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Abstract: Renal cell carcinoma (RCC) is one of the most frequent malignant neoplasms of the
kidney. The therapeutic options available for the treatment of advanced or metastatic RCC include
vascular endothelial growth factor receptor (VEGFR)-targeted molecules, for example, tyrosine kinase
inhibitors (TKI). Various VEGFR-TKIs proved to be effective in the treatment of patients with solid
tumours. The combination of two drugs may prove most beneficial in the treatment of metastatic
RCC; however, it also enhances the risk of toxicity compared to monotherapy. Specific VEGFR-TKIs
(e.g., sunitinib, sorafenib or pazopanib) may increase the rate of cardiotoxicity in metastatic settings.
VEGF inhibitors modulate multiple signalling pathways; thus, the identification of the mechanism
underlying cardiotoxicity appears challenging. VEGF signalling is vital for the maintenance of
cardiomyocyte homeostasis and cardiac function; therefore, its inhibition can be responsible for
the reported adverse effects. Disturbed growth factor signalling pathways may be associated with
endothelial dysfunction, impaired revascularization, the development of dilated cardiomyopathy,
cardiac hypertrophies and altered peripheral vascular load. Patients at high cardiovascular risk at
baseline could benefit from clinical follow-up in the first 2–4 weeks after the introduction of targeted
molecular therapy; however, there is no consensus concerning the surveillance strategy.

Keywords: cardiotoxicity; RCC; metastasis; VEGFR-TKIs

1. Introduction

Renal cell carcinoma (RCC) is among the most frequent malignant neoplasms of
the kidney (present in 90% of cases) [1]. At the same time, RCC-related mortality is the
highest among urological neoplasms. Since this type of tumour does not give easily
recognizable alarming symptoms, in nearly one-third of patients it is diagnosed at the
metastatic stage of the disease. The estimated overall 5-year survival is 76%; however, such
survival is significantly reduced in patients with stage IV disease [2]. The treatment of this
tumour is challenging since RCC comprises highly heterogeneous cancers with different
underlying genetic and epigenetic mechanisms and molecular pathways, including clear
cell (accounting for 70–75% of all cases and caused by the loss of tumour suppression gene
VHL (von Hippel–Lindau) on the short arm of chromosome 3) and non-clear cell subtypes:
papillary (15% of all kidney cancers), chromophobe RCC (occurring in 5–10% of all cases,
typically a slowly growing type), collecting duct carcinoma and renal medullary carcinoma
(aggressive types accounting for less than 5% of all RCC cases, resistant to most systemic
treatment options), as well as sarcomatoid RCC (occurring in about 5% of all RCC cases,
generally symptomatic and very aggressive) [3–7]. Approximately 20–50% of patients
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with localized disease will ultimately relapse and advance to the metastatic stage despite
treatment [2,8]. Features of various subtypes of RCC are summarized in Table 1 (based on
data from [9]).

Table 1. Summary of features of various subtypes of RCC.

Features Clear Cell RCC (ccRCC) Papillary RCC
(pRCC)

Chromophobe RCC
(cRCC)

Clear Cell Papillary
RCC

(ccpRCC)
Multilocular Cystic *

Occurrence ~70–75% of RCC ~10–20% of RCC ~5–7% of RCC 1–4% of RCC ~1–4% of RCC

Age of onset >50 years >50 years >50 years 40–50 years

Morphology

Clear or pale appearance,
sometimes yellow

Acinar, nested, alveolar,
tubular architecture with

small cysts
Capillary vessels intimately
associated with the tumour

Cells with finger-like
projections. Papillary

architecture,
tubulo-papillary,

glomeruloid, and dense
papillary

simulating solid areas also
occur

Slender papillae lined
with a single layer of

cuboidal cells with scant,
basophilic cytoplasm and

inconspicuous nucleoli

Solid architecture with
extension to adjacent renal
parenchymal entrapping

pre-existent tubules
Large eosinophilic cells

and vegetal-like cells with
distinct cytoplasmic

membrane. Eosinophilic
or finely granular
cytoplasm with

perinuclear halos and
nuclei showing “raisinoid”

morphology

Cells with
“piano-key-like” pattern
Clear cells with tubular

(predominant),
papillary, acinar, cystic,
cords and solid growth

Cysts lined with cells
with clear cytoplasm
and low-grade nuclei

with variable sizes
separated by delicate

septae that may contain
cords of clear cell

Characteristic
traits

Originates from proximal
nephron/

tubular epithelium
Aggressiveness related to the

stage and Furham grade

2 types
Originates from distal

nephron/tubular
epithelium

typically low grade; cases
with high-grade nuclear

features (prominent
nucleoli, non-basophilic
cytoplasm), sometimes

invasive growth

Originates from distal
nephron/intercalated cells

of distal tubules
Less aggressive compared

to ccRCC and pRCC
(mortality ~10% patients)
Rhabdoid/sarcomatoid

and tumour
necrosis—more aggressive

behaviour

Indolent, not metastatic

More prevalent in males
Indolent

Not metastatic
Good prognosis

Features Medullary Carcinoma Mucinous Tubular and
Spindle Cell Carcinoma

Collecting Duct
Carcinoma (CDC)

Xp11 Translocation
RCC Unclassified RCC

Occurrence ~1% of RCC Rare ~1–2% of RCC 3–6% of RCC

Age of onset 20–30 years 40–50 years 20–30 years childhood Variable

Morphology

Similar to CDC, tubular,
papillary and infiltrative

architectures
Adenoid cystic, reticular and

microcystic patterns

Tightly packed tubular
component lined with

cuboidal cells
transitioning into a bland
spindle cell component

Variable amount of
mucinous/myxoid stroma

Low-grade tubules,
spindle cell component

and mucin

Predominant tubular
morphology

(tubulo-papillary and
papillary patterns are also

common)
Desmoplastic stromal

reaction
High-grade nuclei

Absence of other RCC
subtypes

Papillae lined with
epithelioid clear and

eosinophilic cells with
abundant psammoma

bodies

More than one cell type
visible under a

microscope

Characteristic
traits

Originates from distal
nephron

Extremely aggressive
centred in renal medulla

Associated with sickle cell
trait/disease/related
hemoglobinopathies

Originates from distal
nephron/tubular cells

Indolent, usually
low-grade; rarely

high-grade nuclei and
sarcomatoid, rarely

metastatic

Originates from distal
nephron

High-grade
adenocarcinoma

Medullary involvement
High aggressiveness

(2-year mortality 70%)

Overall prognosis
comparable with clear

cell RCC

Aggressive
High mortality

* multilocular cystic renal neoplasm of low malignant potential.

The therapeutic options available for the treatment of advanced or metastatic RCC
have changed over the years [3]. Initially, high-dose interleukin-2 [IL-2] and interferon-α
were used to affect the immune system signalling cascade and intracellular oncogenic
pathways. The introduction of molecular targeted agents and immunotherapies, including
vascular endothelial growth factor receptor (VEGFR)-targeted molecules (e.g., tyrosine ki-
nase inhibitors; TKI), immune checkpoint inhibitors (ICIs) and inhibitors of the mechanistic
target of rapamycin (mTOR) has improved the prognosis and survival of patients with
metastatic RCC (mRCC) [5,8,10]. Tyrosine kinases (TK) activate numerous proteins via
phosphorylation, thus affecting signal transduction and regulating cellular activity [4]. In
turn, TK inhibitors (TKI) attach to the ATP-binding pocket of these kinases, thus hampering
their activity. Various VEGFR-TKIs proved to be effective in the treatment of patients with
solid tumours [11]. Current guidelines suggest that the combination of two of the afore-
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mentioned drugs may prove most beneficial in the treatment of metastatic RCC [12–14].
However, the combination of two treatment options may increase the risk of toxicity in com-
parison to monotherapy. Cancer-treatment-related toxicities affect many organs; however,
it appears that cardiovascular adverse effects are the most important since they worsen
patients’ prognosis and quality of life [15]. Many studies and clinical trials have suggested
that specific anti-VEGF tyrosine kinase inhibitors (TKI) such as sunitinib, sorafenib or
pazopanib may possibly be responsible for a higher rate of cardiotoxicity in metastatic
settings. Cardio-oncology is a relatively new area of knowledge which focuses on the
treatment of cancer taking into consideration the risk of cardiovascular adverse effects of
the therapies used [16]. This review will focus on the cardiotoxicity risk associated with
VEGFR-TKIs treatment in patients with RCC.

We conducted a PubMed search to identify articles that are suitable for inclusion in
this narrative review. We did not perform a systematic review. Terms that were searched
for included: “cardiotoxicity”, “vascular endothelial growth factor receptor tyrosine kinase
inhibitors”, “VEGFR-TKIs”, “renal cell carcinoma”, “RCC”, “prognosis”, “metastasis”.

2. Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors
(VEGFR-TKIs)

Five tyrosine kinase inhibitors (TKIs) of the vascular endothelial growth factor receptor
(VEGFR) pathway (VEGFR-TKI) have been approved by the Food and Drug Administration
(FDA) in the treatment of metastatic RCC [17]. Pazopanib has been approved as the first-
line treatment in patients with RCC3 [17]. These small-molecule tyrosine kinase inhibitors,
including sorafenib, axitinib, sunitinib, cabozantinib and pazopanib, target vascular en-
dothelial growth factor receptors (VEGFRs) [18]. VEGFR-TKIs act at the intracellular sites
of the VEGF receptor, which affects the survival of microvascular endothelial cells [19].
Moreover, the less the VEGFR-TKI is specific, the more the effects are pronounced [20].
Inhibitors of VEGF signalling have been used with success in the treatment of various
cancers since they prevent tumour angiogenesis, thus limiting its growth [17]. Inhibitors of
VEGFR also enhance T lymphocyte trafficking into tumours, improving in consequence
malignant cells’ responsiveness to immunotherapy [21,22]. The results of randomized
phase III trials demonstrated their clinical benefits in the treatment of metastatic renal cell
carcinoma [23]. The introduction of small-molecule targeted VEGFR-TKIs has increased
median progression-free survival and overall survival in advanced/mRCC compared to
previous treatment modes by 6 and 14 months, respectively [24,25]. Clinical data indicate
that the use of TKIs is frequently associated with systemic adverse effects in patients.
Nausea, diarrhoea, fatigue, rhabdomyolysis, hypertension, neutropenia, renal failure, QT
prolongation and heart failure are among the frequent adverse effects [26]. Common
adverse events related to therapy with sorafenib and sunitinib include hand-foot skin
reaction, reversible skin rashes, haemorrhage, diarrhoea, leukopenia, increased pancreatic
enzymes levels, hypophosphatemia and proteinuria [27,28]. Growing evidence suggests
that despite being beneficial in terms of cancer, such treatment exerts cardiotoxic effects of
VEGFRs-TKIs, including asymptomatic left ventricular (LV) dysfunction, hypertension and
even congestive heart failure (CHF) [29,30].

Sunitinib, sorafenib, pazopanib and cabozantinib are used in the treatment of RCC.
Sunitinib (known also as SU11248 or Sutent), an orally active multi-targeted receptor
tyrosine kinase inhibitor, was approved by the FDA in 2006 for the treatment of, i.a., ad-
vanced renal-cell carcinoma (RCC), pancreatic cancer (PC), chronic myeloid leukaemia and
imatinib-resistant gastrointestinal stromal tumour (GIST) [31,32]. This first-line therapy for
metastatic RCC blocks VEGFR 1,2,3, platelet-derived growth factor (PDGF), colony stimu-
lating factor-1, Fms-related receptor tyrosine kinase 3 (FLT-3) as well as tyrosine-protein
kinase KIT (c-kit) [33,34]. Sunitinib’s actions involve the inhibition of angiogenesis and the
limitation of blood supply to the tumour cells. The impact on blood supply, impairment
of signal transduction, cellular metabolism and transcription is associated with elevated
cardiovascular risk in cancer patients treated with such drugs [35]. Due to its relatively
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nonselective binding to the intracellular catalytic site of receptors, sunitinib inhibits a
wide range of tyrosine kinases [36]. Its low specificity raised hope that it would inhibit
angiogenesis and tumour growth but at the same time, it would be less vulnerable to drug
resistance [37]. However, the inhibition of various growth factor pathways, particularly
those involved in cardiac functioning, may be associated with cardiotoxicity. Sorafenib
is a multikinase inhibitor affecting transmembrane VEGFR-2, VEGFR-3, FLT-3, PDGFR-B
and KIT receptors, as well as intracellular serine/threonine-protein kinase B-raf (BRAF)
and RAF proto-oncogene serine/threonine-protein kinase (CRAF) receptors, which is used
in the treatment of patients with RCC [38]. The aforementioned kinases are involved in
intracellular signalling pathways and angiogenesis; thus, their inhibition translates into
hampered tumour growth [39]. A randomized, double-blind, placebo-controlled phase
III trial (TARGET) enrolling over 900 patients previously resistant to therapy showed a
significant benefit of sorafenib (vs. placebo) in terms of progression-free survival (PFS) and
a 28% decrease in the risk of death in patients receiving sorafenib [40,41]. The National
Comprehensive Cancer Network (NCCN) Task Force report [27] suggests that sorafenib
may also be appropriate for certain naïve patients with clear cell mRCC. Pazopanib therapy
is associated with the inhibition of VEGFR 1–3 and subsequent hampering of angiogenesis
and RCC regression [42]. This drug also hinders the actions of stem cell factor KIT recep-
tors and platelet-derived growth factor receptors. Finally, cabozantinib is an oral TKI of
MET, VEGFRs and Anexelekto (AXL). This therapy was used in the phase III METEOR
trial in pre-treated patients with advanced RCC. It was found to increase progression-free
survival (PFS) and objective response rate improvements [43,44]. Currently, cabozantinib
has received the approval of the FDA for RCC [45].

3. Cardiotoxicity and Involved Mechanisms

Therapy with VEGFR inhibitors has been demonstrated to improve overall survival
and progression-free survival (PFS) in patients with metastatic renal cell cancer. How-
ever, tyrosine kinase inhibitors (VEGFR-TKIs) can induce adverse cardiovascular (CV)
toxicities [25,40,46]. Many pathways inhibited by tyrosine kinase inhibitors play crucial
roles in the preservation of cardiovascular development, CV function and response to CV
stress [47–49]. Such therapies interfere with key cardiovascular signalling pathways; thus,
they may induce considerable cardiovascular toxicities [50].

The term cardiotoxicity refers to cardiovascular complications of therapies which result
in higher morbidity and mortality [51]. The occurrence of this phenomenon differs between
oncological therapies, some of which are associated with early clinical manifestation of
cardiotoxicity, while in the case of others the adverse effects appear years after the initiation
of treatment. Since patients with cancers are administered many drugs, the prediction
of cardiotoxicity seems challenging. According to estimations, the incidence of VEGFR-
TKI cardiotoxicity is in the range of 3–30% and depends on the drug, study population
and diagnostic criteria [48,51–53]. Cancer survivors suffer from late CV risk due to prior
cardiotoxic exposure and the appearance of new cardiovascular risk factors with advancing
age. Cardiovascular mortality rates in paediatric cancer survivors have been found to
be up to ten times higher compared to age-matched controls [54]. Late CV risk is also
considerably higher among long-term adult cancer survivors and the risk is particularly
pronounced in adult-onset cancer survivors with underlying CV risk factors [55]. Therefore,
it is important to recognise potential long-term CV toxicity in cancer survivors in order
to implement aggressive correction of CV risk factors in this population and treatment of
incident CV dysfunction [56].

3.1. Possible Mechanisms

Since VEGF inhibitors affect multiple signalling pathways, the identification of the
underlying mechanism that causes cardiotoxicity can be challenging [51]. Cardiotoxic-
ity may be ascribed to the inhibition of tyrosine kinases that are normally expressed in
non-neoplastic tissues, including blood vessels and the myocardium; however, the ex-
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act mechanism remains not fully understood. VEGF signalling is of importance for the
maintenance of cardiomyocyte homeostasis and cardiac function; therefore its inhibition,
especially accompanied by the blockade of PDGFR, RSK and AMPK kinases participating
in cardiomyocytes energy metabolism and survival, can be responsible for the observed
adverse effects [46].

The results of studies have demonstrated that disturbances related to these growth
factors may be associated with endothelial dysfunction, impaired revascularization, the
development of dilated cardiomyopathy, cardiac hypertrophies and altered peripheral
vascular load [57–61]. The family of VEGFR (VEGFR-1, -2 and -3) is involved in numerous
vascular functions important for the preservation of proper functioning of the cardiovascu-
lar system [36,62,63]. Since VEGF promotes endothelial cell proliferation and survival, thus
contributing to vascular integrity, the inhibition of VEGF signalling is associated with a
diminished regenerative capacity of endothelial cells, enhanced proliferation of vascular
smooth muscle cells, increased haematocrit and blood viscosity promoting pro-coagulant
changes and favouring thrombosis [27,64]. The loss of VEGF signalling has been suggested
to cause oxidative stress, vascular rarefaction, the inhibition of nitric oxide pathway and
glomerular injury and result in the development of hypertension [65]. Moreover, VEGF
inhibition can induce renal thrombotic microangiopathy [66]. Available data indicate that
the sequestration of VEGF results in impaired adaptive cardiac hypertrophy in response to
pressure overload [59].

The evidence concerning the cardiovascular toxicity of sunitinib appears to be most
convincing [29,67,68]. The majority of data concerning the mechanisms of sunitinib-induced
cardiotoxicity come from animal studies. Sunitinib-related cardiac side effects are associ-
ated with coronary microvascular dysfunction, the triggering of the endothelin-1 system,
the inhibition of adenosine 5‘-monophosphate-activated protein kinase (AMPK) resulting
in the impairment of normal mitochondrial function and consequent cellular energy home-
ostasis compromise within the heart, as well as hindering of mast/stem cell growth factor
receptor [36]. Indeed, the study of sunitinib’s influence on cardiac mitochondrial function
in the culture of cardiomyocytes revealed considerable abnormalities in mitochondrial
structure [29]. This finding was confirmed in another study in which the incubation of
rat neonatal cardiomyocytes with a high dose of sunitinib triggered the activation of a
caspase-9-related mitochondrial apoptotic pathway as well as the loss of mitochondrial
membrane potential and energy rundown as a result of the inhibition of AMP-activated
protein kinase [69]. The impairment of mitochondria was presented also in other animal
studies. The administration of 40 mg/kg per day of sunitinib for 12 days to mice was asso-
ciated with the appearance of aberrantly shaped and swollen mitochondria with disrupted
cristae [29]. However, cardiomyocyte apoptosis was not triggered until severe hypertension
was induced with the use of phenylephrine in the studied animals. The occurrence of
cardiac apoptosis was seven times higher in mice treated with sunitinib (10 mg/kg per day)
+ phenylephrine in comparison to animals fed only with phenylephrine. Thus, it seems that
sunitinib-related mitochondrial dysfunction and apoptosis are facilitated by the presence
of additional cardiac stress [36]. Since AMPK is involved in the maintenance of cardiac
energy homeostasis in a state of enhanced cardiac stress, the impairment of this pathway
by sunitinib may result in cardiac dysfunction. AMPK may participate in the hindering of
anabolic pathways and inducing energy generation under energy stress via the regulation
of acetyl-CoA-carboxylase (ACC) activity and subsequent uptake and metabolism of prime
cardiomyocytes energy source-free fatty acids. The role of altered AMPK signalling in heart
failure was demonstrated for the first time in patients with the familial form of hypertrophic
cardiomyopathy, a rare disease associated with missense SNP within γ2 regulatory subunit
of AMPK (PRKAG2) [70]. The mechanism of AMPK-inhibition-related sunitinib-induced
cardiotoxicity under stress conditions is slowly emerging, but the picture is still not com-
plete. It appears that AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside;
acadesine) may be involved in this process. According to studies, AICAR, which activates
AMPK, may diminish myocardial ischemic injury via the limitation of oxidative stress,
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leukocyte plugging and platelet aggregation [71]. However, the blockage of AMPK was
found to reverse the beneficial effects of acadesine on the apoptosis of rat cardiomyocytes
exposed to hypoxic stress [72]. Also, the role of AMPK signalling in the settings of pressure
overload was assessed. A study of AMPKα2 knockout mice (lacking the catalytic unit of
AMPK expressed predominantly in the heart) which underwent transverse aortic constric-
tion (TAC) showed a more pronounced loss of LV function, accelerated LV hypertrophy
and considerably increased mortality in comparison to wild-type animals after 3 weeks of
TAC. In an animal model, the administration of sunitinib reduced the phosphorylation of
acetyl-CoA-carboxylase (ACC) in heart tissue which translated into the loss of the activity
of AMPK [69]. In turn, the delivery of constitutively active AMPK into cardiomyocytes
was associated with their partial resistance to sunitinib-triggered apoptosis. These findings
may suggest that the impairment of AMPK signalling may be associated with disturbed
adaptation to systolic pressure overload and consequent severe cardiac dysfunction. This
mechanism may be potentially responsible for cardiotoxicity observed in hypertensive
patients treated with sunitinib. However, in vitro study of sunitinib’s effect on isolated rat
heart mitochondria and intact rat myoblast cells failed to demonstrate the direct adverse
impact of treatment on mitochondrial function [73]. According to the authors, sunitinib-
induced mitochondrial abnormalities are due to the inhibition of RSK, which can stimulate
proapoptotic factor Bad, leading to the release of cytochrome and apoptosis. Another study
confirmed that sunitinib acts as a strong inhibitor of RSK [74].

Also, the impact of sunitinib on platelet-derived growth factor receptor (PDGFR)
and AMP-activated protein kinase (AMPK) may affect cardiomyocyte function and sur-
vival [46,75]. Some authors have hypothesized that apart from the greater release of
endothelin-1, lower production of nitric oxide in the arteriole wall as well as microvascular
rarefaction (involving the apoptosis of endothelial cells and the remodelling of capillary
beds) could also be responsible for VEGF-inhibitor-related hypertension [76–78]. The ob-
served rise in resistive load may support the role of the reduced number of microvessels in
the development of sunitinib-related hypertension [50]. The results of other studies also
demonstrated that TKI-induced hypertension may be associated with greater systemic
afterload following VEGF inhibition as well as the destruction of endothelial cells, VEGF-
receptor-inhibition-related disturbances in vasoconstrictor–vasodilator balance, lower sur-
vival of mesangial cells and impaired glomerular function and filtration [79–82]. Moreover,
Catino et al. [50] suggested that the worsening of arterial stiffness may also contribute to
the pathophysiology of hypertension induced by sunitinib. The authors suggested that
the combination of calcium channel blockers with inorganic nitrates may prove useful in
the management of hypertension in sunitinib-treated patients due to their vasodilating
properties and ability to ameliorate conduit artery function, which appears to be impaired
in this group of patients [50]. The aforementioned increased arterial stiffness is also an
important risk factor for coronary and cerebrovascular disease [29,50].

The cardiotoxicity of sorafenib has been suggested to be related to the imbalance of
pro-survival factor RAF1 (probably also involved in cardiac functioning) and pro-apoptotic
factors MST2 (serine/threonine kinase 3) and ASK1 (apoptosis signal-regulating kinase
1) [46]. RAF1 was suggested to inhibit apoptosis-signal-regulating kinase 1 (ASK1) and
mammalian sterile 20 kinase 2 (MST2), which exert apoptotic, ERK-independent effects
and participate in oxidant-stress-induced injury [46]. Sorafenib-induced impairment of
RAF1–ASK1 and/or RAF1–MST2 interactions may cause higher cardiotoxicity compared
to solely ERK cascade hindering [46]. A study in an animal model demonstrated that a
cardiac-muscle-specific Raf-1-knockout (Raf CKO) mirroring Raf-1 inhibition caused LV
systolic dysfunction and heart dilatation induced by considerable elevation of apoptotic
cardiomyocyte amounts and the promotion of fibrosis [83]. TKI drugs may also impair
angiogenesis by affecting the Src family and downstream RAF1 [84]. According to studies,
TKI could target the c-kit, thus negatively affecting the expression of AT2 (angiotensin
II receptor type 2) involved in the repair of ischemic injury [85]. However, a vast range
of cardiotoxic phenotypes and degrees of toxicity cannot be ascribed only to the above-
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mentioned mechanisms. According to another theory, this class of drugs may exert a
cardiotoxic effect via acting “off-target” [20]. It has also been suggested that TKI may
trigger mitochondrial toxicity, thus damaging metabolically active cardiomyocytes of the
heart [46]. Will et al. [73] provided evidence that sorafenib may act as an inhibitor of
Complex V and mitochondrial uncoupler. The results of an animal (rat) study revealed that
sorafenib disturbed mitochondrial cristae [86]. In turn, studies of cell cultures indicated
that treatment of cancerous cell lines with sorafenib increased the levels of the autophagy
markers Beclin1 and LC3 (microtubule-associated protein 1 light chain 3) [87]. In general,
autophagy is considered a protective mechanism; low levels of autophagy in hearts appear
to maintain the homeostasis and turnover of organelles; however, its enhanced activation
may result in cellular death [88–90]. Also, apoptosis has been suggested to contribute to
cardiomyocyte loss and subsequent heart failure or hypertensive cardiomyopathy [91,92].
The activation of the pro-apoptotic protein BAD is associated with the downregulation of
the anti-apoptotic protein Bcl-2’s expression and the subsequent triggering of the initiator
and effector caspases, caspase-9 and -3, and the promotion of death of cardiomyocytes [93].
Moreover, according to some authors, the cardiotoxic effects of sorafenib are associated
with an increase in metabolites such as urea and fatty acid levels in plasma [94].

Another theory concerning cardiotoxicity related to VEGF inhibitors states that perfusion–
contraction match may play a role in this phenomenon [95,96]. According to this thesis, these
drugs may contribute to the decrease in myocardial perfusion that is associated with the
additive effects of diffuse, non-significant reductions in the coronary arteries’ luminal
diameter [97]. Evolving aberrations of the coronary microcirculation may result in the
impairment of myocardial perfusion. Since patients with cardiovascular diseases display
a lower tolerability margin in this area, cardiotoxicity in this group is more common [98].
Chintalgattu et al. [99] confirmed that sunitinib can diminish coronary flow reserve, impair
the integrity of the coronary microcirculation and worsen cardiac function. They suggested
that the inhibition of the PDGF signalling pathway could be responsible for these effects via
a reduction in the pericyte population, resulting in the destabilization of endothelial cells,
coronary microcirculation and eventually cardiac function. In the opinion of the authors,
systemic hypertension combined with impaired PDGFR signalling could be responsible
for the development of heart failure in patients treated with sunitinib [100]. PDGF is a
vital growth factor for various cell types, such as cardiomyocytes, smooth muscle cells,
endothelial cells and stromal cells, that promote angiogenesis and the maintenance of
endothelial function [46,101]. It was also demonstrated to mediate the signalling between
heart myocytes and adjacent endothelial cells [102]. Both receptor subtypes of PDGF are
inhibited by sunitinib. The inhibition of PDGFR receptor-ß tyrosine kinase by sunitinib is
associated with decreased myocardial pericytes, myocardial microvascular density and
worsened cardiac function [99]. The inhibition of PDGFR signalling has been found to
adversely affect cardiac function, particularly in the stressed heart [36]. The aforementioned
pericyte–endothelial–myocardial coupling appears to partly explain the role of VEGF
signalling inhibition in cardiotoxicity [103]. Suggested mechanisms of cardiotoxicity of
VEGF signalling inhibition are presented in Figure 1.
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Figure 1. The results of VEGFR, AMPK and PDGFR inhibition leading to cardiotoxicity of VEGF
signalling inhibition.

3.2. The Results of the Studies

Clinical data show that VEGF inhibitors, especially TKI, can trigger either reversible
or irreversible cardiac side effects [51]. According to estimations, heart dysfunction is
observed in 3–15% of patients treated with sunitinib, pazopanib and axitinib, while symp-
tomatic heart failure occurs in 1–10% of these patients [104–106]. However, clinical data
from large clinical trials are not available for sorafenib and vandetanib, both of which can
also promote cardiac dysfunction. VEGF-inhibitor therapy-related hypertension develops
in approximately 19 to 47% of patients [76]. Meta-analyses of randomized clinical trials of
sorafenib, pazopanib and sunitinib demonstrated that such treatment is associated with
a higher risk of decline in left ventricular ejection fraction (LVEF), hypertension and ar-
terial thrombotic events [66,107–111]. In turn, a recent meta-analysis assessing treatment
with sunitinib, axitinib, ponatinib, vandetanib, cabozantinib, sorafenib, pazopanib and
regorafenib demonstrated a 2.69-fold rise in the risk of congestive HF (all grades) [52,53].
Therapy with either sorafenib or sunitinib was found to be associated with hypertension, LV
systolic and diastolic dysfunction, heart failure (HF) and myocardial ischemia [33,47,48,67].
Sorafenib therapy appeared to affect resistive and pulsatile load [112]. Other clinical events
associated with cardiotoxicity include congestive heart failure (CHF) and arterial throm-
boembolic events (ATE) [27,113,114]. Moreover, adjuvant sunitinib and sorafenib could
trigger arrhythmia and cardiac ischemia [33]. Abdel-Qadir et al. [115] demonstrated a
higher risk of arterial thromboembolism (odds ratio [OR] = 1.52, 95% confidence interval
(CI) 1.17–1.98) in patients treated with VEGF inhibitors. The results of another meta-
analysis revealed a considerably greater risk of all-grade bleeding, all-grade and high-grade
hypertension as well as all-grade cardiac dysfunction in patients with tumours receiving
VEGFR-TKIs [116]. Also, other studies indicated a significantly greater risk of high-grade
(RR 4.60, 95% CI 3.92–5.40) and all-grade (RR 3.85, 95% CI 3.37–4.40) hypertension [108].
VEGFR-TKI therapy was also suggested to trigger QTc interval prolongation [117]. The
most pronounced effect was reported in the case of sunitinib and vandetanib. Bayesian
network meta-analysis of nine FDA-approved VEGFR-TKIs demonstrated their impact on
the occurrence of all grades and grade 3 or higher cardiovascular events, hypertension and
cardiac damage [11]. Totzeck et al. [118] found a higher relative risk of cardiac ischemia (RR
1.69, 95% CI 1.12–2.57), LV systolic dysfunction (RR 2.53, 95% CI 1.79–3.57) QT corrected
interval prolongation (RR 6.25, 95% CI 3.44–11.38) and arterial hypertension (RR 3.78, 95%
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CI 3.15–4.54), especially in sunitinib-treated patients. However, a re-analysis of the afore-
mentioned meta-analysis including 71 trials and eight different VEGFR-TKIs suggested
that the previously observed effect was exaggerated since, according to the authors, such
treatment was associated with a slight elevation in the risk of bleeding, hypertension,
thrombocytopenia and arterial thrombotic damage [119].

The results of a recent meta-analysis indicated that the incidence of sunitinib-induced
HF might amount to 4.1%, while the prevalence of asymptomatic LVEF deterioration could
be even higher in patients with metastatic disease [113,120]. The worsening of LV ejection
fraction appears usually in the first cycle of treatment with sunitinib [50]. A multi-centre,
longitudinal prospective cohort study confirmed early worsening of vascular function
following sunitinib exposure [50]. Such treatment was associated with higher markers of
resistive load, total peripheral resistance and arterial elastance. Catino et al. [50] reported
the worsening of diastolic dysfunction (E/e’) and LV filling pressures (BNP) in sunitinib-
treated patients. Sunitinib’s impact on cardiac function was reported in a phase III trial,
in which either sunitinib or interferon alfa was used in the treatment of patients with
advanced RCC [25]. In that trial, the sunitinib-related decline in left ventricular ejection
fraction (LVEF) was observed in 10% of patients, including 2% of subjects who developed
a grade 3 decline in LVEF. The discontinuation of treatment or dose reduction appeared
to reverse this condition. A retrospective study enrolling patients with RCC or imatinib-
resistant gastrointestinal stromal tumours (GISTs) demonstrated symptomatic grade 3 or 4
LV dysfunction in 15% of sunitinib-treated patients [48]. The results of other studies have
suggested a higher, up to 27%, incidence of cardiac problems [121]. Based on the results
of a prospective study, Narayan et al. [68] suggested that the declines in LVEF occurring
in approximately 9.7% of patients, even the substantial ones observed in 1.9% of patients,
returned to near baseline values despite the continuation of sunitinib therapy in a reduced
dose when careful cardiovascular management was provided. Moreover, according to the
authors, routine cardiac monitoring in asymptomatic individuals after the third cycle of
therapy will not bring great clinical benefit since at that time cardiac dysfunction rates
are low.

A meta-analysis of 16 clinical trials including 6935 patients provided evidence for a
higher risk of congestive heart disease in patients treated with sunitinib (risk ratio 1.81; 95%
CI 1.30–2.50; p < 0.001). The 1.5% incidence of high-grade CHF in this analysis translated
into a three-times-increased risk of developing serious cardiovascular events (risk ratio
3.30; 95% CI 1.29–8.45; p < 0.01). Chu et al. [29] indicated that patients treated with sunitinib
experience continuous, gradual worsening of cardiac function. This effect is also observed
in many patients with stabilized hypertension dynamics (BP < 140/90 mmHg) treated
with beta-blocker and angiotensin-converting enzyme inhibitors. The authors suggested
that perhaps more aggressive BP control may prove beneficial. Increased resting systemic
blood pressure and higher systemic and coronary vascular resistance were also reported
in animals treated with sunitinib [122]. Chronically elevated afterload led to hypertrophic
heart remodelling. One animal study indicated that the process of cardiomyocyte apoptosis
occurred as a result of the combined effect of sunitinib treatment and the increase in
blood pressure [29]. The results of retrospective studies have found that the incidence of
sunitinib-induced cardiotoxicity in mRCC patients ranges from 3% to 30% [47,48,52,123].
Such discrepancies in results could stem from the fact that cardiac monitoring protocols are
not standardized and different definitions of cardiotoxicity were used in studies [68].

According to one of the studies, sorafenib also markedly decreased left ventricular
(LV) pressure, indexes of myocardial contractility and relaxation as well as prolonged
systolic and diastolic periods [94]. Such therapy was also found to trigger vasospasm [124].
Sorafenib-related elevation in mid to late systolic load of the LV can potentially lead to
myocardial hypertrophy, fibrosis and heart failure [125–128]. In turn, one of the most
common side effects of cabozantinib is the development of hypertension with an incidence
of 37% in the METEOR trial (15% of grade 3–4) and 81% in the CABOSUN study (28% of
grade 3–4) [43,44,129,130]. Such a high frequency of hypertension related to cabozantinib



Biomedicines 2023, 11, 181 10 of 20

treatment was confirmed in a meta-analysis. Compared to other VEGFR-TKIs, the occur-
rence of such adverse effects was considerably higher in the case of cabozantinib [129].
A prospective study focusing on the chances of LV systolic dysfunction in cabozantinib-
treatment patients revealed an extremely modest risk of developing this disorder [18].
A decline in LVEF by more than 10% was observed in 11.1% of cases after 3 months of
therapy; however, it did not translate into LV systolic dysfunction or the appearance of
clinical symptoms. This mode of cancer management was not associated with an elevation
in cardiac biomarkers, such as proBNP or hsTnI. Iacovelli et al. [18] reported that cabozan-
tinib did not significantly increase the risk of cardiac dysfunction even in patients with
cardiovascular comorbidities.

Also, the use of pazopanib has been reported to be associated with cardiotoxicity in
the form of hypertension (HTN), thrombotic events, heart failure (HF) with a reduced left
ventricular ejection fraction (LVEF) and myocardial ischemia in many patients [52,131,132].
The incidence of hypertension reaches up to 40% and an elevation of N-terminal B-type
natriuretic peptide (NT-pro-BNP) levels is observed in up to 26% of patients while HF is
reported in 2.4% [52,53]. Another meta-analysis revealed a slightly higher incidence of all-
grade HF (3.2%) related to therapy with VEGFR-TKIs [106]. The cardiotoxicity of pazopanib
was confirmed in animal studies. One of them demonstrated that the administration of
pazopanib considerably increased blood pressure (BP) and diminished CO. The latter
finding may suggest early cardiomyocyte stress and probable remodelling in the presence
of higher mean arterial pressure [17]. However, another study demonstrated that pazopanib
did not negatively affect mouse growth or survival [133].

In contrast to the aforementioned studies, the results of other research have demon-
strated a very low risk of cardiac ischemia/infarction related to treatment with angiogenesis
inhibitors or TKIs [38,67,114,134]. It reached 2.9% in patients on sorafenib therapy, 1.5%
in those on bevacizumab therapy and <1.0% in patients treated with sunitinib. A meta-
analysis of the impact of pazopanib, sunitinib, sorafenib and vandetanib on the occurrence
of venous thromboembolic events failed to demonstrate a significant relationship [109].
Also, a meta-analysis concerning the risk of arterial thromboembolic events (ATE) and
VTEs associated with various VEGFR-TKIs demonstrated a lack of marked increase in the
risk of developing all-grade and high-grade VTEs [135]. It seems that a higher occurrence of
cardiotoxicity may be associated with a relatively high presence of pre-existing CV disease
and/or cardiovascular risk factors in RCC patients [136]. Numerous studies have indicated
that hypertension and cardiovascular disease at baseline are crucial predictors of major ad-
verse cardiac events (congestive heart failure, cardiovascular death, myocardial infarction)
after the VEGF-TKI sunitinib therapy [29,98,123]. Also, the prevalence of sorafenib-related
LVEF dysfunction and/or CHF is higher in patients with a history of hypertension or
coronary artery disease [137–139]. More than 70% of hypertensive patients (grade 3 HTN)
developed LV systolic dysfunction following the initiation of sunitinib treatment. Khakoo
et al. [47] hypothesized that acute rises in blood pressure together with the adverse impact
of sunitinib on cardiomyocytes may result in the impairment of cardiac response to BP
elevation and subsequent heart failure. The randomized, double-blinded phase III ECOG
2805 trial of adjuvant sunitinib, sorafenib or placebo demonstrated a low incidence of
treatment-related significant LVEF decline in formerly untreated patients with completely
resected RCC at high risk for recurrence and without baseline cardiovascular comorbidities.
The authors suggested that the prevalence of cardiac dysfunction could be higher in the
population of symptomatic patients. Therefore, it appears there is a need for close CV
monitoring combined with immediate hypertension therapy in RCC patients treated with
sunitinib or sorafenib [33]. The control of hypertension can potentially decrease the risk
of heart failure. In turn, appropriate HF management can ameliorate already-developed
cardiac dysfunction [140].

The occurrence of cardiotoxicity could be underestimated in some studies since many
clinical trials exclude patients with cardiovascular diseases [141]. A real-life setting study
of major adverse cardiovascular events (MACE) incidence in patients treated with TKI



Biomedicines 2023, 11, 181 11 of 20

revealed that arterial thrombotic events occurred in 3.99% of study participants, rhythm
disorders (atrial fibrillation, atrioventricular block) in 2.66%, and pulmonary embolism
and heart failure in 1.57% at 1 year of follow-up [141]. According to the authors, a high
incidence of atrial fibrillation in the early period of therapy was associated with an anti-
VEGFR treatment-related increase in blood pressure and diastolic dysfunction of the left
ventricle. After the initial period, AF could be associated with early remodelling of the
atrial ventricles.

According to the recommendations of the European Society for Medical Oncology
echocardiography at baseline and every 3 months for the first 6 months and optionally the
evaluation of global longitudinal strain should be performed during the first months of
TKI therapy in order to carefully monitor arrhythmias, the development of heart failure
and pulmonary embolism [141,142]. Considering the increasing prevalence of thrombotic
events, high-risk patients should obtain adequate therapy to prevent thrombotic adverse
effects [141]. Patients at high cardiovascular risk at baseline could benefit from clinical
follow-up in the first 2–4 weeks after the introduction of targeted molecular therapy with,
e.g., sorafenib, sunitinib or pazopanib [51]. Patients should undergo periodic reassessment
of cardiac function to detect early symptoms of developing cardiac complications. There is
no consensus concerning the surveillance strategy. It seems rational to perform periodic
echocardiography until the stabilization of LVEF values. Moreover, the determination
of values of cardiac biomarkers, such as troponin or N-terminal pro-B-type natriuretic
peptide (NT-proBNP), is recommended to increase the number of diagnosed complications.
The timing of the aforementioned assessments should be adjusted to the needs of a given
patient, his baseline cardiovascular risk and antitumour regimen [143]. The lack of optimal
surveillance negatively affects clinical outcomes. However, the optimal timing of biomarker
testing has still not been established. One systematic review suggested that the use of ACE
inhibitors, angiotensin II receptor blockers (ARBs) and beta-blockers appears beneficial
in patients who have developed develop asymptomatic LV dysfunction or HF during the
treatment of cancers [144]. The results of studies presenting benefits and cardiotoxicity risk
related to VEGF-TKI are presented in Table 2.

The potential risk of cardiotoxicity of TKI has resulted in the addition of special
warnings on product labelling [93]. However, sunitinib remains the gold standard in the
treatment of some tumours despite the current focus on its cardiotoxicity. Many studies
have demonstrated its effectiveness and safety and it seems that a better understanding of
the underlying mechanisms would enable the reduction of this risk [32,151]. The inclusion
of studies in this narrative review lacked a systematic approach which could affect our
conclusions concerning this field.



Biomedicines 2023, 11, 181 12 of 20

Table 2. The results of studies presenting benefits and cardiotoxicity risk related to VEGF TKIs.

Name of Drug/Mechanism of Action Anti-Tumour Effects Possible Cardiotoxicity

Sorafenib
Inhibitor of VEGFR-2, -3, FLT-3, PDGFR-B

and KIT, BRAF and CRAF receptors

• Hampers tumour growth [38].
• 28% reduction in the risk of death among patients receiving a dose of 400 mg twice daily

compared with placebo.
• Median progression-free survival of 5.5 mo compared to 2.8 mo in the placebo group (HR

0.44; 95% CI 0.35 to 0.55; p < 0.01).
• PFS shorter in second- vs. first-line treatment [145].
• In phase 1 clinical studies: sorafenib used in advanced, refractory solid tumours

demonstrated disease stabilization with acceptable toxicity [146].
• A phase 2 randomized discontinuation trial of metastatic RCC: tumour shrinkage, 50% of

patients were progression free vs. 18% on placebo, significantly increased PFS (24 weeks vs.
6 weeks on placebo; p = 0.0087) [147].

• Phase 3 TARGET trial (ccRCC): interim analysis: median PFS: 5.5 vs. 2.8 mo on placebo,
p < 0.001) [40]. No statistically significant difference in OS between study arms.

• Survival advantage over placebo when patients crossing over were censored (17.8 vs.
14.3 months, respectively; p = 0.029) [41].

• Hypertension occurred in 12% of patients receiving 400 mg twice daily [105].
• Significantly increased risk of all-grade hypertension with RR of 6.11 (2.44–15.32], p < 0.001)

compared with controls [66].
• In meta-analysis, RR of ATEs associated with sorafenib and sunitinib was 3.03 (95% CI, 1.25

to 7.37; p = 0.015) compared with control patients [107].
• Increased risk of all-grade hypertension (RR 1.99; 95% CI 1.73–2.29) and high-grade

hypertension (RR 0.98; 95% CI 0.75–1.30 [111].
• LVEF decline >15% from baseline and below the institutional lower limit of normal

reported in 1.4% of patients [33].
• Increase by ≥10 mmHg in SBP in 75% of patients and by ≥20 mmHg in 60% of patients

from baseline value; mean change of 20.6 mmHg (p < 0.0001) after 3 weeks of therapy [112].
• Cardiac ischemia or infarction occurred in 3% of patients receiving a dose of 400 mg twice

daily in 6-week cycles for the first 24 weeks and in 8-week cycles thereafter [40].

Sunitinib
Blocks VEGFR 1, 2, 3, PDGF, CSF-1, FLT-3,

c-KIT

• Inhibition of angiogenesis [37].
• Limitation of blood supply to the tumour cells [37].
• Longer overall survival compared with IFN-α.
• Increases progression-free survival in the first-line treatment of patients with metastatic

RCC vs. INF-α (randomized, phase III trial) [24].
• Increases progression-free survival (11 mo vs. 5 mo INFα).
• Improves objective response rate (31% vs. 6% INFα, p < 0.001).
• Improves quality of life compared to INFα (p < 0.001) [25].

• Cardiac dysfunction occurred in 11% of patients receiving once-daily dose of 50 mg for
4 weeks, followed by 2 weeks without treatment [104].

• Myocardial infarction or ischemia occurred in 4% of patients [104].
• In meta-analysis, RR of ATEs associated with sorafenib and sunitinib was 3.03 (95% CI, 1.25

to 7.37; p = 0.015) compared with control patients [107].
• Increased risk of all-grade hypertension (RR 2.20; 95% CI 1.92–2.52) and high-grade

hypertension (RR 0.81; 95% CI 0.62–1.06) [111].
• LVEF decline >15% from baseline and below the institutional lower limit of normal

reported in 1.8% of patients [33].
• 2.7% of patients receiving sunitinib malate developed HF which resulted in substantial

morbidity and mortality. Symptomatic HF occurred after a mean of 22 days from treatment
initiation. Decline in cardiac function and elevations in BP pressure were not completely
reversible [47].

• 15% of patients developed symptomatic grade 3/4 HF [48].
• Increased mean SBP by 9.5 mm Hg (95% Cl 2.0–17.1; p = 0.02) and DBP by 7.2 mm Hg (95%

CI 4.3–10.0; p < 0.001) in all participants. Increased large-artery stiffness and resistive load
(p < 0.05) and changes in pulsatile load [50].

Pazopanib
Targets VEGFR-1, -2, -3, PDGFR-α and

-β, c-KIT

• Inhibitor of angiogenesis and RCC regression [41].
• PFS of 10.6. Median OS of 14.5 mo [148].
• PARACHUTE, phase IV trial: 39% of patients remained progression free (at 12 months);

median PFS was 10 months (95% CI: 8.48–11.83) [149].
• 19% of patients were long-term responders. CR/PR in 24%, stable disease in 44% and PD in

31% patients [149].
• Phase III COMPARZ study: Median time to response—11.9 weeks, CR/PR ≥ 10 months in

14% of patients, PFS ≥ 10 months—31% [150].

Animal study

• 30 mg/kg of pazopanib twice daily—significant elevation in blood pressure after 2 weeks
which persists for the duration of dosing [17].

• Decrease in CO suggestive of early cardiomyocyte stress and possible remodelling [17].

Human trial

• Hypertension—one of most frequent AE
• Cardiac dysfunction present in 13% of patients treated with once-daily dose of 800 mg

(continuous dosing) [104].
• Myocardial infarction or ischemia occurred in 2% of patients [104].
• Increased risk of developing all-grade (RR 4.97, 95% CI 3.38–7.30, p < 0.001) and high-grade

hypertension (RR 2.87, 95% CI 1.16–7.12, p = 0.023) [111].
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Table 2. Cont.

Name of Drug/Mechanism of Action Anti-Tumour Effects Possible Cardiotoxicity

Cabozantinib
Inhibitor of c-MET, VEGFR2, Ret, KIT,

FLT-1/3/4, Tie2, AXL

• Increased PFS compared with sunitinib in CABOSUN trial (median of 8.6 vs. 5.3 mo; HR
0.48, 95% CI 0.31 to 0.74; two-sided p = 0.0008) [42].

• Higher median OS of 26.6 mo for cabozantinib vs. 21.2 mo for sunitinib (HR 0.79, 95% CI
0.53 to 1.2; two-sided p = 0.27) [42].

• Overall survival of 21.4 months (95% CI 18.7–not estimable) vs. 16.5 months (14.7–18.8)
with everolimus (HR 0·66 [95% CI 0.53–0.83]; p = 0.00026) [44].

• Improved PFS (HR 0.51 [95% CI 0.41–0.62]; p < 0.0001) and objective response (17% [13–22]
[44].

• Hypertension occurred in 28% of patients receiving dose of 60 mg once per day [42].
• Hypertension as the most common grade 3 or 4 adverse event in 15% of patients.
• Significantly increased risk of developing all-grade (RR 5.48; 95%CI, 3.76–7.99; p < 0.001)

and high-grade (5.09; 95% CI: 2.71–9.54, p < 0.001) hypertension in comparison with
controls [129].

• Substantially higher risk of high-grade hypertension compared with sorafenib, sunitinib,
vandetanib and pazopanib [129].

• Modest risk of developing left ventricular systolic dysfunction [18].

AE, adverse event; ATE, arterial thromboembolic events; AXL, Anexelekto; BRAF, serine/threonine-protein kinase B-raf; c-KIT, tyrosine-protein kinase KIT; c-MET, tyrosine-protein
kinase Met; CR, complete response; CRAF, RAF proto-oncogene serine/threonine-protein kinase; CSF-1; colony-stimulating factor 1; DBP, diastolic blood pressure; FLT-3, Fms-related
receptor tyrosine kinase 3; HF, heart failure; HR, hazard ratio; INFα, interferon α; LVEF, left ventricular ejection fraction; mo, months; OS, overall survival; PD, progressive disease;
PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; PFS, progression-free survival; PR, partial response; RR, risk ratio; SBP, systolic blood pressure;
Tie2, endothelial-enriched tunica interna endothelial cell kinase 2.
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