal tree. Each row represents an edge (transition between nodes) within the ALS progression
tree model. Diseases are marked by ICD-9 codes and categorized into “Associated Diseases” and
“Branch-Only Diseases”. “Associated Diseases” represent all illnesses observed along a specific edge,
whereas “Branch-Only Diseases” specify those unique to a specific edge, exclusive of those shared
with other branches originating from the same parent node or inherited from ancestral nodes. The
“Number of Patients” column quantifies the patients traversing each pathway, presented as both
a numerical count and a percentage relative to the total patient cohort. This table underscores the
complex intertwining of disease states across varying ALS progression paths and emphasizes the
disease’s heterogeneity.

Edge Associated Diseases (ICD-9) Branch-Only Diseases
(ICD-9) Number of Patients

1–3 045, 729, 722, 721, 359, 353,
438, 427, 344, 300, 728, 138, 357

045, 359, 438,
427, 344, 138 31 (37.35%)

1–4 290 290 8 (9.64%)

1–9 721, 729, 722, 436 1 (1.20%)

1–2 335 10 (12.05%)

3–11 332, 729, 722, 721, 352, 813,
353, 344, 300, 728, 311 352, 813, 332, 311 3 (3.61%)

3–7 729, 356, 438, 427, 300, 434, 436 5 (6.02%)

3–8 343, 045, 138 343 6 (7.23%)

3–5 434, 351, 438 351 9 (10.84%)

3–10 722, 359, 353, 427, 300, 185 185 3 (3.61%)

3–6 335, 721, 356, 355,
300, 323, 349, 357 349, 355, 323 4 (4.82%)

11–17 332, 718, 300, 290, 813 290, 718 1 (1.20%)

11–14 729, 722, 721, 353, 344,
355, 300, 728, 311 355 1 (1.20%)

11–16 352 1 (1.20%)

7–12 434, 356, 436, 438 3 (3.61%)

7–13 335, 332, 729, 359, 438, 427, 300 332 2 (2.41%)

0–1 335, 729, 722, 721, 353,
300, 728, 357, 436

335, 729, 722, 721, 353, 300,
728, 357, 436 55 (66.27%)

17–22 332, 718, 300, 290, 813 1 (1.20%)

22–24 332, 718, 300, 290, 813 1 (1.20%)

14–20 729, 722, 721, 353, 344,
355, 300, 728, 311 1 (1.20%)

16–21 352 1 (1.20%)

10–18 729, 722, 359, 353, 427, 300, 185 3 (3.61%)

21–23 352 1 (1.20%)

6–15 335, 721, 356, 355,
300, 323, 349, 357 4 (4.82%)

13–19 335, 332, 729, 359,
438, 427, 300, 434 2 (2.41%)

All patients in our study started at root node 0 and advanced to the first bifurcation
at node 1, marking the onset of ALS. This transition was characterized by an increased
prevalence of nine diseases, indicating that these may be early indicators of the progression



Biomedicines 2023, 11, 2629 8 of 13

of ALS. Beyond node 1, the tree split into four distinct pathways, each leading to different
outcomes in the progression of the disease. The distribution of diseases and patients across
unique pathways in the ALS progression principal tree were shown in Table 2.

The paths from node 1 to node 9 and from node 1 to node 2 did not show “branch-only”
diseases, suggesting a common progression route for many ALS patients without develop-
ing specific diseases. However, the routes from node 1 to nodes 4 and 3 displayed unique
“branch-only” diseases, hinting at alternative pathogenetic pathways. These included
“Dementia” (290) on the path to node 4, while “Acute poliomyelitis” (045), “Muscular
dystrophies and other myopathies” (359), and “Other paralytic syndromes” (344) were on
the path to node 3.

The branch from node 3 further bifurcates into multiple pathways, each marked
by different “branch-only” diseases. For example, the path from node 3 to node 8 was
distinguished by “infantile cerebral palsy” (343), while the route from node 3 to node 5
was identified by “Facial nerve disorders” (351). Furthermore, the transition from node
3 to node 6 was marked by “Other unspecified disorders of the nervous system” (349),
“Mononeuritis of the lower extremity and an unspecified site” (355), and “Encephalitis
myelitis and encephalomyelitis” (323).

Collectively, this principal tree model offers a visualization of the varied trajectories
of progression of ALS, suggesting that, while some patients follow common progression
routes with no unique “branch-only” diseases, others may experience specialized pathways
with distinct diseases marking their journeys.

3.3. Delineation and Analysis of Patient Trajectories in ALS Progression

Our study yielded the delineation of eight distinct trajectories representing ALS
progression patterns, each substantiated by at least three patients. The varied patient
trajectories in the ALS progression principal tree were shown in Figure 3 respectively.
These trajectories revealed the dynamic landscape of ALS progression.

We identified a distinctive “Uncategorized Group” comprising patients whose pro-
gression patterns do not fit within any of the eight defined trajectories. These patients’
disease pathways may be shorter, failing to exceed a bifurcation point that leads to only a
terminal node, suggestive of a potentially truncated ALS progression pattern. This unique
progression pattern, as observed in the initial ALS records for these patients, tends to
cluster at the early stages of the disease. This divergence warrants further investigation
and may provide valuable insights into the heterogeneity of ALS progression.

Apart from the Uncategorized Group, our analysis classified patients into seven
distinct trajectories, each reflecting the unique progression dynamics of ALS. The diversity
in these trajectories echoes the high heterogeneity in the progression of ALS, underscoring
the potential of distinct underlying disease mechanisms or risk factors.
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Figure 3. Detailed illustration of varied patient trajectories in the ALS progression principal tree.
The figure consists of eight subgraphs, each representing a unique disease progression pathway
undertaken by a specific patient group, originating from the initial onset (node 0) to differing terminal
stages. Subgraphs are sorted based on the number of patients in each group. The “Uncategorized
Group” encompasses patients whose progression patterns do not fit into any trajectory. The trajecto-
ries of these patients may be too short, failing to surpass a bifurcation point leading to a terminal node,
indicative of a potentially truncated ALS progression pattern. Each of the subsequent subgraphs elu-
cidates distinct ALS progression dynamics, characterized by changes in associated diseases (denoted
by ICD-9 codes) along each pathway. The red points across the pathways denote the location of the
first ALS onset for each patient, highlighting the varied progression patterns within ALS. The title of
each subgraph specifies the particular trajectory along with the respective patient count.
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4. Discussion

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressing neurodegenerative con-
dition characterized by complex and multifaceted dynamics, which pose challenges to
our understanding of its progression. In order to address the complexities, our study
employed a data-driven approach to unravel the intricate patterns of ALS progression and
its interplay with concurrent diseases.

We utilized a principal tree algorithm to capture the underlying data geometry form-
ing the multifaceted ALS progression patterns. In our framework, ALS progression is
conceptualized as a journey through sequential stages of the disease, each represented
by a node in the tree. Each node signifies an accumulation of diseases, while the edges
connecting nodes symbolize potential transitions, thus depicting the dynamic nature of
disease progression and the directional shifts that reflect ALS progression in relation to
cumulative comorbidities.

While the traditional literature often portrays disease trajectories as sequences of
discrete disease events, our model offers a fresh perspective by viewing trajectories as
progressions through stages, each comprising multiple co-existing conditions. This holistic
view fosters a more genuine and subtle understanding of ALS progression, revealing the
intricate relationship between ALS and its comorbid conditions.

One significant aspect of our study is the exploration of ALS’s relationship with concur-
rent diseases. Conventional research methods typically analyze ALS-associated risk factors
independently, frequently overlooking the complex interactions among comorbid condi-
tions. In contrast, our study contextualizes ALS within a network of co-existing diseases,
underscoring the potential influence of these conditions on ALS progression. Our method-
ology, which converts patient records into a multidimensional space, enables a deeper
understanding of disease progression by visualizing all disease states as interconnected
components of a complex system.

For instance, from node 0 through node 1 to node 3, our analysis elucidates the
common pathway of early symptoms encountered during the initial stages of ALS.

The early diagnosis of ALS presents a challenge due to the disease’s heterogeneity,
subtle onset, and overall rarity. This often results in misdiagnoses that can prompt unsuit-
able treatments, such as unneeded surgeries, leading to delays in proper diagnosis and
exacerbating patient morbidity [31–33].

In the transition from node 0 to node 1, the majority of misdiagnoses are “disorders of
the peripheral nervous system (350–359)”, “dorsopathies (720–724)”, and “disorder of soft
tissue (725–729)”. These non-specific conditions, often manifesting with symptoms such
as muscle weakness and fatigue akin to ALS, highlight musculoskeletal and peripheral
nervous system disorders in early ALS misdiagnosis.

Interestingly, the prevalence of misdiagnoses such as “anxiety, dissociative and so-
matoform disorders (300)” suggests a tendency towards psychosomatic interpretations of
early ALS symptoms.

The shift from node 1 to node 3 sees a transition towards diseases with more defined
neurological characteristics, such as pure motor weakness of limbs, muscle atrophy, and
fasciculations. These conditions often share overlapping neurological symptoms with ALS,
such as muscle atrophy, fasciculations, and limb weakness, contributing to misdiagnoses.

Our analysis captures the complexities of diagnosing ALS, considering the myriad
conditions that can mimic its early symptoms. It emphasizes the necessity for a more
sophisticated and holistic diagnostic approach that encompasses a robust understanding of
ALS’s varied presentations and promotes interdisciplinary collaboration among general
practitioners, neurologists, and other specialists.

Building on the foundation of our computational findings, it becomes imperative to
consider integrating complementary experimental techniques, for example, in the domain
of soft matter nanomechanics. Techniques such as atomic force microscopy (AFM) and
optical tweezers, highlighted by Magazzù et al. [34], stand out as invaluable tools in shed-
ding light on the biomechanical intricacies at the single-molecule level. These methods, by
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quantifying nanomechanical parameters like Young’s modulus, hold the potential to enrich
our understanding of cellular systems, especially within the scope of neurodegenerative
pathologies. Likewise, Strijkova et al. [35] have intelligently leveraged AFM to unravel
the distinctive mechanical and morphological attributes of platelets in various neurode-
generative conditions, including Parkinson’s disease, ALS, and Alzheimer’s disease. Such
groundbreaking experimental works underscore the imperative of meshing computational
analyses with tangible experimental data. Furthermore, Varga et al. [36] employed AFM to
delve into the elasticity of ALS myotubes, attributing it to a specific ALS-inducing mutation
in mice. These revelations can potentially layer our understanding of ALS, bridging its
pathogenesis to cellular manifestations.

While our study offers novel insights into the complexities of ALS progression, it is
crucial to validate the robustness and reliability of our findings further. Future research
must verify the consistency of our model’s representation of disease trajectories across
various datasets and diverse patient demographics. Despite these considerations, our
study introduces a pioneering approach of incorporating comorbidity data into tree edges
during disease stage transitions, offering a fresh perspective on understanding ALS. We
suggest that this approach has the potential to considerably enhance our comprehension
of ALS and provide a solid analytical framework for similar future research. Through
these contributions, we aspire to promote the development of improved care strategies and
therapeutic interventions for this debilitating disease.
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