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Abstract: Pediatric high-grade glioma (pHGG) is one of the most aggressive brain tumors. Treat-
ment includes surgery, radiotherapy, chemotherapy, or combination therapy in children older than
3–5 years of age. These devastating tumors are influenced by the hypoxic microenvironment that
coordinatively increases the expression of carbonic anhydrases (CA9 and CA12) that are involved
in pH regulation, metabolism, cell invasion, and resistance to therapy. The synthetic sulphonamide
Indisulam is a potent inhibitor of CAs. The aim of this study was to evaluate the effects of Indisulam
on CA9 and CA12 enzymes in pHGG cell lines. Our results indicated that, under hypoxia, the gene
and protein expression of CA9 and CA12 are increased in pHGG cells. The functional effects of
Indisulam on cell proliferation, clonogenic capacity, and apoptosis were measured in vitro. CA9 and
CA12 gene and protein expression were analyzed by RT-PCR and western blot. The treatment with
Indisulam significantly reduced cell proliferation (dose-time-dependent) and clonogenic capacity
(p < 0.05) and potentiated the effect of apoptosis (p < 0.01). Indisulam promoted an imbalance in
the anti-apoptotic BCL2 and pro-apoptotic BAX protein expression. Our results demonstrate that
Indisulam contributes to apoptosis via imbalance of apoptotic proteins (BAX/BCL2) and suggests a
potential to overcome chemotherapy resistance caused by the regulation these proteins.

Keywords: carbonic anhydrase; cell metabolism; hypoxia; apoptosis; microenvironment tumor;
pediatric high-grade glioma

1. Introduction

The Central Nervous System (CNS) tumors are the leading cause of cancer-related
death in children [1] and exhibit molecular and genetic signatures different from those
found in adult patients [2]. Pediatric high-grade glioma (pHGG) is a heterogeneous
and aggressive primary brain tumor characterized by a rapid and infiltrative growth
pattern [3,4]. Unfortunately, there is still no efficient treatment protocol for pHGG, which
remains a devastating disease with significant morbidity and mortality [1,3,4]. The maximal
safe surgical resection is recommended, and radiotherapy seems to be more effective for
children over ten years old but not for younger patients [5]. Despite extensive research for
novel treatment strategies, no new drug has dramatically increased the patient’s survival
in the last decades, and the 5-year overall survival is nearly 17% [5,6]. HGGs are locally
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invasive and highly vascular tumors with extensive areas of necrosis and hypoxia. Hypoxia
is a hallmark microenvironmental condition of HGG [7,8] that contributes the tumor
development and growth [9]. In response to tumor growth, the microenvironment changes
continuously and promotes specific conditions such as hypoxia and acidosis [10,11]. The
tumor behavior is also affected by acidosis and, especially, by high lactate levels. In addition,
studies described that acidosis promotes cell motility, migration, degradation, remodeling
of the extra-cellular matrix (ECM,) and the radio and chemoresistance of tumor cells [10,11].
In this microenvironment, and under low oxygen concentrations, carbonic anhydrases
(CAs) enzymes, are overexpressed and stimulate cell survival, invasion, and proliferation
of tumor cells [12,13].

Carbonic Anhydrases (CAs) are zinc-dependent metalloenzymes that catalyze the
reversible hydration of carbon dioxide to bicarbonate, being involved in acid-base balance
and other physiological processes [14]. The transmembrane isozymes CA9 and CA12
are overexpressed in many tumor types and their overexpression is correlated with poor
prognosis in high-grade gliomas [11,15,16]. In addition, CAs have been described as
potential anti-cancer therapeutic targets [17,18] and compounds derived of sulfonamide,
such as Indisulam, have shown antitumor effects in vitro and in vivo [19,20].

Indisulam/E7070 (N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide) is reported to
be a potential inhibitor of CA9 and CA12 [21], which are overexpressed in diffuse gliomas
from adult patients [20,22,23]. Studies have described that Indisulam targets multiple check-
points of cell cycle phases, downregulates cyclins via p21/p53 dependent mechanisms, and
promotes a significant impact on cellular metabolism [24–26]. Moreover, Indisulam can
penetrate the blood-brain barrier [20,27] and may have promising anti-neoplastic effects in
HGG. Despite this, the functions of CA9 and CA12 and the effects of Indisulam on pHGG
are still unknown. In this study, we demonstrate that Indisulam reduces cellular growth
and contributes to apoptosis via BCL and BAX imbalance.

2. Materials and Methods
2.1. Cell Culture

Pediatric HGG cell lines SF188 and KNS-42 were provided by Nada Jabado and
Damien Faury, McGill University, Canada, and purchased from the Japanese Collection
of Research Biosources Cell Bank—through the Rio de Janeiro Cell Bank, respectively.
The cells were authenticated by short tandem repeat profiling, and mycoplasma testing
was carried out. KNS-42 was cultured in MEM culture medium supplemented with 1%
glutamine, 100 mg/mL streptomycin, 100 U/mL penicillin, and 5% fetal bovine serum
(pH 7.2–7.4). SF188 was cultured in HAM F10 supplemented with 60 mg/L penicillin,
100 mg/mL streptomycin, and 10% (v/v) fetal bovine serum (Gibco, Life Technologies,
Carlsbad, CA, USA).

2.2. Hypoxia Conditions—Treatment of Cells with Cobalt Chloride

To mimic hypoxic cultures, cells were cultured in the presence of Cobalt Chloride
(CoCl2) (Mallinckrodt Chemicals, Dublin, Ireland). SF188 and KNS-42 cells were initially
incubated with CoCl2 at increasing concentrations of 50, 100, and 150 µM for 24 h. For
subsequent functional experiments, SF188 and KNS-42 were incubated with CoCl2 at 50 µM
and 100 µM, respectively.

2.3. Drug and Treatments

Indisulam (Medkoo Bioscience, Morrisville, NC, USA) was dissolved as stock at 100 mM
in DMSO and stored at −20 ◦C until use according to manufacturer recommendations.

2.4. Cell Viability Assay

A total of 2 × 103 cells were seeded in quadruplicate in 96-well plates and maintained
under standard culture conditions, under hypoxia for 24 h. The cells were treated with
Indisulam at 2 to 256 µM and incubated for 24, 48, and 72 h under hypoxia. At each
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treatment interval, a resazurin (Sigma-Aldrich Co., St. Louis, MO, USA) solution was
added to the plates (10% of the initial volume). The plates were incubated for 4 h and read
at 570 nm (iMax Microplate Reader (Bio-Rad, Hercules, CA, USA). These data were used to
obtain the IC50 value for KNS-42 and SF188, defined as the concentrations necessary for 50%
cell viability reduction, using the Calcusyn software (Biosoft, Ferguson, MO, USA). Three
independent experiments were performed in quadruplicate. The results are expressed as
mean plus standard deviation and were compared between treatments and control.

2.5. Clonogenic Survival

To carry out the clonogenic assay, 500 cells were seeded in triplicate in six-well plates.
After 24 h incubation with CoCl2, the cells were treated with Indisulam (2 to 256 µM) for
48 h. Thus, these tests allowed us to identify the lowest dose of Indisulam required to
inhibit clonogenicity. The cells were washed with PBS, and a culture medium without the
drug was added to permit colony growth for approximately 9–11 days until the colonies
were visible but not confluent. Colonies were fixed in methanol and stained with 1%
Giemsa. Colonies of at least 50 cells were counted with a magnifying glass. The plating
efficacy (PE) represents the percentage of cells seeded that grow into colonies under a
specific culture condition of a given cell line. It was calculated as described by Franken
et al. [28]. Three independent experiments were performed.

2.6. Apoptosis Assay

The assay for cell death detection was carried out by labeling apoptotic cells with
annexin V fluorescein isothiocyanate (BD Biosciences, San Jose, CA, USA) and necrotic
cells with propidium iodide (PI). To perform the experiments, 4 × 104 KNS-42 or SF188
cells were incubated with CoCl2 (100 and 50 µL, respectively) for 24 h. After cells were
treated with the different concentrations of Indisulam (8, 32, 128, and 256 µM) for 48 h,
they were trypsinized, washed with ice-cold PBS, and resuspended in 1X annexin binding
buffer (BD Biosciences, San Jose, CA, USA). The cells were labeled with annexin V and
propidium iodide (PI) solution and analyzed using a BD FACSCalibur™ flow cytometer
(BD Biosciences, San Jose, CA, USA). The values represent the mean and standard deviation
of three independent experiments performed in triplicate.

2.7. mRNA Extraction and RT-qPCR

To evaluate the effect of Indisulam on CA9 and CA12 gene expression (refs. Hs00154208
and Hs01080909), the cells were exposed to CoCl2 for 24 h and treated with Indisulam
(169 µM) for 48 h. mRNA was extracted using the Trizol® reagent (Invitrogen Inc., Carsdab,
CA, USA) according to the manufacturer’s instructions. cDNA was synthesized using High
Capacity® kit (Applied Biosystems, Foster City, CA, USA). qRT-PCR was performed using
the QuantStudio 12k Flex device (Applied Biosystems, Foster City, CA, USA). Samples
treated with vehicle were used as controls. TBP (TATA binding protein, ref. 4326322E) and
HPRT (hypoxanthine guanine phosphoribosyl transferase, ref. 4326321E) genes were used
as internal mRNA controls. The relative quantification of gene expression was determined
using the 2−∆∆CT method [29].

2.8. Protein Extraction and Western Blotting

To evaluate the effect of Indisulam on protein expression of HIF1α, CA9, CA12, BAX,
and BCL-2, the cells were exposed to CoCl2 for 24 h, subjected to treatment with the
drug (169 µM) for 48 h, and then collected. Protein extraction was performed using RIPA
lysis buffer (Sigma Aldrich Co., Saint Louis, MO, USA) with protease and phosphatase
inhibitors according to manufacturer’s guidance. Protein concentration was determined
by Bradford’s method [30]. Subsequently, 40 µg of the samples were separated by SDS-
PAGE electrophoresis. The proteins were transferred to nitrocellulose membranes and
then incubated in a 5% non-fat milk solution in 0.1% TBST for 2 h at room temperature.
Following this, the membranes were incubated overnight with specific primary antibodies
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for each protein, diluted according to the manufacturers’ instructions (Table 1). The levels
of the GAPDH protein and β-actin were used as an endogenous control in all experiments.
The membranes were then washed with TBST and incubated with specific peroxidase-
conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h
and submitted to another wash cycle. The protein bands were visualized using the ECL™
Prime Western Blotting Detection Reagent (GE Healthcare, Amersham, UK) and ChemiDoc
system (Bio-Rad Laboratories, Hercules, CA, USA). The membranes were exposed for 10 to
500 s and then analyzed. The relative quantification of protein expression was determined
using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

Table 1. Primary antibodies for Western blotting analysis.

Antibody Reference Dilution

HIF1α 610958-BD 1:500
CA9 D10C10 1:1000

CA12 D75C6 1:1000
BAX sc-493 1:250

BCL-2 sc-7382 1:1000
GAPDH sc-47724 1:1000
β-actin sc-47778 1:1000

2.9. Statistical Analysis

Results are presented as mean with standard deviation. Significant differences were
tested using Student’s t test for gene and protein expression, while one-way analysis of
variance (ANOVA) with a post-hoc Bonferroni test was carried out for the remaining
experiments. All analyses were performed using SPSS 20.0 software (SPSS, Chicago, IL,
USA) or Prism GraphPad6.0 software (Graph Pad, San Diego, CA, USA) with level of
significance p < 0.05.

3. Results
3.1. CoCl2 Induces Hypoxia-like Condition in pHGG Cell Lines

Hypoxia mimicry was performed by treating SF188 and KNS-42 cells with 50 µM,
100 µM, or 150 µM CoCl2, respectively, for 24 h (Figure 1). The treatment with 50 µM
or 100 µM CoCl2, did not reduce cell viability (Figure 1A,B) but drastically upregulated
HIF1α expression for SF188 (Figure 2A,B) and KNS-42 cells (Figure 2D,E), as well as CA12
pro-tein expression for KNS-42 cells (Figure 2D,F), in addition to positively modulating
(30%) CA12 protein expression in SF188 cells (Figure 2A,C). It is essential to point out that
higher doses (such as 150 µM of CoCl2 for KNS-42 cells) can reduce cell viability, indicating
a cytotoxic effect at concentrations above the dose selected for the experiments in this study
(Figure 1A).
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Figure 1. CoCl2 treatment did not reduce the cell viability of pHGG cell lines. Analysis of cell 
viability of KNS-42 and SF188 cell lines when treated with different concentrations of CoCl2 (50, 100, 
and 150 μM) for 24 h. Viability was measured using the Resazurin method. * p < 0.05. 

 
Figure 2. CoCl2 increases protein expression of HIF1α and CA12 in SF188 and KNS-42 pHGG cell 
lines. The HIF1α and CA12 protein expression was evaluated by Western blotting in SF188 (A) and 
KNS-42 (D) cell lines. Graph bars indicate that the treatment for 24 h with CoCl2 50 μM (SF188) and 
100 μM (KNS-42) increased the expression of HIF1α (B and E) and CA12 (C and F) compared to the 
control (CTRL). GAPDH was the endogenous protein used. Relative quantification of protein 
expression was determined using the ImageJ software. 
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Because CA9 and CA12, targets of Indisulam, were increased in hypoxia, the 

subsequent effects of this drug were tested under the same hypoxia-like conditions. Cell 
viability assays demonstrated that Indisulam decreased the viability of both pHGG cell 
lines in a dose-dependent manner, showing that KNS-42 is more sensitive to Indisulam 
treatment than SF188 (Figure 3). 

Figure 1. CoCl2 treatment did not reduce the cell viability of pHGG cell lines. Analysis of cell viability
of KNS-42 and SF188 cell lines when treated with different concentrations of CoCl2 (50, 100, and
150 µM) for 24 h. Viability was measured using the Resazurin method. * p < 0.05.
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Figure 2. CoCl2 increases protein expression of HIF1α and CA12 in SF188 and KNS-42 pHGG cell
lines. The HIF1α and CA12 protein expression was evaluated by Western blotting in SF188 (A) and
KNS-42 (D) cell lines. Graph bars indicate that the treatment for 24 h with CoCl2 50 µM (SF188) and
100 µM (KNS-42) increased the expression of HIF1α (B,E) and CA12 (C,F) compared to the control
(CTRL). GAPDH was the endogenous protein used. Relative quantification of protein expression was
determined using the ImageJ software.

3.2. Indisulam Decreases Viability in pHGG Cells

Because CA9 and CA12, targets of Indisulam, were increased in hypoxia, the subse-
quent effects of this drug were tested under the same hypoxia-like conditions. Cell viability
assays demonstrated that Indisulam decreased the viability of both pHGG cell lines in a
dose-dependent manner, showing that KNS-42 is more sensitive to Indisulam treatment
than SF188 (Figure 3).
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Figure 3. Indisulam decreases cell viability in pHGG cell lines. To chemically induce hypoxia,
SF188 and KNS-42 cell lines were pre-treated with CoCl2 (50 µM and 100 µM, respectively) for
24 h. After hypoxia induction, the cells were treated with increasing concentrations of Indisulam
(0–256 µM) for 24 to 72 h. The cell viability was quantified by the resazurin method. The plot shows
the mean ± standard deviation of three independent experiments. * p < 0.05 indicates a significant
difference between the treated cells and the DMSO vehicle control.

3.3. Indisulam Reduces Clonogenicity and Increased Apoptosis in pHGG Cell Line

Indisulam significantly decreased the ability of both KNS-42 and SF188 cells to form
colonies at all doses tested when compared to the control group (p < 0.001). As observed
in the viability assays, the sensitivity of KNS-42 to Indisulam was higher than SF188
(Figure 4). Total inhibition of clonogenicity was observed at an Indisulam dose of 32 µM
for KNS-42 and 256 µM for SF188 cells (Figure 4). Similarly, Indisulam increased apoptosis
rates determined by annexin-V/propidium iodide staining (p < 0.05) (Figure 5). The cell
apoptosis rate reached approximately 75% at the highest dose tested for both cell lines.
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Figure 4. Indisulam reduces the clonogenic capacity of pHGG cell lines. SF188 and KNS-42 cells
were pre-incubated in hypoxia-mimic conditions (CoCl2 at 50 µM and 100 µM, respectively) for 24 h.
The cells were treated with Indisulam for 48 h and further cultured for 9 to 11 days to assess colony
formation. Cells treated with vehicle alone (DMSO) served as controls. The colonies formed were
normalized to the plating efficiency (FP) and the survival fraction obtained was compared to the
control (DMSO). * p < 0.001 indicates a significant difference between the treated cells and the control.
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Figure 5. Indisulam induces apoptosis in pHGG cell lines. To induce hypoxia, the cells SF188 and
KNS-42 were incubated for 24 h with CoCl2 (50 µM and 100 µM, respectively) and then treated with
different concentrations of Indisulam (0–256 µM) for 48 h, as indicated on bar graphs. Cell death
by apoptosis was assessed by annexin-V and propidium iodide and analyzed by flow cytometry.
* p < 0.05 indicates a significant difference between the treated cells and the DMSO control.

3.4. Indisulam Modulates CA9 and CA12 Gene and Protein Expression in pHGG Cells

The CA9 and CA12 expression were analyzed in SF188 cells incubated under hypoxia
for 48 h in the presence or absence of Indisulam (applied at its IC50 dose). The treatment
resulted in downregulation of CA9 expression at the mRNA and protein levels. However,
Indisulam upregulated CA12 mRNA and protein expression (Figure 6A,B), suggesting a
possible compensating effect parallel to the downregulation of CA9.
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Figure 6. Indisulam decreases CA9 and increases CA12 expression in pHGG cells under hypoxia.
SF188 cell line was incubated for 24 h under mimetic hypoxia condition (CoCl2 50 µM) and treated
with Indisulam (IC50) for 48 h. Gene and protein expression of CA9 (A) and CA12 (B) were measured
by qRT-PCR and Western blotting, respectively. The bar graphs and Western blot image indicate
that, the treatment of SF188 cells with Indisulam reduces CA9 gene and protein expression, while
increasing the expression of CA12 compared to control. CTRL: control; TRAT: treatment with the
Indisulam; GAPDH was used as loading control; quantification of relative expression was determined
using ImageJ software. * p < 0.05.
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3.5. Indisulam Promotes Alteration in BAX and BCL-2 Protein Expression in pHGG Cells

To understand the molecular changes underlying the apoptotic process, the expression
of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) factors was analyzed after treatment
of SF188 cells with Indisulam under hypoxia (Figure 7). The results showed that BAX
expression was decreased by 47% (p < 0.05), while BCL-2 expression was almost completely
abolished when compared to the control (p < 0.01). Consequently, the BAX/BCL-2 ratio
was increased in the group of cells treated with Indisulam when compared to the control.
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Figure 7. Indisulam alters the protein expression of BAX and BCL-2 in the pHGG cell line. SF188
cell was incubated under hypoxic conditions (CoCl2 50 µM) for 24 h and treated with Indisulam
(IC50), or vehicle, for 48 h, and then BAX and BCL-2 protein expression was analyzed by Western
blotting. In the analysis, the relative quantification was determined using ImageJ software. Relative
values were compared to the control. * p < 0.05 indicates a significant difference between the BAX
protein expression of the treated cells and the DMSO control, whereas * p < 0.01 indicates a significant
difference between the BCL-2 expression of the treated cells and the control. GAPDH was used as
endogen control. CTRL: control; TRAT: treatment with Indisulam.

4. Discussion

Pediatric high-grade gliomas represent a group of tumors with wide heterogeneity, as
demonstrated by identifying subgroups with different genetic, epigenetic, and morphologi-
cal characteristics [31]. Based on their molecular analysis, the WHO divides pediatric-type
diffuse high-grade gliomas into four subgroups: Diffuse midline glioma H3 K27-altered,
Diffuse hemispheric glioma H3 G34-mutant, Diffuse pediatric-type high-grade glioma
H3-wildtype and IDH-wildtype and Infant-type hemispheric glioma [32]. Using informa-
tion from the methylation profile of these tumors, as well as tumor location and altered
oncogenic pathways, the German Cancer Research Center establishes six different subtypes:
K27, G34, IDH, RTK-I, Mesenchymal and PXA-like [33]. Regarding the cells selected to
realize this study, KNS-42 presents mutation in histone H3.3 G34V and activation of NMYC
and IGFR1 pathways [34]. Among the pHGGs, histone H3 mutation is present in 40% of
the total, being related to a less aggressive subtype with a better prognosis [35]. Already,
SF188 has overexpression of PDGFRA and amplified MYC [34], the latter being present in
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only 8 to 9% of cases of pHGGs, being related to a poor prognosis [35]. However, targeted
therapies for each subgroup of pediatric CNS tumors have not yet been established. There-
fore, clinical treatments are generally based on traditional protocols, which lack long-term
efficacy because they do not take into account the distinct characteristics of pHGG sub-
groups or their differences with adult tumors [36,37]. In addition to tumor heterogeneity,
the presence of diffuse and ill-defined tumor borders [37], as well as hypoxic regions [12],
reduce the efficacy of surgical resection [3,38] and adjuvant chemo- and radiotherapy [39].
In particular, the relationship between hypoxia and radioresistance of cancer has been
demonstrated since the 1950s [40,41]. Under the hypoxic microenvironment of the tumor,
CA9 and CA12 have an important role in the pH regulation and therefore contribute to
treatment resistance and tumor progression [14–16,19,42]. Indeed, prior studies from our
group have demonstrated that the inhibition of CA9 and CA12 can block cell cycle progres-
sion and sensitize adult GBM cells to the treatment of radio- (in vitro) and chemotherapy
(in vitro and in vivo) [20]. However, to the best of our knowledge, the effect of anti-CA
treatment on pediatric brain tumors has not been studied.

In the present study, we have analyzed whether the treatment of pHGG with Indisulam
has inhibitory effects on CA isozymes and cell viability, as previously shown with adult
GBM cells. To induce hypoxia, we selected CoCl2, a chemical hypoxia model that increases
HIF1α and upregulated genes that encode proteins related to pH regulation such as CA9
and CA12. Then, our results have shown that a hypoxia-mimic is sufficient to increase
the expression of HIF1α, CA9, and CA12, suggesting that this is an adequate condition to
investigate Indisulam’s effects on pHGG cells.

Carbonic anhydrases, controlled by oxygen levels via the HIF1α [43], are overex-
pressed in several solid tumors, with a fundamental role in tumor pH homeostasis and
very low, or negligible expression, in normal tissues [14]. The CoCl2 increases HIF1α
in dose (25 µM to 200 µM) and time-dependent, according to the cell type selected, and
generally, the stabilization is observed for 2 h, with a maximum of 12–48 h [44–49]. A
similar effect of HIF expression was observed in breast cancer and HGG cells exposed to
hypoxia conditions [34,44]. For the U87 GBM cell, in the treatment with CoCl2 100 mM,
the expression of HIF1α was time-dependent. In addition, doses ≤200 µM CoCl2, and
24 h of treatment, did not increase or decrease cell viability of glioblastoma and colon
cancer; however, the viability decreased after 48 h of treatment [45,47]. In this way, recent
publications have demonstrated that the hypoxia exposition for 72 h to 168 h significantly
decreased the tumor cell viability [34,46,47]. According to Rana et al., the cytotoxic effect of
CoCl2 is due to the inhibition of DNA repair pathways and accumulation of ROS (Reactive
Oxygen Species), with consequent cell death [44]. In vitro, this cytotoxicity appears to be
dose-dependent, as observed in breast cancer cells [44,49] and the KNS-42 cell line in the
present study. Furthermore, using 50 and 100 µM of CoCl2 promoted an increase in the
number of both cell lines selected to develop this study (SF188 and KNS-42). Thus, as
the observed effect did not decrease but increased cell proliferation for the selected CoCl2
doses, the analysis of the Indisulam effect in the present work was not impaired.

High expression of CAs, associated with high proliferation and expansion of tumor
cells that deprive the tissues of oxygen, has been described in brain tumors and functionally
linked to the malignant behavior of these cancer cells [50]. A metabolic adaptation of
GBM to these oxygen concentrations is also present through the Warburg effect, leading to
lactate production as a metabolic by-product and increasing resistance to radiotherapy [50].
Furthermore, malignant cells, especially tumor stem cells, can endure hypoxic conditions
by changing their expression of genes involved in cell proliferation, metabolism, apoptosis,
and angiogenesis, thus resulting in tumor expansion, treatment resistance, and metabolic
adaptation [51]. The high expression of CA9 and CA12 in a hypoxic microenvironment is
currently considered a potential prognostic biomarker and therapeutic target [10]. CAs
have restricted expression in non-neoplastic tissues, suggesting that it may be possible to
inhibit their pro-tumoral effects in the microenvironmental of the tumor, with minimal
toxicity on normal tissues [52]. Accordingly, this study aimed to use Indisulam to inhibit



Biomedicines 2023, 11, 68 11 of 15

the upregulation of CA9 and CA12 observed in hypoxic pHGG cells. Interestingly, we
observed inhibition of mRNA and protein expression for CA9 but not for CA12. Similar
results have been reported in adult GBM cells [20]. According to Chiche et al., 2009 [53],
this effect might represent a compensatory feedback mechanism for tumor cells to maintain
an intracellular alkaline pH.

Overall, our results suggest that Indisulam triggered an antitumor effect through the
reduction of cell proliferation and clonogenicity of pHGG cells. The antitumor activity of
Indisulam has been demonstrated in other tumor types [20,21,25,54,55]. This effect may
be related to the ability of Indisulam to inhibit cell cycle progression through G1/S and
G2/S phase disarray and decreased expression of cyclins A, B1, and E, and CDK2/CDK4
and altered glucose metabolism [56,57]. In turn, the antiproliferative effect of Indisulam
may be caused by dysregulation of cellular pH after inhibition of CA9 [53,58–61], making
the tumor more sensitive to external agents [11,62–65]. Inhibition of CAs by Indisulam has
been shown to downregulate genes involved in chemoresistance and reduce proliferation
capacity and invasion of cancer cells [21]. Then, a parallel mechanism by which hypoxia
promotes pHGG chemoresistance is through inhibiting pro-apoptotic pathways. Hypoxia
is considered a tumor microenvironment factor that favors the resistance to therapy. For
instance, under hypoxic conditions, the proapoptotic protein appears to be modified and
unable to interfere with pro-survival factors; therefore, an increase in the expression of
antiapoptotic proteins has been reported [47,48]. For breast cancer, hypoxia upregulated
proapoptotic protein expression [44]. In this way, the family of apoptosis-related proteins
BCL-2 (B-cell lymphoma 2) inhibits apoptosis, and BAX (BCL-2-associated X protein)
promotes a proapoptotic effect [47]. However, the criterion for programmed cell death is
the imbalance in the ratio of BCL-2/BAX expression.

Our results indicate that Indisulam, inhibiting CA9, promotes apoptosis in pHGG cells
in hypoxia. The BAX/BCL-2 ratio increase in the Indisulam-treated group makes evident
the imbalance in the pro-survival machinery and triggering of the apoptotic process [66,67].
In this sense, the drastic reduction of the anti-apoptotic factor BCL-2, more markedly than
the proapoptotic factor BAX, leads to cell death through the intrinsic pathway of apoptosis,
which is controlled by members of the BCL-2 family [67,68]. The CA9 inhibition-induced
apoptosis by other agents has also been described in colorectal [69], cervical [70,71] and
breast cancer [72]. Inhibition of CA9 decreases intracellular pH, causing DNA damage
and ROS accumulation that activate apoptosis [73]. Cianchi et al. have also found that
the inhibition of CA9 leads to the phosphorylation of p38/MAPK as well as the synthesis
of peroxynitrite [73]. In addition, the p38/MAPK factor is described as a mediator of
apoptosis [74], possibly relating this pathway to apoptotic induction promoted by the
inhibition of CAs. Recently, it was observed that the induction of apoptosis after inhibition
of CA9 and CA12 is mediated by the activation of caspase 7, with an increase in ROS and a
decrease in PARP-1 levels [75,76]. Moreover, Indisulam promotes the overexpression of
p53 and p21, leading to apoptosis [25,77]. The pro-apoptotic stimulus is one of the most
efficient effects in non-surgical treatments [78], and the fact that Indisulam presents this
activity in pHGG cells highlights its potential in anti-cancer therapeutic strategies.

The current standard-of-care chemotherapy to treat high-grade glioma, including
pHGG, is Temozolomide (TMZ). However, the treatment is not curative, even with a
combination of surgery, radiotherapy, and adjuvant chemotherapy, with relapse being a
frequent outcome [79]. The best-known resistance mechanism to TMZ is effectuated by
O6-Methylguanine-DNA methyltransferase (MGMT), which corrects DNA damage caused
by TMZ and reduces the effectiveness of the treatment [80]. This resistance mechanism is
probably also associated with the poor response to TMZ in pHGG [81,82]. The combination
of TMZ with carbonic anhydrase inhibitors [52], including Indisulam [20], results in in-
creased TMZ efficacy and indicates a promising strategy toward more effective treatments.
In addition, Indisulam has already been tested in combination with another chemo- and
radiotherapeutic agents in vitro, in vivo, and clinical studies, showing promising results as
an adjuvant strategy [20,21,83–85]. Despite the limitation of working with established cell
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lines and in vitro models, several studies and different research groups with the purpose
of better understanding the tumor biology of pediatric glioblastoma have already used
the SF188 and KNS-42 cell lines, being two reliable models of investigation of this tumor
subtype. Although in vitro tumor models with cell culture have provided essential tools for
cancer research and serve as low-cost models for drug therapy investigation, serial passage
of cell lines can further cause genotypic and phenotypic variation over an extended period.
Therefore, further assays with different tumor models are needed to validate the results
found in this study.

5. Conclusions

Indisulam demonstrated anti-neoplastic effects on pHGG cell lines by reducing pro-
liferation and inducing apoptosis through the modulation of the BAX and BCL-2 balance.
This regulation may indicate a mechanism for overcoming pHGG chemoresistance, en-
couraging further studies. Future work may confirm Indisulam as a promising adjuvant
strategy associated with current conventional treatments for pHGG.
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