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Abstract: Drug-target binding affinity (DTA) prediction is an essential step in drug discovery. Drug-
target protein binding occurs at specific regions between the protein and drug, rather than the entire
protein and drug. However, existing deep-learning DTA prediction methods do not consider the inter-
actions between drug substructures and protein sub-sequences. This work proposes GraphATT-DTA,
a DTA prediction model that constructs the essential regions for determining interaction affinity be-
tween compounds and proteins, modeled with an attention mechanism for interpretability. We make
the model consider the local-to-global interactions with the attention mechanism between compound
and protein. As a result, GraphATT-DTA shows an improved prediction of DTA performance and
interpretability compared with state-of-the-art models. The model is trained and evaluated with the
Davis dataset, the human kinase dataset; an external evaluation is achieved with the independently
proposed human kinase dataset from the BindingDB dataset.

Keywords: deep learning; drug-target interaction; binding affinity; graph neural network; attention

1. Introduction

Drug development is a high-risk industry involving complex experiments, drug
discovery, and pre-clinical and clinical trials. Drug discovery is the process of identifying
new candidate compounds with potential therapeutic effects, and it is essential for identify
drug-target interactions (DTIs). Moreover, the drug-target binding affinity (DTA) provides
information on the strength of the interaction between a drug-target pair. However, as there
are millions of drug-like compounds, it can take years and costs about 24 million US dollars
for experimental assays of target-to-hit process for a new drug [1]. Efficient computational
models for predicting DTA are urgently needed to speed up drug development and reduce
resource consumption.

There are several computational approaches to predicting DTA [2,3]. One is the ligand-
based method, which compares a query ligand to known ligands based on their target
proteins. However, prediction results become unreliable if the number of known ligands
with target proteins is insufficient [4]. Another approach is molecular docking [5], which
simulates the binding of the conformational spaces between compounds and proteins
based on their three-dimensional (3D) structures. However, it is too challenging to produce
the 3D protein-ligand complex. Another approach is the chemogenomic method [6] that
integrates the chemical attributes of drug compounds, the genomic attributes of proteins,
and their interactions into a unified math framework.

In feature-based chemogenomic methods, drug-target pairs are taken as input, and
their binding strength or whether to interact, determined by regression or binary classifi-
cation, are output [7,8]. Efficient input representation is key to accurate prediction. The
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commonly used drug descriptor is chemical fingerprints such as Extended Connectivity
Fingerprint [9] or Molecular ACCess System [10]. The commonly used protein descriptor
is physicochemical properties, such as amino acid composition, transition, and distribu-
tion. On constructed features, random forest, support vector machine, and artificial neural
network models are applied to predict these interactions [11]. Similarity information is
also used for representation [12–15]. KronRLS [14] constructs the similarity between drugs
or between target proteins with compound similarity and Smith-Waterman similarity.
SimBoost [15] constructs features for each drug, target, and drug-target pair from the
similarity. However, the fixed lengths of manually selected features may result in the
loss of information.

Recently, data-driven features learned during training using large datasets have been
shown to increase DTI prediction performance [16–24]. DeepDTA learns the representation
of drugs and proteins with one-dimensional (1D) convolutional neural network (CNN).
However, this leaves the molecule’s original graph structure unaddressed. To cover this,
GraphDTA [17] represents a molecule as a graph in which a node is an atom, and an edge
is a bond. Graph neural networks (GNN) are used for molecular representation and 1D
CNNs are used for protein representation. Additionally, DGraphDTA [18] represents a
protein as a contact map followed by graph convolutional network (GCN) embedding
to learn DTA using protein structure. However, when modeling DTA interactions, these
models consider only the global interactions between compounds and proteins.

Furthermore, several studies [20–24] have introduced attention mechanisms to better
model the interactions between drugs and proteins for DTA prediction. DeepAffinity [20]
introduced an attention mechanism used to interpret predictions by isolating the main
contributors of molecular fragments into their pairs. ML-DTI [21] propose the mutual
learning mechanism. It takes input as Simplified Molecular-Input Line-Entry System
(SMILES) and amino acid sequences, and 1D CNNs are used for encoding. It leverages
protein information during compound encoding and compound information during protein
encoding, resulting in a probability map between a global protein descriptor and a drug
string feature vector. MATT-DTI [22] proposes a relation-aware self-attention block to
remodel drugs from SMILES data, considering the correlations between atoms. With this,
1D CNN is used for encoding. The interaction is modeled via multi-head attention, in which
the drug is regarded as a key and the protein as a query and value. HyperAttentionDTI [23]
uses a hyperattention module that models semantic interdependencies in spatial and
channel dimensions between drug and protein sub-sequences. FusionDTA [24] applies a
fusion layer comprising multi-head linear attention to focus on important tokens from the
entire biological sequence. Additionally, the protein token is pre-trained with a transformer
and encoded by bidirectional long short-term memory (BI-LSTM) layers.

Although these studies successfully apply attention mechanisms for DTA prediction,
they are limited because they learn from less informative input features that do not consider
the essential regions needed to determine interaction affinities [16,20–24]. Therefore, in this
paper, we propose GraphATT-DTA, an attention-based drug and protein representation
neural network that considers local-to-global interactions for DTA prediction (Figure 1). The
molecular graph of the compound and protein amino acid sequences are the initial inputs.
A powerful GNN model is used for compound representation, and 1D CNNs are used for
protein representation. The interactions between compounds and proteins are modeled
with an attention mechanism by capturing the important subregions (i.e., substructures and
sub-sequences) so that the fully connected layer can predict the binding affinity between
a compound and its target protein. We evaluate the performance of our model using the
Davis kinase binding affinity dataset and the public, web-accessible BindingDB database of
measured binding affinities. GraphATT-DTA’s prediction performance is then compared
with state-of-the-art (SOTA) global and local interaction modeling methods.
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In this study, our proposed model and comparison baselines were trained with the 
Davis dataset [25] and evaluated for external validity with the BindingDB dataset [26]. 
Table 1 and Supplementary Table S1 provide a summary. The Davis dataset contains the 

Figure 1. GraphATT-DTA architecture. Molecule graph and protein amino acid sequences are taken as
input, and the predicted binding affinity of drug-target pair is the output. The attention-based novel
representation is learned by molecule encoding with a graph neural network, sequence encoding
using convolutional neural networks, and interaction modeling. The local-to-global relationships
between drug substructures and protein sub-sequences are learned via interaction modeling using an
attention mechanism. CNN, convolutional neural network; GNN, graph neural network; D, drug
embedding matrix; S, protein embedding matrix; R, relation matrix; a, atom-wise softmax of relation
matrix; s, subseq-wise softmax of relation matrix.

2. Materials and Methods
2.1. Dataset

In this study, our proposed model and comparison baselines were trained with the
Davis dataset [25] and evaluated for external validity with the BindingDB dataset [26].
Table 1 and Supplementary Table S1 provide a summary. The Davis dataset contains the
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kinase protein family and relevant inhibitors with dissociation constants Kd, whose value
is transformed into the log space as

pKd = − log10

(
Kd
e9

)
(1)

Table 1. Datasets used for model training, validation, and testing.

Dataset Davis BindingDB

Proteins 442 509
Compounds 68 4,076
Interactions 30,056 14,505

Training 25,046 —
Testing 5010 14,505

The BindingDB dataset is publicly accessible and contains experimentally measured
binding affinities whose values are expressed as Kd, Ki, IC50, and EC50 terms. For the
external test, we extracted drug-target pairs in which the protein is human kinase, and the
binding affinity is recorded as a Kd value. These values are then transformed into the log
space as described.

The Davis dataset consists of six parts. Five are used for cross-validation and one
is used for testing. We use the same training and testing scheme as GraphDTA. The
hyperparameter is tuned using five parts with five-fold cross-validation. After tuning the
hyperparameter, we train all five parts and evaluate the performance with one test part. To
evaluate the generalizability of the model, BindingDB is used as the external test dataset.

2.2. Input Data Representation

GraphATT-DTA takes SMILES as the compound input and amino acid sequence string
as the protein input. First, the SMILES string is converted to a graph structure that takes
atoms as nodes and bonds as edges using the open-source Deep Graph Library (DGL)
v.0.4.3(2) [27], DGL-LifeSci v.0.2.4 [28], and RDKit v.2019.03.1(1) [29]. We used the atomic
feature defined in GraphDTA (i.e., atom symbol, number of adjacent atoms, number of
adjacent hydrogens, implicit values of the atoms, and whether the atom is in aromatic
structures). We leverage the bond feature used by the directed message-passing neural
network (DMPNN; i.e., bond type, conjugation, in the ring, stereo). Tables 2 and 3 list
detailed information for each feature. Each amino acid sequence type is encoded with
an integer and cut by a maximum length of 1000. If the sequences are shorter than the
maximum length, they are padded with zeros. The maximum length can cover at least 80%
of all proteins.

Table 2. Input data representations: Compound atom features.

Feature Dimension

One hot encoding of the atom element 44
One hot encoding of the degree of the atom in the molecule 11

One hot encoding of the total number of H bonds to the atom 11
One hot encoding of the number of implicit H bonds to the atom 11

Whether the atom is aromatic 1
All 78
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Table 3. Input data representations: Compound bond features.

Feature Dimension

One hot encoding of bond type 4
One hot encoding of bond conjugating 2

One hot encoding of whether the bond is part of a ring 2
One hot encoding of the stereo 6

All 14

2.3. Drug Representation Learning Model

The molecule is originally represented by a graph structure consisting of atoms and
bonds. The GNN uses its structural information and applies a message-passing phase
consisting of message_passing and update functions. In the message_passing function,
node v aggregates information from its neighbor’s hidden representation, h(t)

w . In the update
function, it updates the previous hidden representation, h(t)

v , to a new hidden representation,
h(t+1)

v , using messages m(t+1)
v and the previous step of hidden representation, h(t)

v :

m(t+1)
v = message_passing({h(t)

w , ∨w ∈ N(v)}) (2)

h(t+1)
v = update(m(t+1)

v , h(t)
v ) (3)

where N(v) is the set of the neighbors of v in graph G, and h(t)
v follows time step t of initial

atom features, xv. This mechanism, in which atoms aggregate and update information
from neighbor nodes, captures information about the substructure of the molecule. GNN
models have variants, such as the graph convolutional network (GCN) [30], graph attention
network (GAT) [31], graph isomorphism network (GIN) [32], message-passing neural
network (MPNN) [33], and directed message-passing neural network (DMPNN) [34],
which can be leveraged by specifying the message_passing function, m(t+1)

v , and update
function, h(t+1)

v (see Table 4). The output is a drug embedding matrix, D ∈ RNa×d, where
Na is the number of atoms, and d is the dimension of the embedding vectors. In the drug
embedding matrix, each atom has the information of its neighbor atoms (i.e., substructure)
along with the number of GNN layers.

Table 4. Graph neural network variants used for drug embedding matrix generation.

Model Message Passing Function Update Function

GCN m(t+1)
v = ∑w∈N(v)∪ {v}

1
cwv

h(t)
w

cwv = 1√
|N(v)||N(w)|

h(t+1)
v = σ(m(t+1)

v Wt)

GAT
mt+1

v = σ(∑w∈N(v)∪ {v} αvwW(t)h(t)
w ),

αvw = softmaxv(evw),
evw = LeakyReLU(Whv, Whw)

h(t+1)
v = ||Kk=1mt+1

v ,
where || is concatenation.

GIN mt+1
v = ∑w∈N(v) MLP(h(t)

w ) h(t+1)
v = MLP(h(t)

v + mt+1
v )

MPNN mt+1
v = ∑w∈N(v) A(evw) ht

w ht+1
v = GRU

(
ht

v, mt+1
v
)

DMPNN mt+1
vw = ∑k∈{N(v)rw} ht

kv ht+1
vw = τ

(
h0

vw + Wmmt+1
vw

)
Notes: DMPNN, directed message-passing neural network; GAT, graph attention network; GCN, graph convolu-
tional neural network; GIN, graph isomorphism network; MPNN, message-passing neural network.

2.4. Protein Representation Learning Model

The Davis and BindingDB datasets have 21 and 20 amino acid types, respectively.
Hence, we consider 21 and 20 amino acids for learning and testing, respectively. The
integer forms of protein amino acid sequences become the input to the embedding layers.
These are then used as input to three consecutive 1D convolutional layers, which learn
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representations from the raw sequence data of proteins. The CNN models capture local
dependencies by sliding the input features with filters, and their output is the protein
sub-sequence embedding matrix, S ∈ RNs×d , where Ns is the number of sub-sequences.
The number of amino acids in a sub-sequence depends on the filter size. The larger the
filter size, the greater the number of amino acids in the sub-sequence.

2.5. Interaction Learning Model

The relationship between the protein and the compound is a determinant key for DTA
prediction. The attention mechanism can make the input pair information influence the
computation of each other’s representation. The input pairs can jointly learn a relationship.
GraphATT-DTA model constructs the relation matrix R using dot product of protein and
compound embedding where R ∈ RNa×Ns . It provides information about the relationship
between the substructures of compounds and protein sub-sequences.

R =
(

D · ST
)

(4)

GraphATT-DTA reflects the local interactions by considering the crucial relationships
between protein sub-sequences and compound substructures. The subseq-wise/atom-
wise SoftMax is applied to the relation matrix to construct the substructure and sub-
sequence significance matrices. The formulas appear in (5) and (6). The element of
substructure_significance indicates the substructure’s importance to the sub-sequence.
Similarly, the element of subsequence_significance indicates the sub-sequence’s importance
to the substructure.

substructure_significance = aij =
exp

(
rij
)

∑Na
i=1 exp

(
rij
) (5)

subsequence_significance = sij =
exp

(
rij
)

∑Ns
j=1 exp

(
rij
) (6)

The substructure_significance is directed to the drug embedding matrix via element-
wise multiplication (�) with aj and D, where aj ∈ RNa×1, and j = 1, . . . , Ns. aj indicates
each substructure’s importance of the jth sub-sequence. D(j)′ ∈ RNa×d indicates the drug
embedding matrix with the importance of the jth sub-sequence.

D(j)′ = aj �D (7)

Drug vector d(j)′′ is constructed by (8) and carries the information of the compound
and the jth sub-sequence, where d(j)′′ ∈ R1×d.

d(j) ′′ = ∑
a

D(j) ′
ab (8)

D′′ = concat
[
d(1) ′′ , d(2) ′′ , . . . , d(Ns) ′′

]
(9)

The concatenation of d(j)′′ with all sub-sequences causes D′′ to inherit all informa-
tion about the sub-sequences and compounds, where D′′ ∈ RNs×d. The new drug fea-
ture is thus constructed to reflect all protein sequences and compound atoms where
drug_feature ∈ R1×d.

drug_feature = ∑
i

D′′ij (10)

The new protein feature is calculated the same way. Using the element-wise mul-
tiplication of the subsequence_significance and protein embedding matrix, the protein
embedding matrix, P(i)′, with the ith substructure significance to the sub-sequence, is
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constructed so that si ∈ R1×Ns , S ∈ RNs×d , and P(i)′ ∈ RNs×d. The summation of P(i)′

makes protein vector p(i)′′ with the sub-sequence information about the compound, where
p(i)′′ ∈ R1×d. After the concatenation of p(i)′′ , the summation of P′′ makes the new protein
feature vector reflect compound sub-structure significance information, where P′′ ∈ RNa×d,
and protein_feature ∈ R1×d.

P(i)′ = si � ST (11)

p(i) ′′ = ∑
a

P(i) ′
ab (12)

P′′ = concat
[
p(1) ′′ , p(2) ′′ , . . . , p(Na)

′′]
(13)

protein_feature = ∑
i

P′′ij (14)

Protein and drug features reflecting the local-to-global interaction information are
collected via concatenation. The fully connected layers can then predict the binding affinity.
We use mean squared error (MSE) as the loss function.

2.6. Implementation and Hyperparameter Settings

GraphATT-DTA was implemented with Pytorch 1.5.0 [35], and the GNN models were
built with DGL v.0.4.3(2) [27] and DGL-LifeSci v.0.2.4 [28]. Early stopping was configured
with the patience of 30 epochs to avoid potential overfitting and obtain improved general-
ization performance. The hyperparameter settings are summarized in Table 5. Multiple
experiments are used with five-fold cross-validation, applied for hyperparameter selection.

Table 5. Hyperparameters for the GraphATT-DTA model.

Hyperparameter Setting

Graph neural network layers 2 or 3 or 5
K size 8
Epoch 1000

Batch size 32
Learning rate 0.0005

Optimizer Adam
Weight decay 0.00001

Embedding size of a feature 128
Fully connected layers (1024, 512, 1)

Dropout 0.1 or 0.2
Early stopping 30

The layers of GNN are important because they pertain to how many neighbor nodes
are regarded by the model. Because there are many layers, the model can consider many
neighbors; however, doing so can cause an over-smoothing problem in which all node
embeddings converge to the same value. Additionally, if the number of layers is too
small, the graph substructure will not be captured. Therefore, proper layer configuration is
important. The optimal number of GNN layers was experimentally chosen for GraphATT-
DTA by using each GNN graph embedding model. Specific experimental results can be
found in Supplementary Table S2 and Supplementary Figure S1.

3. Results
3.1. Performance Evaluation Metrics

We used the concordance index (CI) and MSE to evaluate prediction performance. We
formulated the CI to estimate whether the predicted binding affinity values were in the
same order as their true values. bx is the prediction value with the larger affinity, dx, by is
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the prediction value with the smaller affinity, dy, Z is a normalization constant, and h(x) is
the step function.

CI =
1
Z ∑

dx>dy

h
(
bx − by

)
(15)

h(x) =


1, i f x > 0

0.5, i f x = 0
0, i f x < 0

(16)

The MSE was used to calculate the differences between predicted and true affinity
values, pi is the predictive score, yi is the ground-truth score, and n is the number of samples.

MSE =
1
n

n

∑
i=1

(pi − yi)
2 (17)

3.2. Binding Affinity Prediction on Testing Data

First, we investigated the predictive performance of GraphATT-DTA using various
graph embedding models. The drug was represented using different graphs embedding
models such as GCN, GAT, GIN, MPNN, and DMPNN. We performed ten times repeated
training and testing. In Figure 2, we report the mean and standard deviation scores of
the MSE and CI from the Davis dataset. The drug embedding models showed similar
performances (i.e., MSE and CI). For MSE, the GIN drug embedding model performed best
with an MSE of 0.213, followed by the GCN and MPNN models with MSEs of 0.214 and
0.215. For CI, MPNN performed best, with a CI of 0.899, followed by DMPNN and GCN.
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Figure 2. Binding affinity prediction results on the Davis test dataset. (a) Mean Squared Error (MSE);
(b) Concordance Index (CI). We compared five GNN variants: the graph convolutional neural network
(GCN), graph attention network (GAT), graph isomorphism network (GIN), message-passing neural
network (MPNN), and direct message-passing neural network (DMPNN). The bars are the mean of
ten models and the grey lines are error bars indicating the standard deviation.

Next, using the compound embedding model, we evaluated the overall affinity pre-
diction performance again using the Davis dataset. Figure 3 illustrates the correlations
between the true and predicted affinity scores. Here, MSE, Pearson correlation, CI, and R2

values are reported on graphs’ y-axes. When the model predicts the binding affinity per-
fectly, the slope follows the y = x line. In the Davis dataset, we observed that the predicted
distribution follows the true binding affinity quite well (MSE 0.204).
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y = x. CI, concordance index; MSE, mean-squared error; Pearson, Pearson correlation; R2, r squared.

3.3. Comparison with Other Methods

For comparisons, we considered both global and local interaction modeling methods.
Global methods included DeepDTA and GraphDTA, and local methods included Deep-
Affinity, ML-DTI, HyperAttentionDTI, and FusionDTA. For a fair comparison, we used
the same training and testing datasets. The Davis dataset consists of six parts: five for
training and one for testing. Finally, the model showing the best prediction performance
was selected, and if the model used early stopping for training, we also applied early
stopping on the Davis testing dataset to avoid overfitting. We trained using the same
hyperparameter settings described in the baseline model papers [16,17,20,21,23,24].

DeepDTA used 1D CNNs to learn representations from the raw sequence data from
SMILES of drugs and amino acids of a protein. After pooling the final convolution layer,
the drug and protein features were concatenated, and the fully connected layers regressed
the DTA.

GraphDTA represents drugs as molecule graphs and uses GNNs for molecule repre-
sentation. The amino acid sequences were the protein inputs, and 1D CNNs were used for
protein representation. Max-pooling was applied, followed by concatenation, and the DTA
was predicted using hidden layers. GCN, GAT, GIN, and GCN–GAT models were tested,
and GIN was the best performer. Hence, we used it for molecule embedding. It did not use
early stopping; thus, the best model performance on the Davis testing dataset was selected
for testing on the BindingDB.

DeepAffinity [19] takes the SMILES string of the compound and the structural prop-
ery sequence (SPS) of the protein. SPS includes secondary structure elements, solvent
accessibility, physico-chemical characteristics, and lengths. The secondary structure ele-
ment and solvent accessibility are determined using the SSPro prediction model [31], and
the input is pretrained using the Seq2seq autoencoder. After the recurrent neural network
(RNN) encodes the input, the pair is represented by a weighted compound and protein
summation. Joint attention is then calculated using the compound and protein string pairs.
In the original study, the researchers predicted the pIC50 value using a model trained by
the BindingDB dataset.

ML-DTI [20] applies a mutual learning mechanism and takes SMILES and amino
acid sequences as input; 1D CNNs are used for encoding. The model leverages protein
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information during compound encoding and vice versa. It creates a probability map
between the global protein descriptor and drug string feature vector. In the original study,
the researchers used the Davis dataset processed by PADME for training and testing. The
number of drugs was 72, the targets were 442, and the interactions were 31,824. However,
to compare the performances, we used the same Davis dataset as GraphATT-DTA, which
consisted of 68 drugs and 442 targets.

HyperAttentionDTI takes compound SMILES and protein input as amino acid se-
quences. 1D CNN layers encode the compound and protein representations, and a hy-
perattention module models the semantic interdependencies spatially and channel-wise
between the drug and protein sub-sequences. DTI is predicted via binary classification;
hence, we changed the last layer and applied MSE to the loss function.

FusionDTA uses a pretrained transformer and BI-LSTM to encode amino acid se-
quence, and BI-LSTM to encode SMILES. The original researchers proposed a fusion layer,
which consisted of a multi-head linear attention layer that focused on the important token
from the biological sequence and aggregated global information based on the attention
score. The fully connected layer then predicts binding affinity.

Tables 6 and 7 report the MSE and CI scores of the Davis and external BindingDB
datasets, respectively. We used the model trained on the Davis dataset to evaluate the
BindingDB external dataset and verify its generalizability. GraphATT-DTA consistently
performed well on both sets.

Table 6. GraphATT-DTA prediction performance on the Davis testing dataset vs. baseline models.

Models Protein Compound Interaction Davis MSE Davis CI

DeepDTA 1D CNN 1D CNN Concat 0.245 0.886
GraphDTA 1D CNN GIN Concat 0.229 0.890

DeepAffinity RNN–CNN RNN–CNN Joint attention 0.302 0.870
ML-DTI 1D CNN 1D CNN Mutual learning 0.222 0.891

HyperAttentionDTI 1D CNN 1D CNN Hyperattention 0.233 0.876
FusionDTA BI-LSTM BI-LSTM Fusion layer 0.203 0.911

GraphATT-DTA 1D CNN MPNN Interaction learning 0.204 0.904

Notes: BI-LSTM, bidirectional long short-term memory; CI, concordance index; CNN, convolutional neural
network; GCN, graph convolutional neural network; GIN, graph isomorphism network; MSE, mean squared
error; RNN, recurrent neural network.

Table 7. Prediction performance over the BindingDB external test set of GraphATT-DTA and
baseline models.

Models Interaction Early Stopping BindingDB MSE BindingDB CI

DeepDTA Concat O 1.618 0.646
GraphDTA Concat X 2.13 0.62

DeepAffinity Joint attention X 2.188 0.574
ML-DTI Mutual learning O 1.580 0.704

HyperAttentionDTI Hyperattention O 1.514 0.656
FusionDTA Fusion layer X 1.970 0.567

GraphATT-DTA Interaction learning O 1.582 0.651

Notes: CI, concordance index; MSE, mean-squared error.

For the Davis dataset, the results are shown in Table 6. GraphATT-DTA achieved an
MSE of 0.204 and a CI of 0.904. The local interaction modeling methods tend to exhibit
superior performance to the global interaction methods. Local interaction methods employ
local characteristics extracted from protein and compound to predict DTA. This gives
the model a more comprehensive insight into the interacting parts of the protein and the
compound. Thus, such models perform better when predicting drug-target affinity based
on the training data.
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For the external BindingDB dataset test, GraphATT-DTA achieved an MSE of 1.582
and a CI of 0.651. The BindingDB dataset consisted of various large human kinase DTA
pairs. The local interaction modeling methods had better results because the attention
mechanism caused the model to have a more informative representation. Additionally,
early stopping seems to have played an important role as it avoided overfitting. Compared
with other models, GraphATT-DTA showed consistently higher performance on both the
Davis and BindingDB datasets. Additionally, when comparing the performance per drug
scaffold, we confirmed that no particular prediction model has a specially high or low
prediction performance for a specific scaffold (Supplementary Figures S2 and S3 [36]).
However, there were performance gaps between the two. We speculate that discrepancies
in the predicted affinity values vs. actual affinity values (pKd) in the two datasets led to
performance deterioration. That is, in the Davis dataset, the lowest pKd value was five
(10 µM). However, for the BindingDB dataset, many samples had values lower than five
(Supplementary Figure S4).

3.4. Ablation Study

Next, we performed an ablation study of the GraphATT-DTA model to confirm the
advantages obtained by the attention interaction. The ablation model used max-pooling on
the drug and protein embedding matrices, followed by concatenation. The fully connected
layers predicted the binding affinity. The drug and protein embedding modules were the
same as those in the proposed GraphATT-DTA model. Figure 4 compares the performances
of concatenation and attention. The results showed that interaction modeling with the
attention mechanism had more predictive power.
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3.5. Visualization with a Case Study

The proposed GraphATT-DTA uses an attention mechanism to consider the important
interactions between molecule substructures and protein sub-sequences when predicting
the DTA score. For substructure and sub-sequence significance score matrices, we inves-
tigated where high attention scores existed. Thus, we prepared a visualized case study
experiment for the GraphATT-DTA (Figure 5, Supplementary Figure S5). For this, we
selected the complex compound Lapatinib and gene EGFR (PDB ID: 1XKK). The actual
affinity was 8.38, and the predicted affinity was 7.58 via GraphATT-DTA using GCN.
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For the 1XKK complex, we found that the high attention scores were clustered near
the residue, from 780 to 807 of the protein and quinazoline substructure of the drug. The
binding positions of the RCSB PDB showed that the focused interaction between the
sub-sequence and substructure, as determined by GraphATT-DTA was one of the true
binding sites. The residue, 793 Methionine, and atom, Nitrogen, have a true hydrogen
bond. Figure 5a shows the 3D structure of Lapatinib and EGFR, where we colored a ligand
as green, the true binding sites are yellow, and hydrogen bonds are red. In Figure 5b, we
colored ligand substructures with a high attention score in orange and protein regions with
a high attention score in light blue.

The substructure significance is visualized in Figure 5b, where a high score was
matched to atoms. From the drug substructure’s perspective, the quinazoline substructure
referred to the sub-sequence index, including 793 methionine as the important protein
sub-sequence. Figure 5c shows the significances matched to the sub-sequences. From the
protein sub-sequence’s perspective, the sub-sequence index, including 793 methionine,
regarded quinazoline as the important compound substructure. We identified the top
five significance scores from the two significance matrices, finding that they had the
same substructure-subsequence pairs. This result indicates that the sub-sequence deemed
important by the substructure and the substructure deemed important by the sub-sequence
retain the same position in the drug target pair.

4. Discussion and Conclusions

Identification of DTIs is an essential step for finding novel drug candidates for a given
target protein or vice versa. Once initial binding molecules are successfully identified, the
next step is to optimize the activity by enhancing the binding affinity between molecules.
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Thus, DTA prediction models could be used in many efficient ways in the compound
optimization process.

In this paper, we proposed an attention-based novel representation that considers
local-to-global interactions to predict DTA. We used a powerful GNN to describe the raw
graph data of drugs and 1D CNNs for raw amino acid sequences of proteins. The attention
mechanism was used to construct a new molecule and the protein feature that reflects the
relationship between the compound substructure and protein sub-sequence. Consequently,
the physical interaction patterns between proteins and compounds can be captured by these
attention-based protein sequential and molecule graph feature representations. Moreover,
in our model, binding patterns of proteins with diverse 3D structures can be addressed
during the learning phase and it is one of the advantages of employing 2D sequential
features as opposed to 3D structural features. In this regard, the proposed method is not
limited to be applied to specific structured proteins but can be applied to more generally
structured proteins.

In the case of the performance evaluation, prediction results with the Davis and Bind-
ingDB datasets clearly demonstrated the efficacy of the proposed method. We observed
that the precise modeling of the interaction allowed for more efficient feature learning from
training data. Consequently, when modeling DTA, if interaction patterns are observed dur-
ing training for affinity prediction, the prediction performance can be improved to the point
where the model can provide guidance regarding unidentified drug-protein interaction
regions. In addition, our case study demonstrated that GraphATT-DTA can provide unique
biological insights to help understand the predicted binding affinity based on the attention
scores. We also identified a substructure with high attention scores of a compound that
triggers decreasing the binding affinity between EGFR and Canertinib (Supplementary
Figures S6 and S7 [37]). Notably, it is well known that the overall performance of the deep
learning model heavily depends on the training data. Due to the fact that only kinase
inhibitors are included in the training dataset used in this study, the performance of the
proposed model against other proteins may be compromised. Thus, in order to provide
more general DTA predictions, it is necessary to construct large-scale benchmark datasets
containing different classes of proteins.

The mutation of protein can lead to human disease. The mutated amino acid can
change biological functions and three-dimensional structures that can change the binding
affinity. However, no SOTA models have yet incorporated the concept of mutational
alteration effects on protein sequence for modeling DTA (Supplementary Tables S3 and S4;
Supplementary Figure S8). For future research, it is necessary to develop a deep-learning
model that can identify small-scale alterations in a protein sequence and apply their effects
to predicting DTIs and DTAs.

Recently, deep-learning models that predict protein structures based only on amino
acid sequences have been developed [38,39]. With such methods, the binding pockets of
proteins can be captured, and interactions can be modeled for drug target affinity prediction.
We believe that such approaches will soon allow us to achieve higher performance, and
leave the exploration using interaction sites with binding pockets in a data-driven manner
to future work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11010067/s1, Table S1: Davis and BindingDB test
dataset statistics; Table S2: Results of 5-fold cross-validation; Figure S1: MSE during 5-fold cross-
validation progress on Davis dataset. (a) GCN (b) GAT (c) GIN (d) MPNN (e) DMPNN;
Figure S2: The ratio of negative DTA for each compound; Figure S3: Performance comparison
of GraphATT-DTA and baseline models of each scaffold (a) Concordance Index (CI) (b) Mean
Squared Error (MSE); Figure S4: Prediction from GraphATT-DTA model for BindingDB dataset;
Figure S5: Visualization with Case Studies. (a) 3C4C (b) 3EFL; Figure S6: Top 5000 similar compounds
with Canertinib; Figure S7: The substructure of Canertinib and 57721266 with high attention score;
Table S3: Flt3 contingency table (odd ratio: 1.3); Table S4: EGFR contingency table (odd ratio: 2.5);

https://www.mdpi.com/article/10.3390/biomedicines11010067/s1
https://www.mdpi.com/article/10.3390/biomedicines11010067/s1
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Figure S8: Performance comparisons of GraphATT-DTA and baseline models on the difference
between the affinity of wild and mutant proteins. (a) FLT3 (b) EGFR.
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