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Abstract: Alzheimer’s disease (AD) is mainly a neurodegenerative sickness. The primary characteris-
tics are neuronal atrophy, amyloid deposition, and cognitive, behavioral, and psychiatric disorders.
Numerous machine learning (ML) algorithms have been investigated and applied to AD identifica-
tion over the past decades, emphasizing the subtle prodromal stage of mild cognitive impairment
(MCI) to assess critical features that distinguish the disease’s early manifestation and instruction
for early detection and treatment. Identifying early MCI (EMCI) remains challenging due to the
difficulty in distinguishing patients with cognitive normality from those with MCI. As a result, most
classification algorithms for these two groups perform poorly. This paper proposes a hybrid Deep
Learning Approach for the early detection of Alzheimer’s disease. A method for early AD detection
using multimodal imaging and Convolutional Neural Network with the Long Short-term memory
algorithm combines magnetic resonance imaging (MRI), positron emission tomography (PET), and
standard neuropsychological test scores. The proposed methodology updates the learning weights,
and Adam’s optimization is used to increase accuracy. The system has an unparalleled accuracy of
98.5% in classifying cognitively normal controls from EMCI. These results imply that deep neural
networks may be trained to automatically discover imaging biomarkers indicative of AD and use
them to identify the illness accurately.

Keywords: Alzheimer; Adam’s optimization; convolutional neural network; long short-term memory

1. Introduction

The brain is commonly recognized as one of the body’s most essential organs. The
brain controls and facilitates all activities and reactions that enable us to think and believe.
Additionally, it helps us maintain healthy emotions and memories [1]. AD is a degenerative
and incurable brain disease. When someone is diagnosed with Alzheimer’s disease [2], it
advances slowly and kills memory cells, reducing the capacity of a person to think. It is
a degenerative neurological disorder that results in the loss of function or even the death
of neurons. Following Alzheimer’s diagnosis, the average lifespan is just four to eight
years [3].

According to recent research, 1 in every 85 people might be impacted by AD by
2050 [3]. It is critical to detect and treat AD patients in their early stages. There are
numerous methods available for identifying and predicting this dementia, including MRI,
PET, and CT (Computed Tomography) scans, as shown in Figure 1; however, the most
often used neuroimaging modality for diagnosing AD patients is MRI [4,5]. Earlier research
studies have used MRI-based classification techniques with Machine and Deep Learning
algorithms [6]. This paper aims to develop the finest prediction and detection methods
possible with the assistance of radiologists, clinicians, and carers to save time and aid
patients suffering from this condition [7,8].
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sible with the assistance of radiologists, clinicians, and carers to save time and aid pa-
tients suffering from this condition [7,8]. 

Alzhemier is the leading cause of dementia among the elderly. Dementia is defined 
as a decline in cognitive ability required for daily activities; AD accounts for 60–80% of 
dementia patients [9]. Plaques and tangles in the brain and cell damage and death indi-
cate this condition. The doctor diagnosed her brain after her death and saw the formation 
of many clumps. These have been identified as the disease’s primary causal agents [10], 
which harmed the brain’s ability to communicate with the rest of the body. 

Consequently, persons who suffer from this ailment have trouble doing daily duties 
such as driving and cooking. Early signs may include difficulty remembering names, 
misplacing important possessions, and planning [11]. AD is most severe during the 
middle stage, with symptoms including significant mood swings, disorientation, impul-
sivity, short attention span, and problems with object identification. The last stage is the 
most crippling [12]. 

 
Figure 1. Healthy Brain vs. Alzheimer’s Diseased Brain. Compared to a healthy brain, the Alzhei-
mer's drain can be noted with shrinkage in size, less moisture, and enlarged ventricles. 

The most noticeable symptoms include trouble communicating with others, in-
creased vulnerability to infection, decreased judgment and sense of direction, short-term 
memory loss, and vision problems. According to a recent survey, around 50 million citi-
zens worldwide suffer from AD [3]. It is known that the bulk of modern deep learning 
algorithms starts with a deep Convolutional Neural Network (CNN) model. 

Recurrent neural networks, especially long short-term memory (LSTM), are effective 
models for processing sequential data [13,14]. DenseNet CNN architecture was adapted 
to extract the interslice features as it resolves the vanishing gradient problem, strengthens 
feature propagation, and reduces the number of parameters [15,16]. By considering all 
facts, a novel Deep Learning (DL) model that combines an LSTM on top of the bottleneck 
features extracted by initializing the weights of the pre-trained DenseNet architecture 
CNN that has already been trained on ImageNet is proposed. This hybrid model learns 
both intraslice and interslice features from the brain MRI data using CNN and LSTM. 

This article discusses how to optimize the performance of a neural network for 
classifying sliced MRI data. The primary emphasis of this study is on the network’s use of 
various channels. In other words, the network will use all slices simultaneously rather 
than just one. The enhancement should come from common characteristics across nu-
merous slices [17]. The Ant-Colony Optimization (ACO) [18] method was used to pre-
process and denoise, while the Modified Fuzzy C-means (MFCM) algorithm performed 
clustering and feature extraction. The primary contributions and objectives of this man-
uscript may be summarized as follows: 
• The fast feature extraction method for merging deep features collected from various 

parameters; 
• Weight randomization reduces the breach among feature maps in the concatenation 

of fully connected layers; 

Figure 1. Healthy Brain vs. Alzheimer’s Diseased Brain. Compared to a healthy brain, the
Alzheimer’s drain can be noted with shrinkage in size, less moisture, and enlarged ventricles.

Alzhemier is the leading cause of dementia among the elderly. Dementia is defined
as a decline in cognitive ability required for daily activities; AD accounts for 60–80% of
dementia patients [9]. Plaques and tangles in the brain and cell damage and death indicate
this condition. The doctor diagnosed her brain after her death and saw the formation of
many clumps. These have been identified as the disease’s primary causal agents [10], which
harmed the brain’s ability to communicate with the rest of the body.

Consequently, persons who suffer from this ailment have trouble doing daily duties
such as driving and cooking. Early signs may include difficulty remembering names,
misplacing important possessions, and planning [11]. AD is most severe during the middle
stage, with symptoms including significant mood swings, disorientation, impulsivity,
short attention span, and problems with object identification. The last stage is the most
crippling [12].

The most noticeable symptoms include trouble communicating with others, increased
vulnerability to infection, decreased judgment and sense of direction, short-term memory
loss, and vision problems. According to a recent survey, around 50 million citizens world-
wide suffer from AD [3]. It is known that the bulk of modern deep learning algorithms
starts with a deep Convolutional Neural Network (CNN) model.

Recurrent neural networks, especially long short-term memory (LSTM), are effective
models for processing sequential data [13,14]. DenseNet CNN architecture was adapted
to extract the interslice features as it resolves the vanishing gradient problem, strengthens
feature propagation, and reduces the number of parameters [15,16]. By considering all
facts, a novel Deep Learning (DL) model that combines an LSTM on top of the bottleneck
features extracted by initializing the weights of the pre-trained DenseNet architecture CNN
that has already been trained on ImageNet is proposed. This hybrid model learns both
intraslice and interslice features from the brain MRI data using CNN and LSTM.

This article discusses how to optimize the performance of a neural network for clas-
sifying sliced MRI data. The primary emphasis of this study is on the network’s use of
various channels. In other words, the network will use all slices simultaneously rather than
just one. The enhancement should come from common characteristics across numerous
slices [17]. The Ant-Colony Optimization (ACO) [18] method was used to preprocess and
denoise, while the Modified Fuzzy C-means (MFCM) algorithm performed clustering and
feature extraction. The primary contributions and objectives of this manuscript may be
summarized as follows:

• The fast feature extraction method for merging deep features collected from
various parameters;

• Weight randomization reduces the breach among feature maps in the concatenation of
fully connected layers;

• The hybrid model trained with CNN with LSTM model for the early diagnosis of AD;
• The development of the hybrid model meets the purpose of the research in detecting

the adaptation of progressive MCI people to stable people;
• Additionally, this model achieves its secondary purpose by forecasting advancing

individuals’ time-to-AD classes more accurately.
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This study presents the multimodal DL approach for the early detection of AD (Multi-
DL). A method for early detection of AD uses multimodal imaging and CNN with the LSTM
algorithm. We generate MCI graphs utilizing a variety of data-gathering technologies and
gender information. This solution successfully addresses the issue of individual variance,
and the linkage of data between participants enhances the discriminability of various stages
of MCI. The findings demonstrate that this strategy produced substantial prediction results
after comprehensive validation.

DNN is a technique that is gaining traction among current approaches due to its
efficacy in diagnosing AD. This work presents a novel hybrid DL-enhanced Adam optimizer
for AD diagnosis using Python software.

Additionally, we utilized the expected rise in the cost of care for an AD patient. AD
has surpassed cancer as the sixth biggest cause of death in the United States. Consequently,
tailored computer-assisted methods are necessary for the precise and timely identification
of this illness [19].

Alickovic et al. [1] presented a framework to identify AD using ML methods. His-
tograms are applied to change brain images to feature vectors that consist of pertinent
“brain” features in the first stage. After this, ML techniques are applied for classification and
identifying AD. The presented model has been elaborated using the current contribution
that demonstrates a satisfactory level of performance. The experiment results prove that the
RF classifier could discriminate AD subjects from control subjects. The proposed approach
contains a histogram in the form of a feature extractor and the RF as its classifier with an
accuracy of 85.77%.

Akbarpour et al. [2] presented classified statistical traits into many clusters using an
unsupervised technique that segmented the data first—labeling individuals inside clusters
and rearranging the images aided in obtaining their final picture. The outcome of this
quantitative study demonstrated an optimal mix of fusion and segmentation, resulting in
improved quantitative measures.

Cui et al. [3] provided a classification system for AD based on convolutional and
recurrent neural networks (RNNs). To begin, CNN was developed to learn spatial elements
in MR images for categorization. The RNN and cascaded Bidirectional Gated Recurrent
Unit (BGRU) layers were developed utilizing CNN outputs at different periods to extract
longitudinal characteristics in AD classification. Rather than extracting features individu-
ally, the strategy recommended learning spatial and longitudinal characteristics together
to optimize performance. Additionally, the suggested technique would use an RNN to
construct a longitudinal study using imaging data collected at various periods in time.
The findings demonstrated that the suggested technique produced a higher accuracy of
around 91.33% when comparing AD to NC and 71.71% when comparing Progressive Mild
Cognitive Impairment (pMCI) to Stable Mild cognitive impairment (sMCI).

Kowalski and Łukasik [10] contrasted the KH optimization algorithm employed for
ANN learning and other heuristics and traditional methods. The ANN technique was
verified for classification. Several benchmark examples were obtained from the UCI ML
Repository and applied along with the sum of Square Error and Classification Error as
evaluation parameters. A conclusion was made that implementing the KH showed great
performance for the criteria mentioned earlier and in the time needed for ANN training.

Liu et al. [11] proposed multitasking feature selection, a technique to preserve inter-
modality and enforce feature sparseness in each modality. As soon as features are selected,
the multi-kernel SVM is employed to incorporate the features selected through a classi-
fication modality. This method was evaluated using the MRI images of the subjects and
the baseline Positron Emission Tomography (PET) duly obtained from the database of
the ADNI.

Yue et al. [16] proposed another novel Voxel-based Hierarchical Feature Extraction
(VHFE) technique to diagnose AD at an early stage. It parcellates the entire brain into
90 different ROIs using a template Automated Anatomical Labeling (AAL). For splitting
uninformative data, informative voxels for each ROI using a baseline of values were
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employed and arranged into one single vector. The first stage of these features was chosen,
and the brain feature maps for every subject using voxels were fed to the Convolutional
Neural Networks (CNN). Lastly, to validate the method’s effectiveness, the authors tested
them on a subset of an ADNI database. The testing results proved the robustness of the
method compared to other methods.

Zheng et al. [17] proposed another new presentation of a summary of all current
protocols for the automatic detection of dementia from their actual perspective and patterns
in classification. Since the protocols consist of feature extraction in all these cases, three
different types of techniques were offered. The vertex, voxel, including RoI-based and group
classification algorithms: the SVM, Artificial Neural Networks (ANN), Linear Discriminant
Analysis (LDA), and Bayes classifier. The final execution of these classifiers proved that
there were many protocols to distinguish AD from Head Circumference (HC) aside from
the accuracy.

Shankar et al. [20] proposed an approach for AD and Brain Image Analysis (BIA). In
the initial stage, unwanted regions in the images are removed. After this, several features,
like texture scale-invariants, transform, and histograms were extracted. Group Grey Wolf
Optimization (GGWO) techniques increase the detection performance with a decision tree,
CNN, and KNN classifiers. They are used for identifying a reduced set of features without
reducing performance. This approach obtained 96.23% accuracy in AD detection compared
to other competitive schemes.

Problem formulation is taken as:

• The FCM algorithm’s distance measures have unequal clusters of lower accuracy,
so we move to the MFCM algorithm for image segmentation and clustering to gain
higher accuracy;

• The training data and the model utilizing it seek equal importance in prediction; hence,
we implemented a hybrid training model as CNN with LSTM for higher training and
perfect prediction;

• Adam’s does not converge to an optimal solution in some areas, and it can suffer a
weight decay problem, so we proposed an improved Adam’s optimizer. Then, the
early AD prediction is much easier.

The rest of this article is organized in the same manner. The suggested model is shown
in Section 2. Section 3 summarizes the study’s findings. Finally, Section 4 outlines the
conclusion and future work.

2. Materials and Methods

The hybrid system’s primary objective is to detect AD early. Brain atrophy is a
crucial factor in the diagnosis of AD. The MRI dataset values are preprocessing and noise
removal using the ACO algorithm. The MFCM image segmentation technique identifies
brain atrophy, and the atrophy of the cerebral cavity was verified using image gradients.
A gradient in a photograph refers to a variation in the image’s color or intensity. The
combination of the CNN+LSTM algorithm has been used to train the dataset for up to
20 epochs. The optimization and classification procedure has been done by the IAO method.
The previous method employs a straightforward procedure and a modest level of visual
complexity. The proposed technology eliminates early detection without causing brain
damage and completes 98.5% of the indicated procedures. Deep Learning methods classify
the patient as stable, first-stage AD, second-stage AD, or moderate cognitive dysfunction.
The proposed system contributes to the medical imaging field, and it showed higher
accuracy performance when compared to other existing ones. The early detection and
classification of AD are more accurate in the proposed system, as shown in Figure 2.
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2.1. Dataset Collection

The proposed work aims at the early detection of AD. The data sets play an important
role as the training data is needed to train the model for performing the needed actions.
Most of the data in the data set used for training the model and data set is also separated
into test data. The proposed system executes the algorithm on AD-related datasets ob-
tained from Kaggle with 512 MRI images and the Munich database with 112 PET images;
Figures 3 and 4 show the sample image data.
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Figure 4. Sample PET scan image showing an Alzheimer’s affected brain. Noted is the size of the
enlarged ventricles.

The Non-demented, average, very mild, mild demented, and moderate demented
MRI images in Figures 2 and 3 show the sample PET scan image.

2.2. Pre-Processing Stage

The preprocessing phase improves the image’s accuracy and lowers noise. Because
brain images are more sensitive than other medical imaging, there must be as little noise
as possible while maintaining optimum visibility. The image conversion from color to
grayscale, resizing the image, reshaping the image, sharpening the image, etc. are taken up
in preprocessing the image

Techniques for preprocessing MRI images increase the identification of suspicious
regions. The preprocessing and augmentation technique comprises two steps: first, a
tracking algorithm eliminates film artifacts from the MRI, such as labels and X-ray markers.
Second, high-frequency components are deleted using the ACO approach. Pre-processing
with tracking functions that include noise reduction is often required before doing de-
tailed data evaluation and extraction and is commonly categorized as a radiometric or
geometric enhancement.

Based on the route’s pheromone content and the interpretation of the heuristics, high-
frequency components are selected. This is how nodes are built in MRI. During the building
process, an ant k uses a probabilistic action selection rule to decide which node to move
to next depending on the chance that ant k will choose from the current node i to the
next node:

pk
ij

[
Tij
]α
[nij]

β

∑k
Ni

[
Tij]α[nij]β

i f j ∈ Nk
i (1)

where Tij illustrates the concentration of the arc from node i to node j, Nk
i Illustrates the

neighborhood nodes for an exact ant k, provided it is on node i. The constants α and β
indicate the pressure of the content and heuristic equally.
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2.3. Image Segmentation and Clustering

The area of interest’s orchestrated location is determined, and the chosen region is
planted and zoomed in. This image is used to modify the pixel’s intensity. Pixels are
referred to as white or black in the picture, depending on their brightness. The white
area illustrates living tissue, whereas the black area illustrates dead tissue. The number
of white and black pixels is computed, and if the black pixel number is very low, the
patient is deemed healthy. According to the black pixel ratio, the patient has a slight
learning impairment, AD, or is healthy. Thresholding is a widely used technique for
picture segmentation. Grayscale or pixel power segmentation is achieved in this image
segmentation technique. It is two-tier thresholding for classifying pixels into two groups
based on the intensity of the image pixels.

Given, X = {x1, . . . .xn}⊂ Rp, the FCM partitions X into c fuzzy subsets by reducing the
following objective function

J(U, V) = ∑c
i=1 ∑n

k=1 Um
i ‖X−Vi‖2 (2)

where c is the number of clusters, which is favored in this study as a predetermined
significance level, n denotes the number of data points, Uik is the membership of Xk in

class t, satisfying
c
∑

i=1
uik = 1, m the quantity controls clustering fuzziness, and v the set

of cluster centers or prototype (vi€ Rp). A well-known alternating iterative algorithm
minimizes the function Jm.

Now consider the proposed MFCM algorithm. Describe a nonlinear map as ∅x →
∅(x) ∈ F , where x € X, X represents the data space, and F represents the transformed feature
space with higher, even infinite dimension. MFCM reduces the following objective function:

J(U, V) = ∑c
i=1 ∑n

k=1 Uim ‖∅(X)−∅(Vi)‖2 (3)

|| ∅(XK) −∅(Vi)||2= K (XK, XK)+K (Vi, Vi)− 2K (XK, Vi) (4)

where K(x,y) = ∅(x)T∅(y) is an inner product kernel function. If we adopt the function as
a kernel function, i.e.,

K(x,y) = exp (−‖x− y‖2/σ2), then K(x,x) = 1, according to Equation (5), Equation (6)
can be rewritten as:

J(U, V) = 2 ∑c
i=1 ∑n

k=1 Um
i (1− K(Xk, Vi)) (5)

Minimizing Equation (6) under the constraint of µik, we have:

µik =
(1/(1− K(xK, vi)))

1
m−1

∑c
j=1 (1/(1− K(xK, vi)))

1
m−1

(6)

Vi =
∑n

k=1 Um
ik K(Xk, Vi)Xk

∑A
k=1 Um

ik K(Xk, Vi)
(7)

Here we presently use the function for effortlessness. Equivalent modifications will be
found in Equations (8) and (9) if we use other kernel functions. Equation (3) can be viewed as
a kernel-induced new metric in the information space, defined as the subsequent equations:

d(x, y) =|| ∅ (xk )−∅ (vi) || =
√

2(1− k(x, y)) (8)

It can be proved that d(x,y) defined in Equation (8) is a metric in the innovative space
in the case k(x,y) takes as the function.

According to Equation (8), the information point xk is endowed with an extra weight
k(xk,vi), which measures the correspondence between xk and vi, and when xk, is an outlier,



Biomedicines 2023, 11, 149 8 of 16

i.e., xk is far from further data points, then k(xk,vi) will be very little. As a result, the
weighted aggregate of data points will be more balanced.

Clustering methods are uncontrolled segmentation techniques that separate an image
into comparable intensity pixel/voxel clusters without training images. Clustering algo-
rithms use accessible picture data for self-practice. The segmentation and planning were
conducted in two steps: data clustering and tissue sort estimation features.

jm = ∑c
i=1 ∑N

j=1 um
ijDij

(9)

Each region is lit independently, depending on the cluster’s position. It is processed
at a high rate of noise cancellation with poor homogeneity figures and a high rate of
morphologic image filtering.

The points, edges, objects, etc., are the most common features seen in an image. A
feature may be thought of as a piece of information about the content of a picture; the
information shows whether or not a certain portion of the image has specific attributes.
The classification of the feature details based on generated and formulated information is
registered with the binary texture pattern.

2.4. Training Procedure

The proposed hybrid framework is displayed in Figure 5. The input image is trained
with CNN with LSTM and features.

Biomedicines 2023, 10, x FOR PEER REVIEW 8 of 16 
 

d(x,y) = || ∅ (𝑥௞) − ∅ (𝑣௜) || = ඥ2(1 − 𝑘(𝑥, 𝑦)) (7)

It can be proved that d(x,y) defined in Equation (8) is a metric in the innovative 
space in the case k(x,y) takes as the function. 

According to Equation (8), the information point 𝑥௞  is endowed with an extra 
weight k(𝑥௞,𝑣௜), which measures the correspondence between 𝑥௞ and 𝑣௜, and when 𝑥௞, 
is an outlier, i.e., 𝑥௞ is far from further data points, then k(𝑥௞,𝑣௜) will be very little. As a 
result, the weighted aggregate of data points will be more balanced. 

Clustering methods are uncontrolled segmentation techniques that separate an im-
age into comparable intensity pixel/voxel clusters without training images. Clustering 
algorithms use accessible picture data for self-practice. The segmentation and planning 
were conducted in two steps: data clustering and tissue sort estimation features. 𝑗௠ = ∑ ∑ 𝑢௜௝஽೔ೕ௠ே௝ୀଵ௖௜ୀଵ   (8)

Each region is lit independently, depending on the cluster’s position. It is processed 
at a high rate of noise cancellation with poor homogeneity figures and a high rate of 
morphologic image filtering. 

The points, edges, objects, etc., are the most common features seen in an image. A 
feature may be thought of as a piece of information about the content of a picture; the 
information shows whether or not a certain portion of the image has specific attributes. 
The classification of the feature details based on generated and formulated information is 
registered with the binary texture pattern. 

2.4. Training Procedure 
The proposed hybrid framework is displayed in Figure 5. The input image is trained 

with CNN with LSTM and features. 

 
Figure 5. The hybrid framework model shows the multiple deep feature extractors by LSTM and 
CNN and is Adam optimized to classify the input image as Alzheimer affected or non-demented. 

  

Figure 5. The hybrid framework model shows the multiple deep feature extractors by LSTM and
CNN and is Adam optimized to classify the input image as Alzheimer affected or non-demented.

a. Convolutional Neural Network
Initially, CNN was employed to handle difficulties with picture recognition. It is cur-

rently limited to photographic and video images and is used to represent time-series signals
such as audio and text. The advantage of CNN is the localized convolutional weight-sharing
structure, which allows for large reductions in the size of the neural network, avoidance of
overfitting, and reduction in model complexity. By using spatial structural linkages, CNNs
may minimize the number of parameters to learn. As a consequence, backpropagation
algorithms’ efficiency during training may be boosted. The first convolutional layer of
CNN receives input directly from the pixels of the picture. Each convolution operation
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takes a limited number of pictures, performs convolutional modifications, and transfers
the data to the back network. Each convolutional layer extracts the data’s most efficient
characteristics. CNN may be defined using its graph-theoretic formulation. The convolu-
tion filter’s parameters are shared across all sites in the network layer. The feature map
calculates the spatial feature by computing the weighted average of the center pixel and
the neighboring pixels. Our model defines the network layer as follows:

Hl+1 = f (Hl , A) (10)

f
(

Hl A
)
= σ

(
AHlW l

)
(11)

where Wl denotes the weight matrix of the lth layer neural network and is a non-linear
active function. As a result, we may use LSTM with CNN to replace the kernel with an
optimizable graphical convolutional network model.

b. LSTM
It is possible to associate prior data with the current task using the LSTM, a recurrent

neural network. A fully connected and activated LSTM network is then created to capture
the temporal relationship between features and the next stage of AD. The LSTM technique
avoids the problem of long-term dependence via a series of repeated neural network
modules. Each patient’s extracted features are combined with MRI data previously entered
into the LSTM cell. The output is fed into a single fully connected layer to convert the
LSTM’s multidimensional output to one with a probability between 0 and 1. This network
will be trained to forecast a patient’s chance of getting Alzheimer’s disease over the next
five years, balancing that probability with a loss function that collects diagnoses for specific
individuals over time.

ft = σ
(

W f .[ht−1, xt] + b f

)
(12)

i = σ
(

W f .[ht−1, xt] + b
)

(13)

ht = ot∗ tan h(Ct) (14)

The worth of ot in Equation (14) decides which element of the unit will be the produc-
tivity. The new cell state Ct is multiplied by ot, and the function tanh is chosen to obtain ht
in Equation (9), the input of parts ij. The LSTM can learn long-term dependencies; a model
expressing the course of AD is developed using the LSTM.

Next, combine feature encoding from CNN with feature encoding from past images
for the patient. New memory c(t) is generated by using the input data x(t) and the precedent
hidden state h(t−1) (note that W and U refer to weights and parameters.)

ct = tan h(wcxt + Uch(t−1)) (15)

Using the input data and the previous concealed state, the input gate generates a result i(t)

to gate the new memory, determining what information is valuable and should be remembered.
c. Improved Adam’s Optimization
The suggested approach includes several data fields used to calculate the average

data for the categorized segment. Several criteria must be completed before Medicare
reimburses a PET scan for people living with dementia. Frontotemporal dementia is
suspected due to the start, clinical presentation, and curve of cognitive impairment. A full
clinical assessment is required, including a physical and mental status examination that
demonstrates a cognitive deterioration lasting at least six months and neuropsychological
testing, laboratory tests, and structural imaging.

The improved Adam approach improves the hidden layers and target function, re-
sulting in a considerable reduction in error rates. The corrected Adam optimizer does not
require stationary targets based on sparse gradients. The model’s parameters are: Softmax
learning rate is 50, sparsity percentage is 0, scale data is fake, L2 weight regularization
is 0.005, hidden layers are 100, and sparsity regularization is 5. The maximum iteration
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is 10. Softmax’s learning rate is 50. The maximum number of iterations is 10, and the SAE
learning rate is 50.

3. Results and Discussions

The proposed deep learning algorithms are assessed using a test dataset (n = 512 MRI
scans and 112 PET images) that comprises 60% of the total data. Separate from the training
dataset, the test dataset is used to assess the model’s generalizability and ability to make
predictions on previously unknown data. Stratification is used to balance the classes
included within the two databases. The hybridized model is qualified and evaluated
repeatedly (n = 20 epochs) to get the outcome shown in Table 1.

Table 1. 20-epochs data with training loss, test accuracy.

Epoch Training Loss Test Accuracy Epoch Training Loss Test Accuracy

1 21.77 92.56 11 12.23 97.12
2 21.28 93.41 12 11.45 97.86
3 19.20 94.54 13 10.56 97.92
4 18.34 94.78 14 9.89 98.11
5 17.34 94.89 15 9.12 98.14
6 16.32 95.12 16 7.89 98.34
7 15.77 95.67 17 6.89 98.37
8 14.67 95.89 18 6.78 98.41
9 13.56 96.78 19 5.89 98.45

10 13.12 96.89 20 5.67 98.51

The proposed model obtains a standard accuracy of 92.8% and 98.5% on the test
dataset. When the receiver operating characteristic (ROC) area under the curve (AUC)
is evaluated, the model performs better, with an average value of 0.80 to 0.83. When
the boxplots in Figure 6 are compared, the accuracy and ROC for conversion and risk
classification are comparable. On the other hand, specificity has a far greater conversion
variety than risk, with values as low as 7.3% and as high as 92.3%. In general, the model
outperforms random classification when identifying patients with progressive MCI and
time to admission. The proposed hybrid model is 19.8% more accurate than random chance
differentiating pMCI from sMCI patients (50%). Compared to random chance, the model
correctly classifies patients with pMCI into their proper time-to-admission group by 33.9%.

This research aims to develop a convolutional neural network–LSTM hybrid capable of
discriminating moderately cognitively impaired individuals who progress to AD from those
who remain stable. Additionally, the proposed model anticipates the period required for
AD conversion, classifying those who indicate that conversion will occur within 24 months
(large risk) or greater (little risk) and those who have no risk (sMCI).

The data gathered are baseline measures taken at an individual’s first visit. Cross-
sectional data replicate the circumstances of an individual’s first healthcare visit.

The proposed hybrid model is constructed using a range of contemporary high-
performance techniques. The literature review summarizes recent advancements in early
AD prediction research in terms of preprocessing and Deep Learning approaches. Existing
research has produced a variety of methods for predicting pMCI vs. sMCI, many of
which include an image listing of the MRI information in their preprocessing pipeline.
Additionally, effective results surpassing 80% in cross-validation accuracy and AUC may
be ascribed to domain learning to extract the most valuable auxiliary features from a related
domain, i.e., AD vs. cognitively normal categorization. Each linked experiment improved
the validation accuracy when domain learning was utilized.

The MRI image classified results are displayed in Figure 7. Dementia has been classi-
fied in each image as a particular region.
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The proposed model has been compared with various methods like PCA, CNN,
Resnet18, and DCNN. Table 2 illustrates the accuracy, precision, and recall values and the
comparison chart in Figure 11.

Table 2. Accuracy, precision, recall.

Model Accuracy Precision Recall

PCA+NN 95 91 98
3D CNN 93 93.18 90
Resnet18 97.88 98.10 97.89

LSTM 78.72 68.96 58.66
CNN 92 91 93

Hybrid (CNN+LSTM) 98.5 94.8 98
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Concerning the paper’s aims and objectives, the development of a hybrid model
meets the research objectives since it can identify the conversion of stable MCI persons to
advancing MCI individuals. Additionally, the model accomplishes its secondary objective
of anticipating developing individuals’ time in AD class with greater accuracy. However,
the findings of Multi-validation DL show that extra effort is required to build the model’s
architecture and optimize its hyperparameters. Due to the limited amount of data and
the pipeline’s conformity to current standards, the only way to improve feature extraction
and performance is to alter these steps. Maximizing the utilization of existing data in a
domain with little data is vital. Domain learning may be one strategy for improving the
identification and prediction of advancing MCI and its progression to AD. According to a
literature survey on current approaches, domain learning has shown a favorable effect on
model performance and the number of articles that employ the method. While training
the weights of the model to detect the characteristics of auxiliary AD in addition to non-
AD classes will not improve the model’s presentation of the core issue, it will speed the
convergence and hence reduce the training time.

Segmentation of the brain is another approach that may enhance performance. Brain
segmentation (temporal, parietal, prefrontal, and occipital lobes) allows parallel three-
dimensional convolutional layers to extract more precise information from these areas,
condensing the complicated feature space. A more compact feature area should make it
easier to find useful features.

4. Conclusions

Recent advances in biomedical engineering have elevated the study and interpretation
of medical pictures to critical research fields. One of the reasons for this advancement in
medical image analysis is the use of DL. Classification by DL has been mostly employed
during the last year. Automatic early detection of AD is an AI-based technology that
satisfies physicians’ major aims. Thus, an automated framework and classification system
for AD based on MRI images are crucial for the early detection of AD patients. A hybrid
approach is proposed for predicting early AD using MRI data. The two datasets [21] used
in this study were 512 MRI and 112 PET pictures for training. ACO performed the noise
reduction process, MFCM performed the picture segmentation process, and CNN and
LSTM performed the training process. Finally, categorization was accomplished via deep
neural networks, which improved Adam’s optimization strategy. The suggested technique
is compared to several other methods. The accuracy level of the proposed model has been
increased to 98.5%. Among the findings obtained with various epoch sizes, a significant
result was achieved with an epoch size of 20 and an accuracy rate of 98.5%.
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In the future, we anticipate and encourage more effort. Thus, the outcome might be
enhanced by using a deep CNN with transfer learning methods.
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