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Abstract: Inflammation is associated with changes in plasma lipids, lipoproteins, and cholesterol
efflux capacity (CEC). It is unknown if the changes in lipids and lipoproteins during inflammation
are related to changes in cholesterol absorption, synthesis, and bile acid synthesis. We, therefore,
examined the effects of acute lipopolysaccharide (LPS)-induced transient systemic inflammation
on lipids, lipoproteins, CEC, and markers of cholesterol metabolism. We also evaluated whether
markers for cholesterol metabolism at baseline predict the intensity of the inflammatory response.
Eight healthy young subjects received LPS infusion, and blood was sampled for the following 24 h.
In addition to lipids, lipoproteins, and CEC, we also measured markers for cholesterol absorption
and synthesis, bile acid synthesis, and inflammation. Compared with baseline, plasma total choles-
terol, low-density lipoprotein cholesterol, and CEC decreased, while triglycerides increased in the
24 h following LPS infusion. TC-standardized levels of cholesterol synthesis markers (lathosterol,
lanosterol, and desmosterol) and a bile acid synthesis marker (7x-OH-cholesterol) also decreased,
with no changes in cholesterol absorption markers (campesterol, sitosterol, and cholestanol). Base-
line TC-standardized levels of desmosterol and 7«-OH-cholesterol were positively correlated with
concentrations of various inflammatory markers. Changes in TC-standardized desmosterol and
7x-OH-cholesterol were negatively correlated with concentrations of inflammatory markers. LPS
infusion reduced endogenous cholesterol synthesis and bile acid synthesis in healthy young men.

Keywords: LPS-induced inflammation; cholesterol absorption; cholesterol synthesis; bile acid
synthesis; non-cholesterol sterols

1. Introduction

Atherosclerosis is a process underlying the development of cardiovascular diseases
(CVDs), which are the leading cause of mortality worldwide [1]. Lipid abnormalities
are a well-known risk marker for the development of atherosclerosis [2]. However, evi-
dence highlighting the importance of inflammation in the initiation and progression of
atherosclerosis is expanding rapidly [3]. For example, lowering inflammation by targeting
interleukin-1beta (IL-1f3) reduced the occurrence of CVD events, even when lipid profiles
were not affected [4]. In addition to the direct effects of inflammation on the vasculature [5],
there are also clear indications that inflammation may affect serum total cholesterol (TC),
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high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
and triglyceride (TG) concentrations [6,7]. Moreover, alterations in not only circulating
levels of HDL but also HDL composition, size, and functionality have been observed
during inflammation [8-10], but the studies are not conclusive [11]. Although these asso-
ciations between inflammation and circulating lipoproteins are now acknowledged, it is
unclear whether changes in plasma lipid and lipoprotein concentrations and decreases
in HDL functionality during inflammation are related to changes in intestinal cholesterol
absorption, endogenous cholesterol synthesis, and/or bile acid synthesis, which are main
processes regulating cholesterol homeostasis. However, the etiologies of inflammatory dis-
eases are very different, which makes it difficult to compare studies. Therefore, infusion of
lipopolysaccharide (LPS), a toxin derived from Gram-negative bacteria, has been proposed
as a controlled experimental setting and model to induce a transient acute phase response
without the presence of an infection [12,13]. Indeed, a clear inflammatory response and en-
dothelial cell activation upon LPS infusion have frequently been observed [13]. Others have
shown changes in serum lipid and lipoproteins concentrations such as reductions in TC and
increases in TG after LPS administration in humans [6,14]. In addition, inflammation was
associated with alterations in HDL composition and size and with decreased functionality
following 24 h of LPS infusion [15], while the effects of LPS-induced inflammation on key
processes regulating cholesterol homeostasis are unknown.

Analyzing intestinal cholesterol absorption, endogenous cholesterol synthesis, and
bile acid synthesis usually requires the laborious stable isotope tracer methodology [16-18].
However, plasma non-cholesterol sterols are frequently used as markers for evaluating
changes in cholesterol metabolism. The cholesterol precursors desmosterol and lathos-
terol reflect endogenous cholesterol synthesis, while the non-cholesterol sterols sitosterol,
campesterol, and cholestanol reflect fractional intestinal cholesterol absorption [19]. Finally,
7x-OH-cholesterol and 27-OH-cholesterol can be used as markers for bile acid forma-
tion [20]. Interestingly, some of these non-cholesterol sterols might also affect inflammatory
responses, i.e., for the cholesterol precursor desmosterol as well as for several oxysterols,
anti-inflammatory effects have been described via activating liver X receptors (LXR) [21].
Therefore, we decided to evaluate the effects of acute LPS-induced transient systemic
inflammation on plasma lipid and lipoprotein concentrations, HDL functionality, and
markers reflecting cholesterol metabolism (absorption, synthesis, and bile acid formation).
In addition, it was examined whether the baseline characteristics of these markers were
able to predict the LPS-induced transient inflammatory response.

2. Materials and Methods
2.1. Subjects and Study Design

This study had a randomized, placebo-controlled, single-blind, parallel design and
was carried out at the Center of Experimental and Molecular Medicine, Academic Medical
Center, University of Amsterdam, The Netherlands. Details of this study have been
described elsewhere [13]. Briefly, 32 healthy men were divided into 4 treatment arms:
infusion of placebo (Ringer’s lactate solution) or allogeneic adipose MSCs, intravenously,
at three doses. Next, all 32 participants received over a 1-min period one single dose of LPS
intravenously (2 ng/kg from Escherichia coli, a U.S. standard reference endotoxin, kindly
provided by Anthony Suffredini, National Institute of Health, Bethesda, MD, USA) one
hour after placebo or MSC infusion. From this randomized study, we selected the eight
participants from the placebo arm that received LPS infusion, while saline was infused
as a placebo. The samples of these eight participants before and 24 h after LPS infusion
and saline infusion were analyzed. The data for non-cholesterol sterols, plasma lipids
and lipoprotein concentrations, and CEC are entirely novel and have not been published
before. All the participants were apparently healthy young men and had normal medical
histories, physical examinations, hematological and biochemical screening values, and
electrocardiograms [13]. This study was approved by the Dutch Central Committee on
Research involving Human Subjects (CCMO) and the Medical Ethical Committee of the
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Academic Medical Center (METC CX611-012), Amsterdam (The Netherlands) and was
registered at ClinicalTrials.gov as NCT02328612. Written informed consent was obtained
from all the participants before the start of this study.

2.2. Blood Sampling

Blood samples were collected in EDTA tubes at baseline (T0), as well as 0.5, 1, 2, 3, 4, 5,
6,7,8,9,10, and 24 h after LPS infusion. Plasma samples were obtained with centrifugation
at 1750 x g for 10 min at 4 °C and stored in small aliquots at —80 °C until use.

2.3. Biochemical Analysis

In the samples collected at baseline and after 24 h, plasma TC (CHOD-PAP method;
Roche Diagnostic, Mannheim, Germany), HDL-C (CHOD-PAP method; Roche Diagnostic,
Mannheim, Germany), and TG concentrations were analyzed enzymatically (GPO-Tinder;
Sigma-Aldrich Corp., St. Louis, MO, USA). In these samples, plasma LDL-C concentrations
were calculated using the Friedewald equation [22]. HDL functionality, defined as the
capacity of radioactive cholesterol efflux from cultured J774 macrophages, using liquid scin-
tillation counting was determined as described elsewhere [23]. Markers for inflammation
were analyzed in the plasma samples collected at all time points as described [13].

2.4. Non-Cholesterol Sterol and Oxysterol Concentrations

In the samples collected at baseline and after 24 h, plasma non-cholesterol sterol
and oxysterol concentrations were analyzed using gas-liquid chromatography-mass spec-
troscopy (GC-MS) as described before [24,25]. Concentrations of non-cholesterol sterols
and oxysterols were standardized for TC concentrations and expressed as umol/mmol and
nmol/mmol cholesterol, respectively. The measured non-cholesterol sterols were campes-
terol, sitosterol, cholestanol, lathosterol, lanosterol, and desmosterol. TC-standardized
sitosterol, campesterol, and cholestanol values were considered as markers for fractional
intestinal cholesterol absorption, and TC-standardized lathosterol and desmosterol values
as markers for endogenous cholesterol synthesis. The measured oxysterols were 24-OH-, 27-
OH, and 7x-OH-cholesterol. TC-standardized 7x-OH- cholesterol and 27-OH-cholesterol
values were considered as markers for bile acid formation [20].

2.5. Statistical Analyses

The data are presented as means & SEM in figures and means & SD in tables. The
normality of the data was assessed using the Kolmogorov—Smirnov test. In case of non-
normally distributed data, the median and ranges are presented. A paired two-tailed Student’s
t-test was used to examine differences between lipid and lipoprotein concentrations, HDL
functionality, non-cholesterol sterols, and oxysterol and cytokine concentrations at baseline
and 24 h after LPS infusion. To evaluate the overall inflammatory responses, the incremental
areas under the curves (iAUCs) for 24 h after LPS infusion were analyzed using GraphPad
Prism version 9.00 for Windows (GraphPad Software, San Diego, CA). Maximal changes
(iMAXs) for a parameter were calculated by subtracting baseline (T0) concentrations from
their maximal concentrations. The associations of baseline concentrations as well as changes in
non-cholesterol sterol and oxysterol concentrations with the iMAXs or iAUCs of the cytokines
were statistically evaluated by calculating the Pearson correlation coefficients. A p-value < 0.05
was considered to be statistically significant. All statistical analyses were performed using
SPSS 27.0 for Windows (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Lipids and Lipoproteins

Eight healthy Caucasian men with a median age of 23 years (range: 19-25) and a
body mass index of 24 kg/m? (22-26) were included in the placebo arm. Plasma TC and
LDL-C concentrations were significantly decreased 24 h after LPS infusion ((—0.21 mmol/L;
95% CI: —0.36, —0.05; p < 0.05) and (—0.49 mmol/L; 95% CI: —0.72, —0.26; p < 0.01),
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respectively) compared with baseline (Figure 1). However, plasma TG concentrations were
significantly increased by 0.34 mmol/L (95% CI: 0.07, 0.61; p < 0.05) 24 h following LPS
exposure compared with baseline. There were no changes in plasma HDL-C concentrations
24 h after LPS infusion. However, despite unchanged HDL-C concentrations, cholesterol
efflux capacity as a measure of HDL functionality was decreased 24 h following LPS
infusion compared with baseline (—8.2%; 95% CI: —15.25, —1.26; p < 0.05) (Figure 2).
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Figure 1. Fasting plasma lipid and lipoprotein concentrations at baseline (white bars) and 24 h
following LPS infusion (grey bars) (1 = 8). Data are presented as means 4 SEM. Significantly different
from baseline: * p < 0.05; ** p < 0.01. TC: total cholesterol; TG: triglyceride; HDL-C: high-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol.
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Figure 2. Percentage of cholesterol capacity efflux at baseline (white bar) and 24 h following LPS
infusion (grey bar) (n = 8). Data are presented as means 4+ SEM. Significantly different from baseline
(* p < 0.05). Values are expressed relative to those of a plasma pool of healthy volunteers, which was
set at 100%.

3.2. Non-Cholesterol Sterols and Oxysterols

Plasma cholesterol-standardized concentrations of non-cholesterol sterols at baseline
and 24 h after LPS infusion are shown in Figure 3. Values for the intestinal cholesterol
absorption markers, the TC-standardized levels of campesterol, sitosterol, and cholestanol,
were comparable at baseline and 24 h after LPS exposure (Figure 3A). However, TC-
standardized levels of the endogenous cholesterol synthesis markers lathosterol, lanos-
terol, and desmosterol were all significantly lower at 24 h after LPS infusion compared
with baseline (Figure 3B). For lathosterol, levels were —0.21 pmol/mmol (95% CI: —0.36,
—0.07; p < 0.01) lower 24 h after LPS infusion compared with baseline, for lanosterol
—0.23 umol/mmol (95% CI: —0.05, 0.00; p < 0.05), and for desmosterol —0.12 umol/mmol
(95% CI: —0.20, —0.03; p < 0.05).
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Figure 3. Cholesterol-standardized levels of cholesterol absorption markers (panel (A)) and choles-
terol synthesis markers (panel (B)) at baseline (white bars) and 24 h after LPS infusion (grey bars)
(n = 8). Data are presented as means £ SEM. Significantly different compared with baseline: * p < 0.05;
*3%

p <0.01.

As shown in Figure 4, TC-standardized levels of oxysterols were comparable at base-
line and 24 h after LPS infusion. For 7a-OH-cholesterol, there was a borderline significant
decrease of —8.07 nmol/mmol (95% CI: —16.14, 0.01; p = 0.050) 24 h after LPS infusion
compared with baseline values. The absolute concentrations of non-cholesterol sterols
and oxysterols are shown in Table S1. The results were comparable to those observed for
cholesterol-standardized levels.
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Figure 4. Values at baseline (white bars) and 24 h after LPS infusion (grey bars) for cholesterol-
standardized oxysterols (1 = 8). Data are presented as means & SEM. # p = 0.050: trend compared
with baseline.

3.3. Inflammatory Responses

The plasma concentrations of a panel of inflammatory markers at baseline and 24 h
after LPS exposure as well as the changes are shown in Table 1. Concentrations of the acute
phase proteins albumin, C-reactive protein (CRP), and serum amyloid A (SAA) increased
24 h following LPS infusion compared with baseline (all p < 0.05). Of the pro-inflammatory
cytokines, only tumor necrosis factor (TNFo) concentrations increased 24 h after LPS
infusion, whereas IL-8 and IL12p40 concentrations remained unchanged. In addition,
concentrations of the anti-inflammatory cytokine IL-10 remained unchanged 24 h after LPS
infusion. Myeloperoxidase (MPO) concentrations, an enzyme released upon neutrophil
activation, were also increased in response to LPS infusion (p < 0.001).
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Table 1. Plasma concentrations of inflammatory markers before and after 24 h following LPS infusion
in all participants (1 = 8).

Mean £ SD p-Value
Albumin Baseline 38.43 + 1.60
/L) 24h 4059 + 2.32 0.033
J Change 216 +231
CRP Baseline 3.01 +4.42
(ma/L) 24h 24,50 + 6.83 <0.001
Change 21.49 +2.21
Baseline 3.02 +1.30
(TI\/H;‘I"L) 24h 3.76 +1.37 0.002
P& Change 0.74 + 045
L8 Baseline 0.32 +0.22
(b/mL) 24h 0.60 + 0.46 0.110
P& Change 0.29 + 0.45
IL-10 Baseline 0.19 + 0.09
(pe/mL) 24h 0.23 +0.13 0.457
P& Change 0.04 +0.15
Baseline 1.86 +1.13
(ILlfffLo) 24h 225 +2.12 0.355
P& Change 039 + 1.12
Baseline 5.40 + 1.89
(;AfL) 24h 6.64 + 1.95 0.017
8 Change 124 £1.13
Baseline 2.96+ 1.05
(nM/PrgL) 24h 5.70 + 1.56 <0.001
& Change 273 +133

CRP: C-reactive protein; TNFo: tumor necrosis factor; IL-8: interleukin 8; IL-10: interleukin 10; IL12p40: inter-
leukin 12p40; SAA: serum amyloid A; MPO: myeloperoxidase.

3.4. Correlations

We also questioned whether parameters related to cholesterol metabolism at baseline
were predictive for the intensity of the LPS-induced systemic inflammatory response. As
shown in Table 2, positive correlations were found between baseline TC-standardized
desmosterol levels and CRP concentrations at 24 h (r = 0.849; p < 0.001) as well as with
changes in CRP concentrations (r = 0.829, p < 0.05) and iMAX TNF«x concentrations
(r=0.917, p < 0.05). Moreover, positive correlations were also found between baseline
TC-standardized 7«-OH-cholesterol levels and iMAX IL-6 (r = 0.763, p < 0.05), iIMAX IL-8
(r=0.766, p < 0.05), and iMAX TNF« (r = 0.814, p < 0.05) concentrations, and iAUC IL-6
(r=0.869, p < 0.01). Furthermore, positive correlations were found between baseline TC-
standardized 27-OH-cholesterol levels and 24 h IL-8 concentrations (r = 0.771, p < 0.05) and
iAUC TNF« (r = 0.765, p < 0.05). Finally, positive correlations were found between baseline
TC-standardized cholestanol levels and iMAX MPO (r = 0.758, p < 0.05).

For changes, we found that changes in TC-standardized desmosterol and TC-standardized
7x-OH-cholesterol were both negatively correlated with iMAX IL-8 (r = —0.761; p < 0.05, and
r=—0.856, p < 0.01, respectively). Moreover, there were also negative correlations between
changes in TC-standardized 7«-OH-cholesterol and iMAX IL-6 (r = —0.751; p < 0.05), IMAX
TNFo« (r = —0.821, p < 0.05), and iAUC IL-6 (r = —904, p < 0.01).
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Table 2. Correlations between plasma non-cholesterol sterols, oxysterols, and inflammation responses .

Variable Variable Correlation p-Value

Baseline desmosterol 24 h CRP 0.849 0.008
Baseline desmosterol ACRP 0.829 0.011
Baseline 27-OH-cholesterol 24 h IL8 0.771 0.025
Baseline cholestanol iMAX MPO 0.758 0.029
Baseline desmosterol iMAX TNF«x 0.917 0.010
Baseline 7a-OH-cholesterol iMAXIL-8 0.766 0.027
Baseline 7x-OH-cholesterol iMAX IL-6 0.763 0.028
Baseline 7ax-OH-cholesterol iMAX TNF«x 0.814 0.049
Adesmosterol iMAXIL-8 —0.761 0.028
A7x-OH-cholesterol iMAX IL-8 —0.856 0.007
A7x-OH-cholesterol iMAXIL-6 —0.751 0.032
A7x-OH-cholesterol iMAX TNFax —0.821 0.045
Baseline 27-OH-cholesterol iAUC-TNF«x 0.765 0.027
Baseline 7a-OH-cholesterol iAUC-IL6 0.869 0.005
A7x-OH-cholesterol iAUC-IL6 —0.904 0.002

¥ Only significant Pearson coefficients are reported.

4. Discussion

This study demonstrates that in healthy young male subjects, a transient LPS-induced
inflammatory response lowers plasma TC and LDL-C concentrations as well as HDL
functionality measured as cholesterol efflux capacity, while plasma TG concentrations are
increased. Moreover, endogenous cholesterol synthesis as well as bile acid production were
reduced, while intestinal cholesterol absorption did not change. Finally, we found positive
correlations between baseline TC-standardized desmosterol and 7x-OH-cholesterol levels
with various markers for the inflammatory response and negative correlations between
changes in TC-standardized desmosterol and 7x-OH-cholesterol and markers for the
inflammatory response. This suggests that an acute LPS-induced transient inflammatory
response affects cholesterol metabolism.

Several in vitro, animal, and human studies have already reported possible effects
of inflammation on serum lipid and lipoprotein profiles, as well as on the composition,
structure, and functionality of HDL particles. Our results on TC and LDL-C concentrations
and on TG and HDL-C concentrations are largely in line with the earlier studies. Already in
the 1990s, two studies observed induction of hypertriglyceridemia upon LPS, TNF, or IL-1/3
exposure in rodents [26,27]. In humans, Hudgins et al. demonstrated reductions in serum
TC and LDL-C with no effect on HDL-C concentrations in six normal volunteers who were
provided with a small dose of endotoxin versus saline [14]. In addition, another study in
healthy volunteers, including 10 males and 10 females, reported no changes in serum HDL-
C concentrations after LPS infusion [28]. In a more recent study, Zimmetti et al. compared
59 subjects with infections, carcinomas, or autoimmune diseases with 39 controls without
infections. Although this study also reported lower serum TC and LDL-C concentrations in
patients with inflammation compared with controls, serum TG and HDL-C concentrations
were lower [11]. It should, however, be noted that this was a very heterogenous patient
population, which could explain the observed differences when compared with our and
other studies. During inflammation, the effects on lipoprotein metabolism are not limited
to changes in circulating concentrations, but also in HDL particles’ size, structure, and
functionality, at least in rodents [7]. In general, inflammation in humans seems to be
associated with increases in the HDL component SAA [9,10,28], which is consistent with
our observation. Unfortunately, we did not analyze HDL size but did evaluate changes in
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CEC, which is one of the postulated protective functions of HDLs and is negatively related
with CVD development [29]. The decrease in CEC after LPS exposure was in line with
other studies in humans upon LPS exposure [15,28,30] and in patients with inflammatory
diseases [31-34].

The question is how these changes in serum lipid and lipoprotein concentrations can
be explained. To the best of our knowledge, this is the first study that examined the effects
of transient LPS-induced inflammation on plasma markers for intestinal cholesterol ab-
sorption, endogenous cholesterol synthesis, and bile acid formation. In one cross-sectional
study, no differences in plasma non-cholesterol sterols between subjects with infections,
oncologic carcinomas, or autoimmune diseases and controls were reported [11]. However,
as already mentioned, the patient population in that study was highly variable, which
might have influenced the results. In contrast, we showed that cholesterol synthesis was
significantly reduced following LPS infusion, while cholesterol absorption remained un-
changed. Our data for cholesterol synthesis is in line with studies in human cell lines but
not in animals. For example, adding IL-1 to HepG2 cells inhibited cholesterol synthesis
in [35]. However, administering the inflammatory cytokines TNF«, TNFf3, and interferon
gamma to mice stimulated hepatic cholesterol synthesis in [36-38]. This latter finding was
in line with a recent study by Liebergall et al., who reported that proinflammatory stimuli in
macrophages from mice upregulated all enzymes involved in cholesterol synthesis, except
24-dehydrocholesterol reductase (DHCR24) [39]. We cannot explain the discrepancies in
findings in animals when compared with the in vitro human cell data. In fact, results from
animal studies cannot always be extrapolated to humans. Alternatively, it could relate
that the way of inducing inflammation was different in all three settings. Regarding the
comparability of the serum and plasma samples, we evaluated earlier in our lab if the
concentrations of non-cholesterol sterols differ between heparin and EDTA plasma and/or
serum samples, and the results showed comparable values for the non-cholesterol sterols
between plasma and serum samples (unpublished data).

With respect to bile acid formation, the LPS-induced inflammatory response resulted
in decreased bile acid formation, as suggested by a reduction in plasma 7x-OH-cholesterol,
which is a precursor in the classic pathway of bile acid synthesis. The 7a-hydroxylase, a rate
limiting enzyme in the classical pathway of bile acid synthesis, converts cholesterol into 7 o-
OH-cholesterol and ultimately, in a series of steps with different enzymes, into bile acids [40].
Two earlier studies in rodents already examined the effects of inflammation on mRNA and
protein levels of 7a-hydroxylase after LPS infusion. One study infused Syrian hamsters
with LPS, TNF«, or IL-1, while the other study infused rats and mice with LPS. The study
in hamsters reported a reduction in the mRNA levels of 7a-hydroxylase [41], whereas the
study in rats and mice reported a decrease in the protein levels of 7«-hydroxylase [42]. Both
findings are in line with the reduction in 7x-OH-cholesterol that we observed in humans.

In addition to the effects of inflammation on circulating non-cholesterol sterols and
oxysterols, it is interesting to note that these sterols also influence inflammation. For
example, desmosterol and oxysterols, such as 24S, 25, and 27-OH-cholesterol, have anti-
inflammatory properties via activating LXR [43-46]. Interestingly, these receptors are also
known to mediate CEC in vivo and in vitro, and the possible mechanism involves the
activity of ABCA1 and ABCGI1 [47,48]. In fact, desmosterol has been shown to be the
dominant LXR ligand in human atherosclerotic plaques and macrophage foam cells of
murine [21], suggesting a reduction in desmosterol is linked with a lower activation of
LXR. This might explain the reduction in CEC we observed here after LPS exposure. In
a functional way, the reduction in HDL functionality may result in cellular cholesterol
accumulation, which may enhance the inflammatory response to remove the infectious
agents from the host [49].

Finally, we found unexpected positive associations for baseline TC-standardized
desmosterol and 7x-OH-cholesterol levels with the intensity of the inflammatory response.
This suggests that higher desmosterol concentrations translate into higher inflammatory
responses, which is in contrast with results from a recent study [50]. In that study, the
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depletion of desmosterol by overexpressing DHCR24 in macrophage foam cells was asso-
ciated with the activation of inflammatory responses. Moreover, Spann et al. found that
activation of macrophage foam cells in the peritoneal cavities of mice was associated with
suppression of the hemostatic and anti-inflammatory properties of desmosterol [21]. We
can only speculate that these associations are different between animals versus humans,
which requires further study.

The present study has some limitations. First, the sample size for this study is small
and information about dietary intake is lacking. Second, due to limited sample availability,
data for non-cholesterol sterols could only be retrieved at baseline and 24 h after LPS
infusion and not in the samples at the timepoints in between, as reported for inflammatory
responses. Third, only male subjects were included in the present study, however, there
are no indications that non-cholesterol sterols reflecting intestinal cholesterol absorption
or endogenous cholesterol synthesis are only valid as markers for these characteristics in
male and not in female subjects. The strength of this study is that a transient LPS model
was used, which is a highly controlled and reproducible model for studying the effects of a
systematic inflammatory responses.

5. Conclusions

To conclude, we demonstrated that LPS-induced transient inflammation reduced
endogenous cholesterol synthesis and bile acid formation in healthy young men. We specu-
late that mainly the reduction in cholesterol synthesis explains the observed reductions in
plasma TC and LDL-C concentrations. Furthermore, understanding the relation between
circulating desmosterol and 7«-OH-cholesterol concentrations at baseline with the intensity
of the inflammatory response after LPS exposure warrants further study.
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