
Citation: Nista, E.C.; Del Gaudio, A.;

Del Vecchio, L.E.; Mezza, T.;

Pignataro, G.; Piccioni, A.; Gasbarrini,

A.; Franceschi, F.; Candelli, M.

Pancreatic Cancer Resistance to

Treatment: The Role of Microbiota.

Biomedicines 2023, 11, 157. https://

doi.org/10.3390/biomedicines11010157

Academic Editor: Satoshi Wada

Received: 29 November 2022

Revised: 30 December 2022

Accepted: 4 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Pancreatic Cancer Resistance to Treatment: The Role
of Microbiota
Enrico Celestino Nista 1, Angelo Del Gaudio 1, Livio Enrico Del Vecchio 1 , Teresa Mezza 1, Giulia Pignataro 2,
Andrea Piccioni 2 , Antonio Gasbarrini 1 , Francesco Franceschi 2 and Marcello Candelli 2,*

1 Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS,
Università Cattolica del Sacro Cuore, 00168 Rome, Italy

2 Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS,
Università Cattolica del Sacro Cuore, 00168 Rome, Italy

* Correspondence: marcello.candelli@policlinicogemelli.it; Tel.: +0039-063-0153-188

Abstract: Pancreatic cancer (PC) is an aggressive malignancy and the fourth leading cause of cancer
death in the United States and Europe. It is estimated that PC will be the second leading cause of
cancer death by 2030. In addition to late diagnosis, treatment resistance is a major cause of shortened
survival in pancreatic cancer. In this context, there is growing evidence that microbes play a regulatory
role, particularly in therapy resistance and in creating a microenvironment in the tumor, that favors
cancer progression. The presence of certain bacteria belonging to the gamma-proteobacteria or
mycoplasmas appears to be associated with both pharmacokinetic and pharmacodynamic changes.
Recent evidence suggests that the microbiota may also play a role in resistance mechanisms to
immunotherapy and radiotherapy. However, the interactions between microbiota and therapy
are bilateral and modulate therapy tolerance. Future perspectives are increasingly focused on
elucidating the role of the microbiota in tumorigenesis and processes of therapy resistance, and a
better understanding of these mechanisms may provide important opportunities to improve survival
in these patients.
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1. Pancreatic Cancer

Pancreatic cancer (PC) is an aggressive malignant tumor and the fourth leading cause
of cancer death in the U.S. and Europe. PC kills nearly 50,000 people each year in North
America alone. In fact, PC has the lowest survival rates for all stages combined (11%) among
malignancies, and although the incidence is relatively stable, it is estimated to be the second
leading cause of death by 2030 [1]. Because the symptoms of PC are usually nonspecific,
the disease is usually not diagnosed until the late stages, when the patient complains of
abdominal pain, unexplained weight loss, fatigue, nausea, or jaundice. Among exocrine
tumors of the pancreas, which account for 95% of PC, pancreatic ductal adenocarcinoma
(PDAC) is the most common and accounts for almost all pancreatic malignancies [2]. PDAC
usually arises from the neoplastic transformation of pancreatic intraepithelial neoplasms
(PanINs) and intraductal papillary mucinous neoplasms (IPMNs), typically found in 2%
of the population, and is more common in people older than 70 years [2]. Several risk
factors are significantly associated with the development of PC. For example, advanced age
(71 years), male gender, heavy alcohol consumption, obesity, low vegetable diet, chronic
pancreatitis (CP), diabetes, smoking, and family history have been shown to increase the
risk [3]. In particular, cigarette smoking appears to be the cause of nearly 20% of pancreatic
tumors [1], and current and former smokers have a 1.56- and 1.15-fold increased risk,
respectively, according to a recent meta-analysis by Ben QW [4]. Having two or more first-
degree relatives with PC is also a relevant risk factor, and it is estimated that approximately
8% of cases of PC are diagnosed in patients with a positive family history [5,6]. According
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to various meta-analyses, the prevalence of diabetes has increased threefold in PC patients.
Moreover, this association is even higher in patients recently diagnosed with diabetes,
which could be an early symptom of cancer [7].

Another risk factor is chronic pancreatitis, and analysis by Gandhi et al. estimated
the standard incidence ratio (SIR) to be 22.61 in patients with chronic pancreatitis and as
high as 63 in hereditary types [8]. By contrast, numerous other factors, such as coffee con-
sumption [9], oral contraceptive use [10], and proton pump inhibitor use (PPI) [11], which
were considered relevant additional risks in the past, showed no statistical association in
further analyses. Tumorigenesis results directly and indirectly from alterations in various
molecular pathways and is correlated with different genetic alterations, such as mutations
in TP53, KRAS, CDKN2A, and SMAD4 [6]. However, genetic testing is currently indicated
only for certain populations. BRCA2 genetic testing is recommended in patients with a
family or personal history of breast cancer, with a family history of PC, and in individuals
of Jewish descent. The presence of the CDKN2A mutation should be tested in patients
with a family history of hereditary melanoma [12]. In addition to clinical examinations, the
diagnostic process provides a complete blood analysis to monitor the indices of cholestasis
and the presence of acute pancreatitis. The carbohydrate antigen 19-9 (CA 19-9) remains the
most used serum tumor marker for PDAC, with a sensitivity of 80% among symptomatic
patients. CT scans of the abdomen have a crucial role in diagnosing and staging the tumoral
tissue. In addition to the CT technique, MRI or PET could also be included during the
staging process, mostly in case of indeterminate and occult lesions [3]. Eventually, because
of the high sensitivity and minimally invasive technique, endoscopic ultrasound (EUS)
represents the first-choice modality for obtaining biopsies and definitive diagnosis [3].

1.1. Therapies for Pancreatic Cancer

In the PDAC treatment spectrum analysis, surgery is considered the only curative
treatment for this neoplasm, but only a small percentage (10–20%) of patients can benefit
from this treatment, as more than half of patients have the metastatic disease [1]. Ade-
quate staging is required to differentiate patients with potentially resectable, borderline
resectable, locally advanced, and metastatic disease [13]. In the early stages of cancer, the
initiation of a neoadjuvant therapy protocol before surgery is still controversial [14]. The
American Society of Clinical Oncology (ASCO) guidelines recommend that neoadjuvant
therapy be reserved for patients with suspected extra pancreatic disease or radiographic
evidence of mesenteric vessel infiltration who are at high surgical risk and have high
serum levels of CA 19-9 without cholestasis [15]. The most commonly used strategy for
resectable disease is surgical resection followed by adjuvant therapy. In this context, recent
National Comprehensive Cancer Network (NCCN) guidelines recommend gemcitabine
alone, gemcitabine in combination with capecitabine, continuous fluorouracil infusion
(5 FU), or 5 FU/leucovorin therapy (NCCN) [16]. In borderline resectable and locally
advanced diseases, no further surgery is recommended by the NCCN. At this stage, the
choice is between chemotherapy or chemoradiotherapy as neoadjuvant therapy. For this
purpose, FOLFIRINOX (a combination of folinic acid, fluorouracil, irinotecan, and oxali-
platinum), gemcitabine-nab-paclitaxel, and gemcitabine-cisplatin are currently approved as
chemotherapy [15,16]. As previously reported, most patients are diagnosed with advanced-
stage metastatic disease, with a median one-year survival rate of 7% [17]. Therapeutic
strategies for metastatic disease include Nab-paclitaxel plus gemcitabine, FOLFIRINOX,
gemcitabine and capecitabine, gemcitabine and erlotinib, gemcitabine, and cisplatin, or
gemcitabine alone [14]. In addition to these therapies, the current interest in elucidating the
molecular mechanisms and biology of cancer has led to the development of new targets and
new modalities for PDAC treatment [14], which are summarized in Table 1. A panoramic
of the novel treatments in development for PC is presented.
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Table 1. A panoramic of novel treatments in development for PC.

Pathway Inhibitors
Targeting DNA
Damage Response
(DDR)

Targeting Immune
System

Targeting Tumor
Metabolism

Targeting Tumor
Stroma Fibrosis, and
Extracellular Matrix

KRAS
The Poly (ADP-ribose)
polymerase (PARP)
Inhibitor

Immune Checkpoint
Inhibitors
(PD-L1/PD-1, CTLA-4)

Targeting Tricarboxylic
acid (TCA) enzymes

Targeting Hyaluronic
Acid

Neurotrophic Tyrosine
Receptor Kinase
(NTRK) fusion

Vaccines
Targeting Immune
Cells/Signals inside the
stroma

Neuregulin-1 gene
(NRG1) Fusion

CAR-t Cells
Transfusion
CD-40, IL-10 (failed to
provide benefit)

1.2. Microbiota and Pancreatic Cancer

There is growing evidence on how the gut microbiome, the genome of the entire com-
munity of microorganisms living in the gastrointestinal tract, can influence human health
and disease [6]. New detection methods such as whole genome sequencing have facilitated
the description and detection of an increasing number of bacteria, fungi, and viruses that
can influence host inflammatory status, intestinal permeability, and carcinogenesis [18,19].
Gastrointestinal tumors, such as pancreatic ductal adenocarcinoma (PDAC), have a higher
number of detections for type-specific microbiome fingerprints, mainly due to their spa-
tial proximity [6,20]. The reciprocal balance between the pancreatic and gastrointestinal
microbiota can lead to various pancreatic pathologies [21]. While various metabolites of
the microbiota, such as short-chain fatty acids (SCFA), protect against tissue inflammation,
and normal pancreatic β-cells secrete cathelicidin-related antimicrobial peptides (CRAMP)
control pancreatic bacterial overgrowth [22]. In recent decades, several studies have high-
lighted the association between intestinal and oral dysbiosis and the presence of PC [23–31]
(Table 2).

Table 2. Principal microbiological fundings in pancreatic cancer tissue.

Tumour-Associated Microbiota in Pancreatic Cancer
Increased Presence Reduced Presence

Phylum Euryarchaeota Firmicutes and Proteobacteria

Genus

-Porphyromonas, Prevotella, Bifidobacterium and Synergistetes
-Acinetobacter, Sphingopyxis and Pseudomonas
(KRAS mutations)
-Malassezia and Alternaria (Mycobiome)

- Lactobacillus
- Pseudoxanthomonas, Saccharopolyspora, Streptomyces
(worse prognosis)

Species

Fusobacterium nucleatum, Beutenbergia cavernae DSM 12333,
Mycoplasma hypopneumoniae, Tolypothrix sp. PCC 7601,
Acidovorax ebreuus TPSY, Agrobacterium radiobacter K84,
Aggregatibacter aphorophilus NJ8700, Shigella sonnei Ss046,
Salmonella enterica, Citrobacter freundii

-Saccharomonospora Viridis DSM 43017
-Alkalihalobacillus clausii (worse prognosis)

Dental disease and associated changes in the oral microbiome increase the risk for PDAC,
as evidenced by decreased oral concentrations of Neisseria elongata and Streptococcus mitis
and the increased abundance of Leptotrichia and Porphyromonas gingivalis in patients with
PC [24,25]. In recent decades, the presence of certain species, such as P. gingivalis or
Helicobacter pylori, has been associated with higher rates of PC. Several pathological path-
ways have been proposed to explain this correlation. In particular, P. gingivalis may affect
miRNA expression, immunological response, and arginine catabolism [26,27]. Furthermore,
studies in animal models and in vitro have shown that P. gingivalis, Treponema denticola, and
Tannerella forsythia can induce KRAS and p53 mutations and increase the risk of PC [28].
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In addition to the luminal microbiota, other studies have demonstrated the physiological
presence of a microbiome associated with pancreatic tissue. Specifically, bacterial cytidine
deaminase (CDA) appears to be expressed four times more in PCs than in healthy con-
trols [29], with a higher average abundance of the microbiome [18]. In general, the bacterial
communities in the pancreas had a similar composition in terms of taxa as the oral micro-
biome. In addition, several studies have identified host variations in the genes involved
in the immune response associated with different β-diversity [30]. Compared to healthy
controls, PC patients showed an increased relative abundance of Porphyromonas, Prevotella,
Bifidobacterium, and Synergistetes, as well as the phylum Euryarchaeota [18,31]. In another
study, PDAC with KRAS mutations was associated with the enrichment of the genera
Acinetobacter, Sphingopyxis, and Pseudomonas. PDAC tissues and fluid from IPMNs were
enriched in Fusobacterium nucleatum, an oral pathogen [31], and depleted in Lactobacillus
and phyla of Firmicutes and Proteobacteria [32], suggesting a role for Fusobacterium in the
development of pancreatic neoplasia [33]. Bacterial communities may influence tumor pro-
gression through various metabolites such as SCFAs, gallic acid, lipopolysaccharide (LPS),
and polyamines [34]. LPS is a common component of Gram-negative bacteria and could
provide another pro-oncogenic stimulus by promoting local inflammation via the Toll-like
receptor (TLR) [34,35] and subsequently mutating and activating the KRAS gene [34]. In
addition, P53 mutations appear to be associated with a specific bacterial metabolite. In
particular, gallic acid, produced by Bacillus subtilis and Lactobacillus Plantarum, was recently
linked to pro-oncogenic Tpr53 mutations in a mouse model [36]. Numerous microor-
ganisms can synthesize polyamines that are directly involved in cell growth [37]. These
metabolites were significantly elevated in the mouse models of PC, and their reduction
lead to a lower rate of cell anabolism [6,37]. In addition to bacterial communities, fungi
have also been shown to be involved in the pathogenesis of PC [38]. Strikingly, the myco-
biome of PDAC tissues is usually more pronounced, especially in the genera Malassezia
and Alternaria, thus differing from the normal intestinal mycobiome. The pathogenic role
of fungal components was mediated by the stimulation and secretion of IL-33 and acti-
vation of TH2 cells and ILC2. In mouse models, IL -33 was able to induce a chromatin
switch that interacted with a genetic mutation such as KRAS [38]. In addition, glycans
of fungal walls can also pursue oncogenic processes themselves by binding mannose-
binding lectin (MBL) and recruiting the complement system [39]. Although antifungal
treatments have appeared to halt carcinogenesis in previous in vitro experiments [40], they
have not shown efficacy in animal models, likely due to the low concentrations of live
fungi in tissues [41]. Several studies have found specific microbiome differences between
patients with long-term survival (LTS) and short-term survival. In a study by Riquelme
E et al., it was demonstrated that patients with a better prognosis had increased relative
abundance of Alkalihalobacillus clausii (the new name of Bacillus clausii), Pseudoxanthomonas,
Saccharopolyspora, and Streptomyces, with higher alpha diversity in their tissue-associated
microbiome. Researchers transferring fecal microbiota transplantation (FMT) from LTS to
mice also demonstrated the causal effect of these species in modulating tumor growth [40].
Moreover, the poorer prognosis was associated with the detection of intra-tumoral fusobac-
teria, although no specific differences in genetic mutations were found [23]. A subsequent
analysis based on 187 PDAC patients also showed that certain strains were more prevalent
in patients with metastases. Specifically, they found a higher abundance of Beutenbergia cav-
ernae DSM 12333, Mycoplasma hypopneumoniae, Tolypothrix sp. PCC 7601, Acidovorax ebreuus
TPSY, Agrobacterium radiobacter K84, Aggregatibacter aphorophilus NJ8700, Shigella sonnei
Ss046, Salmonella enterica, Citrobacter freundii and the lower presence of Saccharomonospora
Viridis DSM 43017 [42]. Although further studies are needed to clarify the clinical role of
gut microbiota in pancreatic cancer, a recent promising study has demonstrated the impor-
tance of fecal microbiota analysis in diagnostic evaluations [43]. The authors considered
27 different species, such as Fusobacterium nucleatum/hwasookii, Alloscardovia omnicolens,
Veillonella atypica, Faecalibacterium prausnitzii, Bifidobacterium bifidum Romboutsia timonensis,
Bacteroides coprocola, Veillonella atypica, Methanobrevibacter smithii, Bacteroides finegoldii, and
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Alloscardovia omnicolens, noted an ability to discriminate between the disease and health of
84%, and of 94% when combined with serum CA 19-9 [43].

1.3. Microbiota and Chemotherapy

Therapy resistance is one of the main causes of shortened survival in pancreatic
cancer [41]. Among the various factors involved in resistance, the gut microbiota seems to
play an important role, mainly affecting drug metabolism and absorption [44,45] (Figure 1).
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Interestingly, some bacteria belonging to the gamma-proteobacteria class, such as
Escherichia coli [46], can interfere with gemcitabine metabolism by converting this drug to
its inactive form (2′,2′-difluorodeoxycytidine to 2′,2′-difluorodeoxyuridine) via their long
isoform of the bacterial enzyme CDA [29].

In addition, gamma-proteobacteria were detected at elevated levels in human PDAC.
(29) Furthermore, other genera, such as Mycoplasma, can produce cytidine deaminase,
and the use of tetrahydrouridine (THU), an inhibitor of CDA, can restore the normal
anticancer effects of gemcitabine [47]. These effects have been extensively studied in
colorectal cancer, and there are emerging data on PC. For example, colon cancer cells
were found to develop chemotherapy resistance when cultured with bacteria derived from
human pancreatic cancer, which are normally enriched in proteobacteria [48]. Moreover, in
a recent study, the presence of K. pneumonia in the bile ducts was associated with a worse
prognosis in the population treated with adjuvant therapy and gemcitabine, and a higher
survival rate was observed after antibiotic therapy with quinolones [49]. On the other
hand, the increased microbial production of vitamin K2 (menaquinone), usually detected
in diabetes models, has also been associated with resistance to gemcitabine/paclitaxel [50].
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As a result, the hypothesis of anti-oxidative cell protection against the accumulation of
reactive oxygen species induced by chemotherapy has been put forward [50]. Another
drug class of interest for microbiota-mediated chemoresistance is fluoropyrimidines, which
are included in the FOLFIRINOX protocol [51]. As mentioned above, some studies have
shown an increased inactivation rate of 5 FU sustained by Mycoplasma hyorhinis [52] and by
Fusobacterium nucleatum (F. nucleatum) through the alteration of TLR4/MYD88-dependent
autophagic metabolism, and the inhibition of 5-FU-induced cell apoptosis. Furthermore, the
abundance of F. nucleatum has been linked to poor prognosis in pancreatic cancer [40,53,54].
Although no specific enzyme or mechanism has yet been identified [29], F. nucleatum
has also been associated with resistance to oxaliplatin [54]. By contrast, some species,
such as Bacteroides ovatus and Bacteroides xylanisolven, have been associated with enhanced
recruitment of T cells and, consequently, with the enhancement of the effect of erlotinib: an
EGFR tyrosine kinase inhibitor [55].

1.4. Microbiota and Immunotherapy

Immunotherapy is considered an effective therapeutic strategy for many neoplasms,
such as melanoma and non-small cell lung carcinoma [56,57]. Immunotherapies mainly
use monoclonal antibodies to stimulate an anti-tumor immune response directed against
programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) or cytotoxic
T lymphocyte antigen 4 (CTLA-4). Unfortunately, these strategies have not yet proven
effective in PDAC [58], likely due to the specific characteristics of the tumor microenvi-
ronment (TME). The complex organization of the extracellular matrix, fibroblasts, and
immunosuppressive leukocytes creates a difficult-to-target environment that promotes
tumor growth [59]. An important role in this complex mechanism of resistance is also at-
tributed to the microbiota. Recent evidence has shown that microbes influence the response
to immunotherapy, regulate immune checkpoints, and promote cancer cell escape from the
immune system [60–62]. The use of antibiotics in PDAC mouse models confirmed these
findings and led to profound changes in the immune system, such as an increase in effec-
tor T cells and a change in tumor-associated macrophages (TAM) [18,62]. Other relevant
changes included a higher proportion of antitumor cell types, such as Th1 CD8, and the re-
lease of gamma interferon and TNF alfa, as well as a decreased distribution of Treg cells and
the production of IL-17 [63]. Notably, bacterial suppression has been associated with the
increased expression of PD-1 and increased efficacy of checkpoint-targeted immunotherapy,
with a synergistic effect on tumor size and an increase in T-cell activity [18]. Countervailing
evidence is that the effect of antibiotics on reducing tumor growth did not occur in Rag1
knockout mice lacking mature T (and B) lymphocytes. This suggests that the immune
system and microbiota must be involved in this process and that it is not a direct cytotoxic
effect of the drug [61]. Moreover, the microbiota can contrast the effect of antibiotics by
blocking IL 17, which, together with CD4 and th17 cells, is an important pro-carcinogenic
factor in TME. [61]. A relatively new approach to modulating the gut microbiota is FMT,
and a better prognosis and response to immunotherapy was observed in PC animal models
that received stools from healthy donors or long-term survivors (LTS). Conversely, the use
of antibiotics after FMT from healthy controls did not affect survival [39]. Other elements
that appear to play a role in the immune evasion of PDAC are microRNAs, which have also
been associated with increased tumor growth and resistance to therapy. MicroRNAs have
been shown to alter pancreatic cell gene expression and influence immune responses, and
recent studies have linked some bacteria to the expression of such miRNAs, suggesting
additional pathways of immune regulation [64]. In a recent study, it was confirmed that the
presence of megasphaera, capable of producing SCFA in tissues, showed a better response
to anti-PD-1 therapies [65]. At present, promising preclinical model results have been
achieved from the combination of anti-PD1 and antibiotics. On the contrary, clinical trials
to evaluate the combination of pembrolizumab (NCT03637803) with lyophilized bacteria,
or the combination of probiotics, vancomycin, and nivolumab (NCT03785210), are still
in progress [18].
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1.5. Microbiota and Radiotherapy

Radiotherapy (RT) is a therapeutic strategy based on ionizing radiation that results
in direct damage to DNA, the formation of reactive oxygen species (ROS), and reactive
nitrogen species (RNS) [66]. Irradiation can induce an intense immune response leading
to tumor cell death and the release of antigens capable of stimulating cells of the immune
system, such as CD8 T lymphocytes, resulting in a significant antitumor effect capable of
killing tumor cells in distant, non-irradiated parts of the organism. This effect is known
as the abscopal effect [60]. RT has been shown to be useful in resected PDAC patients to
improve local control as an adjuvant therapy due to its cytostatic activity [51]. However,
although the techniques are based on irradiating the tumor areas as selectively as possible,
there are also effects on the surrounding healthy tissue, especially considering the anatomi-
cal location of the pancreas. In this context, a complex relationship between the microbiota
and the effect or tolerance of radiotherapy has been recently identified [67]. In some studies
with germ-free mice, increased resistance to the radiation effect has been described, both
in terms of the therapeutic effect and toxicity [68]. Conversely, an enhanced effect of RT
was observed after the administration of vancomycin in cancer models. This synergistic
result was attributed to the elimination of Gram-positive bacteria, which can interfere with
the presentation of tumor antigens to cytolytic CD8+ T cells [69]. Further evidence for the
role of the microbiota as a predictor of the response to RT is provided by hepatocellular
carcinoma (HCC). A recent study found that c-di-adenosine monophosphate (c-di-AMP),
a bacterial metabolite, enhances the RT-related immune response [70]. Although these
studies were not performed in pancreatic cancer, they justify the hypothesis of the influence
of the microbiota on the immune system during RT treatments and thus provide the basis
for future correlation and causality studies in this neoplasm.

1.6. Bidirectional Relationship between Therapy and Microbiota

In recent years, a bidirectional relationship between microbiota and therapeutic strate-
gies in PDAC has been established. Both chemotherapy and radiotherapy can lead to
alterations in the gut microbiota, which may limit its tolerability and influence its toxic-
ity [63]. As mentioned earlier, radiation can cause tissue damage leading to enteritis [71],
and the gut microbiota appears to play a central role in these processes. The most commonly
observed changes after irradiation are the decrease in Lactobacillus spp. and Bifidobacterium
spp. and the increase in Escherichia coli and Staphylococcus spp. [72]. These changes lead
to the impairment of intestinal barrier integrity and the production of proinflammatory
cytokines. In this regard, pretreatment with FMT or an antibiotic cocktail to restore the
intestinal microenvironment after irradiation provides interesting results [73]. As for tradi-
tional chemotherapy, several studies are based on gemcitabine therapy. During treatment,
an increased abundance of proinflammatory bacteria, such as Proteobacteria, and a de-
crease in butyrate-producing bacteria, such as Lachnospiraceae and Ruminococcaceae, have
been described. These changes are associated with an increase in intestinal permeability,
inflammation, and a decrease in the anticancer activity of butyrate, which promotes tumor
progression [74–76]. In addition, a decrease in SCAF production has been noted during
paclitaxel therapy, which has been associated with a higher rate of Clostridioides difficile
infection [77] and an increase in Mucispirillium in the colon, which may play a role in
neuroinflammation and cause peripheral neuropathy [78]. With respect to the drugs in-
cluded in the FOLFIRINOX protocol, toxicities related to changes in the microbiota have
been described for 5-FU as well as for oxaliplatin and irinotecan. Therapy with 5-FU is
frequently compromised by the occurrence of mucositis, likely due to the depletion of
mucin-producing bacteria such as Lactobacillus and Streptococcus [79]. Therefore, it has
been reported that the administration of Lactobacillus and Bifidobacterium could increase
the production of anti-inflammatory cytokines and thus reduce the intensity of the dam-
age [80]. The efficacy of oxaliplatin is often limited by gastrointestinal toxicity and pain;
interestingly, these effects are reduced in germ-free mice after antibiotic administration or
after FMT [81]. The mechanisms involved are drug-induced increased levels of bacterial
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products, such as LPS, in the spinal ganglion, leading to inflammation [71]. In addition, the
role of the microbiota in irinotecan-mediated diarrhea has recently been investigated [45].
In particular, this therapy seems to increase the abundance of Enterobacteriaceae, leading
to an increase in bacterial β-glucuronidase (BGUS) and LPS, both of which are responsible
for inflammatory responses and intestinal damage. Accordingly, BGUS activity has recently
been proposed as a predictive marker for irinotecan-induced diarrhea [82], and it has been
reported that the co-administration of irinotecan with a selective inhibitor of bacterial
β-glucuronidases can prevent irinotecan toxicity in mice [83].

2. Conclusions and Future Perspectives

As mentioned above, the microbiota-based approach is an important resource in
the therapy of PDAC, as it influences the efficacy and tolerability of chemotherapy, im-
munotherapy, and radiotherapy. Accordingly, the modulation of the microbiota is one of
the most studied topics at present. These strategies include the use of FMT, probiotics,
prebiotics, and antibiotics. Riquelme et al. studied the role of FMT in the mouse models
of pancreatic cancer. They showed a better clinical response at five weeks in mice that
received stools from patients who had the disease more than five years after resection
compared to mice that had advanced PDAC patients as donors. In addition, their study
showed a higher infiltration of CD8+ T cells into tumor tissue in mice that received FMT
from patients who had the disease more than five years after resection, demonstrating the
role of their microbiome in modulating immune response and survival [40]. FMT may
also have an important effect in reducing the toxicity of chemotherapy, as demonstrated in
animal models, suggesting a role in improving treatment adherence and compliance [81].
Interestingly, this effect is also observed with radiotherapy. In mice, the recovery rate after
radiation treatment was shorter in animals receiving FMT, likely due to the differential
expression of long noncoding RNA by microorganisms [84].

Probiotics and molecules derived from them may also be effective against pancreatic
cancer and significantly reduce infectious complications after pancreatoduodenectomy,
according to a recent study [85]. Ferrichrome, a substance produced by Lactobacillus casei
ATCC334, can inhibit pancreatic, gastric, and colon cancer cells [52,53]. Ferrichrome
could induce the M1 phenotype of tumor-associated macrophages (TAMs) via a TLR4-
dependent pathway, thereby increasing immune system activities and the efficacy of
immune checkpoint blocker therapies [86–88]. The administration of next-generation
probiotics, such as Akkermansia muciniphila, Prevotella copri, Parabacteroides goldsteinii, and
Faecalibacterium prausnitzii, represents a novel strategy [89]. In particular, A. muciniphila, a
Gram-negative bacterium that can support gut immunity and cytokine release, significantly
inhibits the proliferation of rat pancreatic islet tumor cells [90]. Interestingly, in certain
neoplasms, such as renal or pulmonary carcinoma, the presence of resident microbiota has
proven necessary for the effectiveness of immunotherapy. In a different way, in pancreatic
carcinoma, the presence of certain bacteria appears to be a factor against therapeutic
effectiveness. Indeed, the study of the mechanisms of chemical resistance induced by
bacteria led to the recognition of specific targets to antagonize this effect. This includes, for
example, CDA inhibitors and inhibitors of the bacterial enzyme β-glucuronidase (GUS),
the clinical value of which has to be determined in the future.

The use of antibiotics in PDAC, either in combination with chemotherapeutics or
immunotherapeutics, is currently being tested or appears to shorten overall survival [91].
Another goal of antibiotic administration and microbiota modulation is to improve the
tolerability of therapy. An example is the improvement of irinotecan-induced diarrhea and
the demonstration of reduced intestinal toxicity in germ-free mice or mice treated with
broad-spectrum antibiotics.

On the other hand, it should be kept in mind that prolonged antibiotic therapies may
lead to side effects, alter the balance between the host and microbiota in all body regions,
and result in the selection of antibiotic-resistant bacterial species, so further studies are
essential to evaluate the safety of such strategies. One area of great interest is the genetic
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manipulation of microbes with the aim of producing vectors that are capable of enhancing
immune responses, spreading toxins, transferring DNA or RNA to specific targets, and
altering the expression of oncogenes in cancer cells [92].

The main studies concern Salmonella typhimurium and Listeria monocytogenes, but hu-
man trials of this approach have yet to demonstrate superiority over conventional treatment.
This requires more trials to better assess the clinical implication of this mechanism.

Finally, lyophilized probiotics and vancomycin may increase the efficacy of pem-
brolizumab [93] and nivolumab [94], although clinical trials have not yet been com-
pleted [95]. In summary, future perspectives are increasingly focused on clarifying the role
of the microbiota in tumorigenesis and therapeutic resistance processes [96–98]. Combining
microbiota modulation with conventional treatments such as chemotherapy, radiation,
or immunotherapy seems to improve efficacy and tolerability and represents an impor-
tant way forward. However, further studies specifically tailored to pancreatic cancer and
performed in human models are needed for proper understanding and future clinical
applications of this knowledge.

3. Materials and Methods

A review of the literature was performed to focus on the role of gut and tissue micro-
biota in influencing the effectiveness and metabolism of medical treatment for pancreatic
cancer. The electronic databases that were searched included PubMed, Medline and Google
Scholar, Scopus, and Embase. We focused on the following keywords and terms: “Pancre-
atic Cancer”, “Resistance”, Treatment”, “Therapy” AND “Microbiota”. We sought these
terms within titles, abstracts, and keywords.

The studies included in this review were carefully reviewed by 2 authors. We included
all papers with the full text available, original works, and metanalysis.

Exclusion criteria were language other than English and availability only of the abstracts.

Funding: This research received no external funding.
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Data Availability Statement: Not applicable.
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