' [ ] [ ] [ ]
W' hiomedicines
[=]==]=]

Brief Report
Osteopontin Is Associated with Multiple Sclerosis Relapses
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Abstract: Background: Osteopontin, an extracellular matrix protein involved in bone remodeling,
tissue repair and inflammation, has previously been associated with increased inflammation and
neurodegeneration in multiple sclerosis (MS), promoting a worse disease course. Osteopontin is also
likely involved in acute MS relapses. Methods: In 47 patients with relapsing-remitting MS, we ex-
plored the correlation between the time elapsed between the last clinical relapse and lumbar puncture,
and the cerebrospinal fluid (CSF) levels of osteopontin and a group of inflammatory cytokines and

adipokines such as resistin, plasminogen activator inhibitor-1, osteoprotegerin, interleukin (IL)-1(3, IL-

S;eé:;‘tfgsr 2, IL-6 and IL-1 receptor antagonist (IL-1ra). We also analyzed the correlations between CSF levels of

o o osteopontin and the other CSF molecules considered. Results: Osteopontin CSF concentrations were
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In addition, CSF levels of osteopontin were positively correlated with the proinflammatory cytokines
IL-2 and IL-6 and negatively correlated with the anti-inflammatory molecule IL-1ra. Conclusions:
Our results further suggest the role of osteopontin in acute MS relapses showing that, in proximity
to relapses, osteopontin expression in CSF may be increased along with other proinflammatory
mediators and correlated with decreased concentrations of anti-inflammatory molecules.
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1. Introduction

Inflammatory mediators play important roles in the pathogenesis and progression of
multiple sclerosis (MS). Proinflammatory cytokines and chemokines are involved in MS
relapses promoting the entry and activation of immune cells within the central nervous
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system resulting in demyelinating lesions, axonal damage, and neuronal loss. Previous
Licensee MDPI, Basel, Switzerland.

studies suggest that a proinflammatory cerebrospinal fluid (CSF) milieu may be involved
in disease reactivations and MS progression. Accordingly, at the time of MS diagnosis
increased CSF levels of proinflammatory molecules, including interleukin (IL)-1p3, IL-2,
and IL-6, have been associated with higher prospective disease activity and a worse disease
course [1-3].
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Osteopontin is an extracellular matrix protein involved in bone remodeling, tissue
repair and inflammation [4]. Osteopontin is expressed by various cell types including
osteoblasts, fibroblasts, epithelial cells and immune cells such as T lymphocytes and
macrophages [5-7]. This molecule may play an important role in the pathogenesis of MS.
Higher levels of this molecule have been found in the CSF of patients with MS at the
time of diagnosis [8], and increased osteopontin CSF expression has been associated with
greater prospective neurodegeneration [9]. In particular, osteopontin may play a role in
MS relapses and may represent a useful biomarker predicting disease activity in patients
treated with DMTs [10,11].

To further elucidate the role of osteopontin in acute inflammatory MS activity, we
explored the correlation between the relapse distance, expressed by the time interval
elapsing between the last clinical relapse and the lumbar puncture (LP), and the CSF levels
of osteopontin and a group of inflammatory cytokines and adipokines such as resistin,
plasminogen activator inhibitor-1 (PAI-1), osteoprotegerin, IL-1§3, IL-2, IL-6, IL-1 receptor
antagonist (IL-1ra).

The results showed that, among the CSF molecules analyzed, osteopontin levels
correlated negatively with relapse distance. To clarify the role of this molecule in the
central inflammatory milieu, we also explored the correlation between the CSF levels of
osteopontin and the other cytokines analyzed.

2. Materials and Methods

A group of 47 patients admitted to the Neurology clinic of IRCCS Neuromed (Pozzilli,
Italy) and subsequently diagnosed as affected by relapsing-remitting (RR)-MS participated
in the study. Patients in whom the date of last relapse before LP could be clearly established
were included. Patients with other systemic inflammatory or neurologic diseases were
excluded. All patients were not treated with corticosteroids or disease-modifying therapies
before CSF sampling.

Clinical relapse was defined as the appearance of a new neurological symptom com-
patible with MS not associated with fever or infection, lasting at least 24 hours. Relapse
distance was defined as the time interval elapsing between the last clinical relapse and LP.
The clinical characteristics recorded at the time of diagnosis included: disease duration, the
number of clinical relapses before LP, and clinical disability evaluated using the Expanded
Disability Status Scale (EDSS) [12].

Radiological activity was defined as the presence of a gadolinium (Gd)-enhancing
(Gd+) lesion at brain and spine MRI scan performed at the time of LP. MRI scans (1.5- or
3.0-Tesla) were performed including dual-echo proton density sequences, fluid-attenuated
inversion recovery, T1-weighted spin-echo (SE), T2-weighted fast SE, and contrast-enhanced
T1-weighted SE after intravenous Gd infusion (0.2 mL/kg).

CSF was collected by LP, centrifuged and then immediately stored at —80 °C. The CSF
levels of osteopontin, resistin, PAI-1, osteoprotegerin, IL-1f3, IL-2, IL-6, and IL-1ra were analyzed
using the ProcartaPlexMix&Match Human 8-plex (Invitrogen by Thermo Fisher Scientific)
in accordance with manufacturer’s instructions and expressed as picograms per milliliter
(pg/mL). Fluorescence intensity was measured using Luminex® 200™ system (Luminex,
Austin, TX, USA), and data were analyzed with xPONENT Software Version 3.1 (Luminex).

Kolmogorov—-Smirnov test was applied to verify the normality distribution of continuous
variables. Continuous data were presented as median (interquartile range, IQR = 25th—75th
percentile). Categorical or dichotomous variables were presented in terms of frequency
(percentage, %). Spearman’s correlation was used to assess the correlation between CSF
molecules and relapse distance, and to assess possible correlations among CSF cytokines.
The p-values were corrected for multiple testing by using the Benjamini and Hochberg
method [13].

3. Results

The clinical characteristics of MS patients are shown in Table 1.
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Table 1. Clinical characteristics of RR-MS patients.

RR-MS Patients N 47

Age at LP, years Median (IQR) 32.9 (23.4-41.53)
Disease duration, months Median (IQR) 2.4 (1.17-26.13)
Sex, F N/tot (%) 30/47 (63.8)
EDSS at LP Median (IQR) 2 (1-3)
Radiological activity N/tot (%) 29/47 (61.7)
OCB, yes N/tot (%) 33/44 (75)
Number of relapses before LP * Median (IQR) [min—max] 1(1-2) [1-3]

Relapse distance, days

Median (IQR) [min—max]

35 (20-59) [6-85]

* including the last relapse. Abbreviations: EDSS, Expanded Disability Status Scale; LP, lumbar puncture; OCB,
oligoclonal bands; RR-MS, relapsing-remitting multiple sclerosis. Missing data: OCB in 3/47 patients (6.38%).

We explored the correlation between relapse distance and the CSF levels of osteopontin,
resistin, PAI-1, osteoprotegerin, IL-1f3, IL-2, IL-6, IL-1ra.

A significant negative correlation was found between relapse distance and the CSF
levels of osteopontin after correcting for multiple comparisons (Spearman’s rho= —0.392,
p = 0.006, B-H corrected p = 0.048, N = 47) (Figure 1A). No significant correlations were
observed between relapse distance and the other CSF molecules. In addition, no significant
correlations were found between relapse distance and the clinical characteristics reported
in Table 1.
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Figure 1. (A) Correlation between relapse distance and CSF molecules. Abbreviations: OPN, osteo-
pontin. (B) Correlation between osteopontin and CSF cytokines. Abbreviations: CSF, cerebrospinal
fluid; IL, interleukin; IL-1ra, IL-1 receptor antagonist; OPN, osteopontin.
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No significant associations were observed between the CSF levels of osteopontin and
clinical characteristics at the time of diagnosis (age, sex, OCB presence, disease duration,
radiological activity, and the number of previous relapses).

To further explore the role of osteopontin in MS relapses, we analyzed the correlations
between the CSF levels of osteopontin and the other CSF molecules considered. A sig-
nificant positive correlation was found between osteopontin and both IL-2 (Spearman’s
rho = 0.389, p = 0.007, N = 47, B-H corrected p = 0.024) and IL-6 (Spearman’s rho = 0.366,
p = 0.012, N = 47, B-H corrected p = 0.028). In addition, a significant negative correla-
tion was observed between osteopontin and IL-1ra CSF levels (Spearman’s rho= —0.447,
p =0.002, N = 47, B-H corrected p = 0.014) (Figure 1B).

4. Discussion

Different molecules first identified as metabolic mediators also regulate the immune
system activation and have been involved in MS pathogenesis and progression [14].
Adipocytokines are a heterogeneous group of mediators with pro- and anti-inflammatory
activities [15]. Some of these molecules such as osteopontin and leptin have been associ-
ated with a worse course of MS, promoting increased inflammation and neurodegenera-
tion [8,16], and may be specifically involved in acute inflammatory MS relapses [10,17,18].

Here, we found a significant association between the CSF levels of osteopontin and the
time interval since the last clinical relapse. Osteopontin CSF concentrations were negatively
correlated with relapse distance, being higher in patients with shorter time interval between
the last clinical relapse and LP. This finding may suggest a role of osteopontin in acute
inflammation in MS.

Previous studies showed that osteopontin is involved in the pathogenesis of different
inflammatory and neurodegenerative diseases, including MS [19,20]. Osteopontin is re-
leased by both resident and infiltrating immune cells, promotes the activation and survival
of autoreactive T lymphocytes and the production of inflammatory mediators [7,21]). Stud-
ies in animal models of MS (i.e., experimental autoimmune encephalomyelitis, EAE), evi-
denced that osteopontin administration induces disease reactivation [21] and osteopontin-
deficient mice showed a milder disease course with decreased inflammatory infiltration,
reduced expression of tumor necrosis factor and interferon gamma, and increased produc-
tion of the anti-inflammatory IL-10 [22,23]. In addition, in line with a possible causal role in
acute relapses, neutralizing osteopontin activity with specific antibodies promoted disease
remission and improved the clinical course of EAE [24]. Higher osteopontin levels have
been found in active MS lesions and in the CSF of patients with MS and other inflammatory
neurological conditions [25,26]. Furthermore, increased osteopontin CSF expression has
been reported in progressive MS phenotypes [8] and has been associated with greater
prospective neurodegeneration in patients with MS [9]. Interestingly, increased osteopontin
plasma levels have been previously reported before and during MS relapses [10]. Our
results, suggesting that also osteopontin CSF expression may vary with relapse activity in
RR-MS, further support the role of this molecule in acute MS relapses.

Finally, a positive correlation was observed between the CSF levels of osteopontin
and the concentrations of the proinflammatory cytokines IL-2 and IL-6. Previous studies
in MS have shown an association between acute inflammatory activity and increased
CSF levels of proinflammatory cytokines [3,27]. Notably, enhanced CSF expression of IL-
2 and IL-6 has been reported in relapsing MS patients, [26,28] and has been associated
with prospective disease activity and worse disease course [29,30]. A strong negative
correlation was also observed in our study between CSF levels of osteopontin and of the
anti-inflammatory molecule IL-1ra. IL-1ra, is an endogenous competitive inhibitor of IL-1f3,
a main proinflammatory cytokine involved in MS pathogenesis [30]. IL-1ra administration
has protective effects in animal models (i.e., EAE) [31-33] and CSF expression of IL-1ra
may affect MS course [34]. These results suggest that a proinflammatory MS milieu may be
associated with acute inflammatory episodes.
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Overall, our findings are in line with a role of osteopontin in acute MS relapses and
suggest that, near relapses, the CSF expression of osteopontin is increased and associated
with higher levels of IL-2 and IL-6 and reduced IL-1ra concentrations. Although the low
number of patients and the lack of prospective data represent important limitations of
the present investigation, our study reports for the first time a correlation between CSF
molecules and the time elapsed since the last MS relapse.

In the proximity of MS relapses, osteopontin expression in CSF may be increased
along with other proinflammatory mediators and correlate with decreased concentrations
of anti-inflammatory molecules. Modulation of osteopontin activity may represent a future
target for personalized MS therapies [24]; however, factors involved in the regulation of
osteopontin expression in the acute and chronic phases of the disease and during treatment
with DMTs require further investigation.
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