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Abstract: The study’s objective was to develop a clinical prediction rule that predicts a clinically
significant analgesic effect on chronic knee osteoarthritis pain after transcranial direct current stimu-
lation treatment. This is a secondary analysis from a double-blind randomized controlled trial. Data
from 51 individuals with chronic knee osteoarthritis pain and an impaired descending pain inhibitory
system were used. The intervention comprised a 15-session protocol of anodal primary motor cortex
transcranial direct current stimulation. Treatment success was defined by the Western Ontario and
McMaster Universities’ Osteoarthritis Index pain subscale. Accuracy statistics were calculated for
each potential predictor and for the final model. The final logistic regression model was statistically
significant (p < 0.01) and comprised five physical and psychosocial predictor variables that together
yielded a positive likelihood ratio of 14.40 (95% CI: 3.66–56.69) and an 85% (95%CI: 60–96%) post-test
probability of success. This is the first clinical prediction rule proposed for transcranial direct current
stimulation in patients with chronic pain. The model underscores the importance of both physical and
psychosocial factors as predictors of the analgesic response to transcranial direct current stimulation
treatment. Validation of the proposed clinical prediction rule should be performed in other datasets.

Keywords: clinical prediction rule; transcranial direct current stimulation; knee osteoarthritis; chronic
pain; clinical trial

1. Introduction

Knee osteoarthritis (OA) is the most common form of the disease, with around 14 million
Americans having symptomatic knee OA [1]. The recent global prevalence and incidence
estimations are approximately 16% and 203 per 10,000 person-years, respectively [2]. Chronic
pain from knee OA can substantially impact the quality of life, affecting both physical and
psychological health. Among the approximately 10% of people over the age of 55 with painful
knee OA that has become disabling, nearly one quarter are severely disabled [3].

Pain is the most disabling symptom of knee OA and is an important predictor of
disability [4,5]. While in the past, OA pain was often described as a secondary symptom
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of joint degeneration, current evidence underscores the complex central and peripheral
mechanisms that underlie chronic pain in OA [6–10]. Signs of altered central nervous system
processing, such as central sensitization [11], and impaired pain modulation, including
impaired functioning of the descending pain inhibitory system (DPIS), are common among
chronic knee OA pain sufferers [8,9,12–15]. Because of the complexity of the mechanism
underlying chronic pain in knee OA, successful treatment remains an unsolved challenge
for healthcare providers.

Current methods used to treat knee OA pain include both pharmacological and non-
pharmacological strategies. Non-steroidal anti-inflammatory drugs are frequently used in
this population and can lead to severe adverse effects [16]. In addition, opioids are increas-
ingly used, also with severe several side effects and a risk of opioid dependence [17–20].
Available non-pharmacological treatments such as exercise therapy, patient education,
or cognitive-behavioral therapies can be effective but have, at best, modest effects on
pain [21–24]. Ultimately, total joint arthroplasty may be necessary, elevating the already
excessive economic burden of OA. Despite good functional results, approximately 20% of
individuals still continue to report pain six months or more after surgery [25], probably
due to remaining disturbances in the pain processing mechanisms.

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation
(NIBS) technique that has been shown to provide pain relief in chronic pain conditions, in-
cluding knee OA [26], fibromyalgia [27–30], and chronic pain after spinal cord injury [31,32].
It is designed to act on the neuronal state to facilitate the modulation of dysfunctional
excitability patterns in the brain and induce neuronal plasticity. Clinical trials have explored
the analgesic effect of tDCS on knee OA [33–38] and have also demonstrated the efficacy
of tDCS in reducing pain in other chronic pain conditions after the stimulation of brain
regions related to pain processing [39–52]. However, although there have been positive
and significant results in tDCS trials for pain management, the results are heterogeneous.

The existence of subgroups inside the knee OA population has been raised as a po-
tential source of treatment response variability [53–58]. One potential strategy to diminish
this variability is the development of clinical prediction rules (CPR). CPRs are widely used
in rehabilitative medicine to assist in identifying subgroups of patients whose baseline
characteristics indicate a high likelihood of responding to a particular intervention. Many
CPRs exist in the field of musculoskeletal rehabilitation [59–66] but few exist for knee OA
patients. This methodological strategy can be useful, as it can be directly applicable to
individual patients. Variability in the treatment response is observed in chronic muscu-
loskeletal trials targeting pain with NIBS [67,68]. Therefore, a CPR could assist both trialists
and clinicians in better selecting patients to diminish this variability and ultimately achieve
optimal outcomes with tDCS therapy.

CPRs are ultimately designed to improve clinical decision making. They consist of a
combination of clinical and/or historical variables, collected during a baseline assessment,
that best characterizes patients who have a high probability of success when administered
a specific treatment protocol. A CPR indicates the accuracy, expressed as a sensitivity,
specificity, or likelihood ratio (LR), of each individual predictor and of a group of the
most potent predictors to identify patients whose response to treatment exceeds a cer-
tain threshold for success. CPRs have been used to create treatment-based classifications
for patients that can be easily applied to clinical settings [59,61–66,69], and the research
methodological standards used to develop CPRs are well established [70]. The first phase,
derivation, involves the identification of factors with predictive power and require longitu-
dinal data [53,61]. To the best of our knowledge, there are no treatment-based CPRs in the
field of NIBS. Specifically, indications of tDCS for knee OA pain could benefit greatly from
treatment-based CPRs as variability in the treatment response is not uncommon with this
type of intervention [71].

The aim of this study was to develop a CPR that predicts a clinically significant short-
term analgesic effect on knee OA pain after a tDCS treatment protocol. Defining a CPR for
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tDCS treatment success may improve the selection of patients for tDCS interventions and
optimize tDCS treatment’s effectiveness for knee OA pain.

2. Methods

The current study is a secondary analysis of data from a published double-blind
randomized controlled trial (RCT) that evaluated whether tDCS reduces knee OA pain in
elderly individuals with a dysfunctional DPIS (NCT03117231). The parent RCT study was
approved by the Human Research Ethics Committee of Sao Paulo Hospital (1685/2016)
and was conducted according to the Declaration of Helsinki. All participants provided
written informed consent. Procedures, including the participants, the intervention, and the
primary and secondary outcome measures, are described elsewhere [13,36].

A summary of the RCT’s study procedures is provided in the Supplementary Material.
The time point used to determine treatment success was at the end of the 3-week tDCS
intervention protocol, as the short-term analgesic effect was the focus of this analysis.

2.1. Definition of Treatment Success

The Western Ontario and McMaster Universities’ Osteoarthritis Index (WOMAC)
pain subscale was used to determine treatment success, and data were collected before
(baseline) and after the 15 treatment sessions. Changes in the patients’ WOMAC pain
subscale scores were categorized as success (responders) or non-success (non-responders)
depending on whether a 25% pain reduction from baseline was achieved (representing
a 5-point reduction in the raw 20-point WOMAC pain subscale score). This cutoff score
was chosen on the basis of the minimal detectable change (MDC), the minimal clinically
important difference (MCID), the standard error of measurement (SEM), and the minimum
important change (MIC) values previously reported for knee OA (MIC = 4.18, MDC= 4.58,
MCID = 2.2, SEM = 1.65—all based on the non-transformed 0–20 scale) [72–74].

2.2. Baseline Predictor Variables

To our knowledge, there are no CPR studies for the use of tDCS on chronic pain, and
due to the exploratory nature of this derivation phase of the proposed CPR, all clinical
variables collected at baseline for the main randomized trial were explored as potential
predictive variables, irrespective of whether they had previously reported predictive rela-
tionships with tDCS treatment success or were supported by a clear theoretical framework.
The details of the baseline predictor variables for the entire sample and for the “success” or
“non-success” groups are displayed in Table 1, and details about the methodology used to
collect them is provided in the Supplementary Material [13,75–93].

Table 1. Variables assessed at baseline.

All Subjects (n = 51) Success (n = 15) Non-Success (n = 36)

Variables

Demographics

Gender—female; n (%) 42 82.35% 13 86.67% 29 80.56%
Age 74.8 ± 7.44 75.33 ± 8.17 74.6 ± 7.23

Pain-related variables
BPI pain severity 4.87 ± 1.52 4.96 ± 1.09 4.83 ± 1.68

BPI interference—pain’s impact
on function * 4.57 IQR 3.1 3.78 ± 1.89 4.8 ± 2.02

VAS pain (now) * 2.25 2.85 * 2.2 1.4 * 2.85 3.55IQR IQR IQR

VAS pain (week) * 5.85 2.5 5.76 ± 1.51 * 6.45 2.6IQR IQR
Cognitive status variables

Mini-mental * 26 5 * 27 5 * 25.5 6IQR IQR IQR
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Table 1. Cont.

All Subjects (n = 51) Success (n = 15) Non-Success (n = 36)

Variables

Demographics

Psychosocial-related variables

Beck depression inventory * 12 7.5 10.33 ± 5.99 * 12 8IQR IQR
VAMS anxiety 4.45 ± 2.95 4.31 ± 2.89 4.51 ± 3.02

VAMS stress * 3.35 5.07 * 3 5.9 * 3.35 4.8IQR IQR IQR

VAMS depression * 1.35 4.05 * 1.5 5.2 * 1.4 5.65IQR IQR IQR

VAMS sleepiness * 2.15 5.2 * 2.2 5.3 * 1.95 3.9IQR IQR IQR
Self-reported health-related

quality of life

SF-12 physical component score 32.7 ± 8.53 33.81 ± 5.85 * 30.1 13.2IQR
SF-12 mental component score 48.9 ± 12.06 47.34 ± 10.62 49.5 ± 12.69

VAS global health assessment * 4.25 3.5 4.3 ± 2.12 4.69 ± 2.64IQR
Disease-specific measures

Lequesne pain score 5.51 ± 1.25 5.53 ± 1.06 5.5 ± 1.34
Lequesne max distance

walked score * 3 3.5 3.93 ± 2.25 * 3 5IQR IQR
Lequesne ADLs score 4.61 ± 1.45 4.4 ± 1.62 4.69 ± 1.39
Lequesne total score 13.8 ± 3.92 13.86 ± 3.71 13.7 ± 4.06
WOMAC pain score 9.65 ± 2.88 9.8 ± 1.61 9.58 ± 3.29

WOMAC rigidity score 3.41 ± 1.98 * 4 2 3.38 ± 2.08IQR
WOMAC function score 35.1 ± 11.88 32.4 ± 9.6 36.3 ± 12.65

WOMAC total score 48.2 ± 14.91 45.66 ± 10.74 49.3 ± 16.35
Performance-based
physical function

One-leg stance test * 4.4 8.76 * 5.03 5.81 * 2.67 7.22IQR IQR IQR

Timed up and go test * 15.5 9.13 * 14.96 9.02 * 16.3 12.62IQR IQR IQR
Quantitative sensory

testing variables

Von Frey sensation—hand§ * 0.4 / 0.02–
4 * 0.07 * 0.5 / 0.02–

4IQR

Von Frey pinprick—hand § * 8 / 0.4–
300 * 10 * 8 / 0.6–

300IQR

Von Frey pain threshold—hand § * 300 / 6–300 * 300 * 300 / 6–300IQR

Von Frey VAS pain—hand * 1.33 3 1.34 ± 1.86 1.71 ± 1.85IQR

Von Frey sensation—knee § * 0.6 / 0.008–
8 * 1 * 0.6 / 0.02–

6IQR

Von Frey pinprick—knee § * 4 / 0.4–
300 * 4 * 3 / 0.4–

180IQR

Von Frey pain threshold—knee§ * 26 / 6–300 * 15 * 26 / 2–300IQR
Von-Frey VAS pain—knee 2.95 ± 2.02 3.23 ± 1.81 2.83 ± 2.11
Pain pressure threshold
Pain pressure threshold

pre-CPM—hand * 2.54 1.88 2.95 ± 1.28 * 2.42 1.21IQR IQR
Pain pressure threshold

pre-CPM—knee * 1.77 1.38 * 1.5 1.76 * 1.65 1.08IQR IQR IQR
Pain pressure threshold

post-CPM—hand * 2.41 1.58 * 2.36 1.63 2.55 ± 1.13IQR IQR
Pain pressure threshold

post-CPM—knee * 2 1.46 * 2.03 1.69 * 2 1.29IQR IQR IQR
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Table 1. Cont.

All Subjects (n = 51) Success (n = 15) Non-Success (n = 36)

Variables

Demographics

Conditioned pain modulation
Change in PPT after CPM—hand 3.56 ± 27.68 −8.30 ± 27.2 8.51 ± 26.71

Percentage of change in pain
after CPM—hand 1.44 ± 22.22 1.2 ± 19.05 1.53 ± 23.66

Change in PPT after CPM—knee * 12.3 28.55 23.57 ± 24.9 * 14.2 25.84IQR IQR
Percentage of change in pain

after CPM—knee * 5 26.04 9 ± 15.78 * 5.84 25.63IQR IQR

BPI, Brief Pain Inventory; *, non-normally distributed data (presented as the median and interquartile range (IQR);
§, reported as the median, minimum, and maximum values; VAS, visual analog scale; now, at the moment of the
assessment; week, average over the past week; VAMS, visual analog mood scale; ADLs, activity of daily living; hand
and knee, test performed using the hand or the knee of the subject, respectively; CPM: conditioned pain modulation.

2.3. Analysis

Descriptive statistics were used to present the data’s characteristics in both the re-
sponder and non-responder groups. Central tendencies and respective variabilities were
reported according to the data’s distribution.

All individual baseline variables were first dichotomized. This commonly used ap-
proach was used, as it is known to facilitate clinical understanding when interpreting the
final prediction rule [94]. Due to the lack of well-established clinical cutoffs for all the ex-
plored variables, and to standardize the calculation procedures, cutoffs were defined using
receiver operating characteristic curves. This process calculates the sensitivity and specificity
for different cutoff scores that help in the construction of a visual graph that represents
how well the predictor performs. Cutoffs were determined at the values where the highest
possible area under the curve (AUC) could be achieved, which thus had the highest predic-
tive power for treatment success [59,70,75]. The first step of the analysis involved creating
univariate logistic regression models to determine the best potential predictive variables
to be included in a multivariate logistic regression model to derive the final CPR [70,75].
All the dichotomized baseline variables were considered as independent variables, while
the dichotomized WOMAC pain subscale variable was used as the dependent variable.
Individual variables that had a regression coefficient significance of at least 0.2 (p ≤ 0.2)
were retained for further analysis in the multivariate model. The AUC values from the di-
chotomization processes were analyzed to confirm if any of the pre-selected variables for the
multivariate model had an AUC greater than at least 0.5. The accuracy statistics, including
the sensitivity, specificity, and positive likelihood ratios and the respective 95% CI [95], were
reported for each individual predictor variable. If any variable presented a low predictive
power (AUC ≤ 0.5), they were excluded from the list of potential predictive variables to
be explored in the multivariate model. All the variables considered for the multivariate
model were then checked for dependence and collinearity by testing their interaction terms
and correlations, respectively. If any variables were found to be colinear or dependent, the
variable with the easiest and most practical clinical use was chosen to be considered in
the multivariate model. Next, a multivariate logistic regression model was built using a
manual backward elimination approach with a regression coefficient significance criterion of
0.05. Pearson’s chi-squared and Akaike’s information criterion were also used to determine
the model with the best fit. The AUC for the final model was determined. The CPR was
developed by examining the accuracy of the various groupings of the variables present in
the final logistic regression model. The ultimate goal of the CPR was to include clinically
sensible predictors that were practical and easy to collect, that would maximize the positive
likelihood ratio, and that could correctly identify a worthwhile proportion of subjects who
were positive and had treatment success [60].
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3. Results

Of the 51 subjects who received the tDCS stimulation, and were therefore included in
the analysis, 15 met our criteria for success (29%), while 36 (71%) did not. Their descriptive
data are displayed at Table 1.

After dichotomization, 17 variables were associated with treatment success in the
univariate logistic models and considered as potential predictors. Lequesne’s maximum
distance walked score, Von Frey’s sensation assessment (hand), and the change in PPT after
CPM (hand) were not considered for the multivariate modeling analysis, as they showed
low discriminatory power (AUC less than 0.5). The accuracy statistics and their respective
95% CIs for these pre-selected dichotomized individual predictor variables can be seen in
Table A1. After application of the backward elimination approach to construct the final
multivariate model, the best final model included five clinical variables (Table 2).

Table 2. Final predictive multivariate logistic model.

95% CI

Variable OR UB LB SE p

VAMS sleepiness 38.41 1.5 989.16 63.67 0.028 *
Beck depression inventory 173.22 5.1 5887.15 311.62 0.004 **

SF-12 physical component score 59.07 2.5 1392.96 95.25 0.011 *
SF-12 mental component score 2585.38 18.2 367,878.60 6539.92 0.002 **

WOMAC total score 114.97 4.1 3258.17 196.17 0.005 **
Constant 1.18 0.00 8.76 5.71 0.001 **

Pseudo-R2 0.5611
LR chi-squared (5) 34.67 0.000 **

Dependent variable: WOMAC pain subscale—success/non-success. N = 51; * p < 05; ** p < 01. OR, odds ratio;
VAMS, visual analog mood scale for sleepiness.

The final model was statistically significant (chi-squared (5) = 34.67, p < 0.01), with an
adequate goodness of fit (Pearson’s chi-squared (16) = 6.25; p = 0.985). All the regression
coefficients were statistically significant (p < 0.05). In summary, the direction of the coeffi-
cients would mean that if subjects reported having a sleepiness level below 2.9 (0–10 VAS)
on the VAMS sleepiness scale, a score lower than 52.59 on the MCS (SF12), a score lower
than 37.87 on the PCS (SF12), a score lower than 10.5 on the Beck depression inventory, and
a score lower than 43.5 on the WOMAC total score, they are more likely to improve with
the tDCS intervention. The AUC used for model discrimination is depicted in Figure 1.
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The best rule (Table 3) for predicting success had the presence of five clinical variables
(positive LR, 14.40; 95% CI: 3.66, 56.69). Accuracy statistics were calculated for each of the
predictor variables present. A subject who exhibited five of the criteria variables would
have an 85% (95% CI: 60–96%) post-test probability of success, as opposed to four variables
(79%; 95% CI: 54–92%). Twelve of the 14 subjects who were positive for five criteria were in
the successful outcome group (Table 4).

Table 3. Accuracy for the five levels of the clinical prediction rule *.

Number of Predictor
Variables Present Sensitivity (95% CI) Specificity (95% CI) Positive Likelihood

Ratio (95% CI)
Probability of

Success, % (95% CI)

% Increase between
Pre-Test and

Post-Test Probability

5 0.80 (0.60–1.00) 0.94 (0.87–1.00) 14.40 (3.66–56.69) 85% (60–96%) 56%
4+ 0.73 (0.51–0.96) 0.92 (0.83–1.00) 8.80 (2.86–27.12) 79% (54–92%) 50%
3+ 0.53 (0.28–0.79) 0.94 (0.87–1.00) 9.60 (2.30–40.02) 80% (49–94%) 51%
2+ 0.33 (0.09–0.57) 0.97 (0.92–1.00) 12.0 (1.53–94.23) 83% (39–98%) 54%

CI, confidence interval; +, or more. * The probability of success was calculated using the positive likelihood ratios
and assumed a pre-test probability of 29%; total cases present, n = 51.

Table 4. The variables for the clinical prediction rule * and the number of subjects in each group at
each level †.

Number of Predictor
Variables Present Successful Outcome Group Non-Successful Outcome Group

5 12 2
4+ 11 3
3+ 8 2
2+ 5 1

*: VAMS sleepiness ≤2.9 (0–10), SF-12 physical component score ≤ 37.87, SF-12 mental component score ≤ 52.59,
Beck depression inventory ≤10.5, and WOMAC total score ≤ 43.5. † n = 51. +, or more.

4. Discussion

The current study presents the initial derivation step for the development of a CPR
that predicts a positive and clinically significant analgesic effect on knee OA pain after a
tDCS treatment protocol. To the authors’ knowledge, this is the first CPR ever proposed for
tDCS treatment and for any neuromodulation intervention used to treat knee OA pain. The
analysis presented here supports the idea that the rule is highly accurate and has relevant
discriminatory properties to identify knee OA patients who will potentially benefit from
tDCS treatment. This is a novel approach used in the field of neuromodulation.

We found that lower scores in the measures of psychosocial function (SF12 MCS and
the Beck depression scale) were the most strongly predictive (largest odds ratio) of an
analgesic tDCS response in knee OA patients with chronic pain and a dysfunctional DPIS.
Previous studies have found that chronic pain conditions, including knee OA with dys-
functional DPIS, are associated with multiple alterations in psychosocial components such
as depression, stress, and anxiety [95,96]. Similarly, a recent systematic review highlighted
the influence of psychosocial components on the treatment response across multiple treat-
ment modalities (e.g., pharmacological, physical therapy, and combined treatments [97]),
showing that a higher burden of depression, anxiety, and pain catastrophizing reduced the
likelihood of treatment success [98]. Our results are consistent with these findings.

Regarding the predictors of the response to tDCS, although several randomized
controlled trials have shown positive effects in several conditions [99], only few studies
have explored the predictors of response. For instance, Gunduz and Pacheco-Barrios
et al. [100] found that phantom limb patients who responded to M1 anodal tDCS had more
non-painful phantom symptoms (specifically movement sensations in the phantom limb)
at baseline, but no psychosocial factors were detected as important predictors. On the
other hand, Kambeitz et al. [101] found that negative affect and the number of depressive
episodes were important predictors of treatment response for pre-frontal tDCS in patients
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with major depression. The heterogeneity in the predictors of tDCS may be explained by
the different treatment protocols, such as different neural target brain areas (motor cortex
versus pre-frontal areas) and population differences (musculoskeletal versus neuropathic
pain populations). It can be argued that poor mental health status at baseline is an unspecific
associated factor in an unfavorable response to any treatment, because the interference
of affect induces less engagement with the therapeutic protocol (less target engagement
and adherence to the protocols) [102]. However, interestingly, in our study, when we
applied the prediction model to the participants who received sham tDCS (n = 53), our
set of predictors did not discriminate between responders versus non-responders, and
the model was not significant. Thus, our prediction rule does not seem to be associated
with a placebo response. These results underscore the importance of the emotion-related
domains as potential predictors of response to analgesia, especially for treatments targeting
sensorimotor plasticity (such as M1 anodal tDCS). Nevertheless, the role of psychosocial
factors as effect modifiers or mediators of some intervention modalities needs further
exploration to understand the causal pathways of chronic pain treatments and to optimize
the intervention design.

Our final predictive model included physical activity-related variables, such as the
PCS (SF12) and the WOMAC total score. Our findings are similar to those of previous
research in knee OA that has also found the same variables to be relevant for the process of
decision-making process regarding treatment [103]. The presence of physical variables in
our final model suggests that not only are the emotional components relevant in predicting
a treatment’s success, but so are the physical aspects of health. Previous research has
explored the relationship between different levels of physical activity with pain perception
and central pain processing [104,105]. It has been suggested that higher levels of self-
reported physical activity or health are associated with better function of the endogenous
pain inhibitory system and lower self-reported pain, while the opposite is associated
with a more sedentary lifestyle [105–116]. In fact, pain tolerance in chronic pain has
been suggested to be more associated with physical activity than with emotional factors,
such as depression and anxiety [104]. It is known that participation in regular physical
activity offers global benefits in terms of motor cortex function, including an enhanced
capacity for neuroplasticity and motor learning [109], and the evidence supports the
concept of the motor cortex as an important modulator for chronic pain [110–112]. This
suggests that physical function/activity may have relevant implications for pain regulation
and the sensory aspects of pain. Additional research has also shown that motor-based
interventions, such as mobilization with movement techniques, can affect the pain threshold
and change cortical excitability [112–114]. In addition, although our study used only tDCS
as the intervention, because tDCS can modulate neuronal excitability and impact the
brain’s plasticity, the authors believe that motor-based interventions, (e.g., exercise) when
combined with tDCS may have a synergistic effect on the pain processing areas of the
brain. A previous systematic review has even recommended the combination of these two
treatment strategies for improving pain in different MSK conditions [67].

Our results revealed a robust CPR with a percentage increase between the pre-test
probability and the post-test probability of 56% (29% to 85%) for five variables, and 54%
when two variables were present. The authors have not found any CPRs of neuromodulation
treatments for knee OA for comparison. However, a few other rehabilitation-related research
have proposed the use of CPR for other interventions used for knee OA pain. Currier and
colleagues [115] developed a five-variable CPR to identify patients with knee OA pain
with favorable short-term response to hip mobilization and reported a post-test probability
of 97% (PLR = 12.9) when two variables were present. This study also reported a high
pre-test probability of 68%, which makes the percentage of increase in probability (pre- to
post-test) 24%, consequently limiting the value of the CPR for clinical decision-making.
The difference in the pre-test probability between our study and that reported by Currier
et al. likely exists because of the differences in how treatment success was defined and the
unique characteristics of our sample (impaired descending pain inhibitory system). Amano
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et al. [116] reported a two-variable CPR with a PLR of 17.8 and a percentage of increase in
probability of 59%, However, the derived CPR was used to determine the risk of falling in
community-dwelling individuals with knee OA and it was not a treatment CPR. Our choice
of using the five-variable CPR is indeed not definite. Excellent levels of post-test probability
and PLR could also be achieved with fewer variables. The authors have suggested the five-
variable CPR, considering the feasibility of performing the clinical tests and self-reported
measures. As this CPR becomes further validated, clinicians are encouraged to consider the
applicability of the CPR in their own clinical settings and how frustrating and/or debilitating
it would be for their patient if the treatment was not successful.

This study has limitations. Since this study refers to the derivation phase of a CPR,
the objective was to identify suitable variables to be included in a CPR and not to establish
definitive criteria to predict treatment success. Our limitations include the relatively small
sample size. Our model using five predictors is also likely to be overfitted to our sample.
We were limited to the variables collected in the parent RCT; thus, other factors, such as
chronicity or compartmental distribution of OA, could have been significant for predicting
treatment success. The variables and their cutoff points need to be further validated in other
studies, preferably with larger sample sizes. Furthermore, our sample of knee OA patients
was composed of subjects previously identified as having a dysfunctional pain inhibitory
system; therefore, our findings are potentially not applicable to a broader population.
Another limitation is the fact that success was determined on the day of the last session
after three weeks of treatment, so our proposed CPR was not appropriate for predict
long-term improvements. In addition, we collected data in the context of the controlled
environment of a clinical trial, and there may be other variables that are better suited for
predicting success in clinical settings. Considering our limitations, any definitive use of the
proposed CPR is considered premature.

5. Conclusions

This is the first CPR ever proposed for the neuromodulation treatment of tDCS. Our
results suggest that both physical and psychosocial health-related variables are likely
relevant to predict treatment success. Our findings present a robust first methodological
step that could positively impact knee OA care as further validation of the proposed rule
can help identify patients that will best respond to the tDCS intervention. Future research
efforts are encouraged to refine and validate the proposed CPR, ideally using larger samples
and prospective cohort study designs.
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Abbreviations

Clinical prediction rule CPR
Confidence interval CI
Knee osteoarthritis Knee OA
Transcranial direct current stimulation tDCS
Primary motor cortex M1
Descending pain inhibitory system DPIS
Non-invasive brain stimulation NIBS
Western Ontario and McMaster Universities’ osteoarthritis index WOMAC
Minimal detectable change MDC
Minimal clinically important difference MCID
Standard error of measurement SEM
Minimum important change MIC
Visual analog mood scale VAMS
Mental component score MCS
Physical component score PCS
12-Item short form health survey SF12
Timed up and go test TUGT
Pain pressure threshold PPT
Conditioned pain modulation CPM
Area under the curve AUC

Appendix A

Table A1. Accuracy statistics with 95% confidence intervals for the individual and initially potential
predictor variables.

Variables Cutoff Sensitivity at
Cutoff Point

95% CI
LB UB

Specificity at
Cutoff Point

95% CI
LB UB

AUC at
Cutoff Point

Positive
Likelihood

95% CI
LB UB

Pain-related variables
BPI interference—pain’s

impact on function ≤2.79 0.47 0.46–0.48 0.83 0.80–0.86 0.65 2.76 2.74–2.79

VAS pain (now) ≤3.70 0.87 0.84–0.90 0.42 0.40–0.44 0.64 1.50 1.47–1.53
VAS pain (week)

Cognitive status variables ≤7.10 0.93 0.89–0.97 0.42 0.40–0.44 0.68 1.60 1.58–1.63

Mini-mental
Psychosocial-related variables ≤23.5 0.87 0.84–0.90 0.39 0.37–0.41 0.63 1.43 1.40–1.45

Beck depression inventory ≤10.5 0.67 0.65–0.69 0.58 0.56–0.60 0.62 1.60 1.58–1.61
VAMS sleepiness

Self-reported health-related
quality of life

≤2.9 0.67 0.65–0.69 0.39 0.37–0.41 0.53 1.10 1.08–1.12

SF-12 physical
component score ≤37.87 0.87 0.84–0.90 0.31 0.29–0.33 0.59 1.26 1.23–1.29

SF-12 mental
component score

Disease-specific measures
≤52.59 0.67 0.65–0.69 0.56 0.55–0.57 0.61 1.52 1.50–1.54

Lequesne max distance
walked score ≤4.50 0.53 0.52–0.54 0.39 0.37–0.41 0.46 0.87 0.85–0.88

WOMAC function score ≤31 0.53 0.52–0.54 0.75 0.72–0.78 0.64 2.12 2.10–2.14
WOMAC total score
Quantitative sensory

testing variables
≤43.5 0.60 0.58–0.62 0.72 0.69–0.75 0.66 2.14 2.12–2.16

Von Frey sensation—hand ≤0.50 0.27 0.24–0.30 0.50 0.50–0.50 0.38 0.54 0.52–0.56
Von Frey pinprick—hand ≤5 0.87 0.84–0.90 0.42 0.40–0.44 0.64 1.50 1.47–1.53
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Table A1. Cont.

Variables Cutoff Sensitivity at
Cutoff Point

95% CI
LB UB

Specificity at
Cutoff Point

95% CI
LB UB

AUC at
Cutoff Point

Positive
Likelihood

95% CI
LB UB

Von Frey pain
threshold—hand ≤240 0.73 0.70–0.76 0.47 0.46–0.48 0.60 1.38 1.36–1.40

Pain pressure threshold
pre-CPM—hand ≤2.84 0.53 0.52–0.54 0.75 0.72–0.78 0.64 2.12 2.10–2.14

Change in PPT after
CPM—hand ≤6.38 0.33 0.31–0.35 0.44 0.43–0.45 0.39 0.59 0.57–0.61

Change in PPT after
CPM—knee ≤21.29 0.60 0.58–0.62 0.61 0.59–0.63 0.61 1.54 1.52–1.56

n = 51 cases present for
all variables
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