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Abstract: The innate immunity toll-like receptor 4 (TLR4) system is a receptor of paramount im-
portance as a therapeutic target. Virtual screening following a “computer-aided drug repurposing”
approach was applied to the discovery of novel TLR4 modulators with a non-lipopolysaccharide-like
structure. We screened almost 29,000 approved drugs and drug-like molecules from commercial,
public, and in-house academia chemical libraries and, after biological assays, identified several com-
pounds with TLR4 antagonist activity. Our computational protocol showed to be a robust approach
for the identification of hits with drug-like scaffolds as possible inhibitors of the TLR4 innate immune
pathways. Our collaborative work broadens the chemical diversity for inspiration of new classes of
TLR4 modulators.

Keywords: toll-like receptor 4; innate immunity; drug repurposing; virtual screening; docking

1. Introduction

Identification of drug-like molecules with potential therapeutic applications for the
treatment of toll-like receptor-related diseases has attracted considerable interest due to
their clinical potential. Toll-like receptor (TLR) modulators have the potential to be used
with different biomedical applications, especially in the field of infection [1,2], inflamma-
tion [3], and autoimmune diseases [2,4], as well as in cancer [5–7] and in central nervous
system disorders such as Alzheimer’s disease [8]. In particular, TLR4 has recently attracted
great attention as a therapeutic target for the discovery of agonist and antagonist drugs for
the treatment of a wide range of pathologies [9,10]. TLR4 agonists are useful as adjuvants in
cancer immunotherapy and vaccines [11,12]. For example, synthetic nontoxic lipopolysac-
charide (LPS) analogs, such as monophosphoryl lipid A derivatives, are components of
vaccines for hepatitis B (Fendrix™, GlaxoSmithKline Biologicals SA, Rixensart, Belgium)
and cervical cancer (Cervarix™ GlaxoSmithKline Biologicals SA, Wavre, Belgium) [13].
However, even though several inhibitors of the TLR4/MD-2 complex acting on MD-2 can
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be found in the literature, only a minority of them show sufficiently promising charac-
teristics to become a marketed drug. Eritoran, for example, showed promising results in
phase I and II clinical trials, but in phase III, it failed to show better properties than the
existing treatments for sepsis [14]. In fact, just a few candidates are currently under clinical
development due to the difficulty to find molecules with appropriate physicochemical
properties and low toxicity [15]

Therefore, it is imperative to find new chemical entities, not necessarily with an LPS-
like structure, such as TLR4 modulators, with good drug-like properties in order to facilitate
their development as drugs. There are some small molecules that exemplify this possibil-
ity [16]. For example, some pyrimido[5,4-b]indoles that have shown to stimulate TLR4 and
could potentially be used as adjuvants or immune modulators [17]; synthetic analogs of the
natural product euodenine A have exhibited potent and selective agonist activity towards
TLR4 [18]; and synthetic peptides able to mimic TLR4/LPS interaction have also been
reported [19]. Furthermore, several small non-LPS-like molecules with TLR4 antagonist
activity have been developed, such as ethyl 4-oxo-4-(oxazolidin-3-yl)-butenoate derivatives
(OSL07) [20], benzothiazole-based inhibitors [21], ethyl phenyl-sulfamoyl cyclohexenecar-
boxylate derivatives (TAK-242 or resatorvid) [22], and β-amino alcohol derivatives [23].
Interestingly, 6-shogaol has been recently reported as a potential TLR4 inhibitor with a
preventive effect on an experimental treatment of knee osteoarthritis [24].

In the context of drug discovery, virtual screening (VS) techniques have already
proved to facilitate goal-oriented hit identification, allowing access to a huge number
of chemically diverse ligands (from public and commercial databases) with a relatively
low cost in terms of time and materials [25,26]. This computational approach has been
subject to extensive attention and revision over the years, from the early perspective
of being an emerging method [25,26] until the current time where new challenges are
faced [27–32]. In fact, virtual screening approaches constitute the current strategy in drug
design for the identification of novel chemical entities with activity as toll-like receptor
modulators [33,34]. However, it could be considered that TLRs are not standard receptors
that could be approached following classical strategies in drug design. The complexity of
the system and the characteristics of their complexation with pathogen-associated molecular
patterns (PAMPs) make them especially difficult to tackle following classical procedures
in drug design and discovery. This is why TLRs constitute a special case in this context.
Specifically, in the field of TLR4 research, several virtual screening studies have been
reported leading to novel TLR4 modulators with drug-like properties, thus overcoming the
solubility problems associated with LPS mimetics [34].

On the other hand, despite the enormous effort of time and money spent on research
and development, the number of new drugs brought to the market yearly is very low,
with strong oscillations [35,36]. Significant investments by pharmaceutical companies for
optimizing the drug discovery pipeline have been undertaken, and new techniques such
as structure-based drug design, combinatorial chemistry, and high-throughput screening
techniques have emerged. Unfortunately, the impact of these innovations has not been
as significant as it was expected both in the short and long term [37]. Drug repurposing
(also known as drug repositioning, drug redirecting, or drug reprofiling) is a process of
discovering new uses outside the scope of the original medical indication for the existing
drugs. No traces of this process were found in the literature published before 2004 [38],
but it has been gaining an increasing attention within the international drug development
community over the last few years and represents a promising new direction [39–44].
Different terms are used to describe drug repurposing, but they all mean a way to find
new indications for the existing drugs or potential drug candidates, including those in
clinical development where the mechanism of action is relevant to multiple diseases: drugs
that have failed to demonstrate efficacy for a particular indication during Phase II or
Phase III trials but with no major safety concerns; drugs that have been discontinued
for commercial reasons; marketed drugs for which patents are close to expiry; and drug
candidates from academic institutions and public sector laboratories that have not been
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fully pursued yet are also taken into account. In this way, drug repositioning represents
unique translational opportunities, and it is believed to offer great benefits over de novo
drug discovery, reducing the development risks and timeline to potentially 3–12 years [44].
Successful repurposing examples discovered by serendipity are sildenafil, acetylsalicylic
acid, and thalidomide [45–47].

In this work, we identified novel TLR4 modulators with a non-LPS-like structure by
means of virtual screening following a “computer-aided drug repurposing” approach. We
screened almost 29,000 approved drugs and drug-like molecules from commercial, public,
and in-house academia libraries and identified several compounds with TLR4 antagonist
activity. Our work opens up opportunities for the development of new chemical classes of
TLR4 modulators with therapeutic applications.

2. Experimental Section
2.1. Computational Methods
2.1.1. Receptors

There are several available 3D structures of TLR4, such as hetero/homodimers and in
complex with some ligands (agonists and antagonists) and/or coreceptors [48]. In the case
of the agonist conformation of the human TLR4/MD2 (hTLR4/MD-2) monomer complex,
3D coordinates from the hTLR4/MD-2 heterodimer were obtained from the PDB (PDB
ID: 3FXI) [49]. In the case of the antagonist conformation, since the full crystallographic
structure of the hTLR4/MD-2 complex is not available, a model built by us was used.
This model was built using the hMD-2 protein in the antagonist conformation (PDB ID:
2E59) [50] superimposed onto the MD-2 subunit of the agonist full complex (PDB ID: 3FXI
chain C) through PyMOL [51]. Furthermore, in order to consider different antagonist
conformations of TLR4, we used PDB ID 2E56 (only in the case of the SPECS and Log P
1000 databases).

2.1.2. Databases

Database processing constitutes a fundamental step in VS approaches. It is crucial to
generate a proper chemical library with adequate geometries, ionization states, conforma-
tions, etc. Good database processing will ensure a rigorous and well-conducted VS, while
avoiding high computational costs and identification of unsuitable drug candidates.

In this work, different commercial, public, and in-house databases were used: Log P
1000 [52], SPECS [53], and ZINC [54] as commercial and public databases and a diverse
collection of compounds from laboratories of Prof. Péter Mátyus (PM, 1964 heterocyclic
compounds selected from the molecule bank of the Department of Organic Chemistry,
Semmelweis University (initiated and designed by Péter Mátyus); the listed PM com-
pounds were originally prepared by Andrea Czompa (PM 1090); Paola Bottino (PM 1200);
Akos Kocsis (PM 1097, 567); Elias Maccioni (University of Cagliari, PM 810); Judit Kosary
(PM 1758, 1779); Klara Czako (PM 1811)), Prof. José Carlos Menéndez (JCM, 68 compounds
with quinoline, quinazoline, and acridine structures) [55], Prof. José Ramón Pedro (JRP,
25 compounds, including pyrroles, indoles, and naphthols) [56,57], and Profs. Alberto
Marco, Miguel Carda, and Eva Falomir (AM, 85 compounds, including pyrroles, indoles,
and naphthols) as in-house databases [58]. It is important to mention that, given that pa-
clitaxel had shown antagonistic activity in hTLR4, we were prompted to include tubulin
binders in our VS approach. We chose a family of compounds analogous to natural prod-
ucts colchicine and pironetin (Figure S5). Regarding their antitumoral activity and their
ability to bind to tubulin components and microtubules, paclitaxel is a tubulin-interacting
drug that stabilizes microtubules, while colchicine causes disruption of microtubules and
pironetin derivatives bind to α-tubulin, inhibiting tubulin assembly. We also included com-
pounds derived from stilbene such as resveratrol since they are studied for their antimitotic
properties and their antitumor activity; all of them are included in the AM database.
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2.1.3. Library Preparation

Importation: All the databases were saved as an SD file and imported to Maestro
(Schrodinger, version 10.4) [59], which is an all-purpose molecular modeling environ-
ment. During the importation process, the chirality and the atom type of each compound
were checked.

Ligand preparation using LigPrep: LigPrep (Schrodinger, version 3.6) [60], a program
for preparing all-atom 3D structures of drug-like molecules, was used for many purposes:
to refine the geometry of the ligands imported from the databases; to generate accurate,
energy-minimized 3D molecular structures; to expand to tautomers, conformations and
stereoisomers in order to produce broad chemical and structural diversity from each input
structure and predict protonation states. The 3D structures were minimized using OPLS
2005 [61]; to generate ionization states, Epik [62–64] was used in order to simulate the
physiological pH. In many cases, the compounds contained water molecules or ions; these
extra molecules were removed with the Desalt option.

The generated tautomer options were also used in order to generate up to eight
tautomers per input structure. Regarding the set stereoisomer options, the choice of
retaining the specified chirality to keep this information from the input file and fixing
the chirality for the entire calculation was made. The number of stereoisomers generated
was limited to 32 per ligand. From a 2D structure, it is not immediately obvious which
ring conformations give the lowest energy or are preferred for binding to an active site.
Therefore, it was decided to generate one low-energy ring conformation per ligand with
LigPrep. The final output was in the Maestro format to keep the total information calculated
for all the compounds. For the VS, the compounds were selected according to their
molecular weight (300–700 Da) and lipophilicity (4–6) using the property calculation tool
from Maestro.

We considered the following filters:

1. Lipophilicity of the molecules: a maximum logP of 6 was considered taking into
account that the natural LPSs and the reported synthetic glycolipids have a very high
logP: 29.14 ± 0.83, 14.35 ± 0.73, and 13.53 ± 0.47 for lipid IVa, P01, and ONO-4007,
respectively. This limit is within a reasonable margin above the value of 5 according
to Lipinski’s rule (oral bioavailability) [65].

2. Molecular weight (MW): we considered a wide range between 300 and 700 Da given
the MW of the glycolipids targeting TLR4, with a reasonable margin above the value
of 500 according to Lipinski’s rule.

3. pH: only possible tautomers at the physiological pH were considered within a range
of 7 ± 0.5.

4. Prediction of favorable binding from at least two docking programs and in two
different conformations of TLR4.

2.1.4. Protein Preparation

In the case of the agonist conformation of the TLR4/MD-2 monomer, 3D coordinates
from the TLR4/MD-2 heterodimer were obtained from the PDB (PDB ID: 3FXI) [49]. By
contrast, in the case of the antagonist conformation, since the full crystallographic structure
of the TLR4/MD-2 complex is not available, a model built by us was used [66]. This model
was built using the hMD-2 protein in the antagonist conformation (PDB ID: 2E59) [25] super-
imposed onto the MD-2 subunit of the agonist full complex (PDB ID: 3FXI chain C) through
PyMOL. Then, coordinates from the TLR4 chain of the 3FXI adjacent to the superimposed
MD-2 (PDB ID: 3FXI chain A) and the superimposed MD-2 in the antagonist conformation
were retained, forming the TLR4/MD-2 monomer in the antagonist conformation. Finally,
both the agonist and antagonist structures were subjected to 10,000 cycles of the steepest
descent energy minimization under an AMBER force field via Maestro. Furthermore, PDB
ID 2E56 was used to consider different antagonist conformations of MD-2.
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2.1.5. Receptor Grid Preparation

GLIDE: For preparing the receptor grids for the two protein conformations, GLIDE
(Schrodinger, version 6.9) was used [67–69]. All the parameters of the software were kept at
their default values. We only determined where the scoring grids would be positioned and
their sizes. The coordinates of the box were set up to fully contain E. coli LPSs. GLIDE uses
two “boxes” that can be parametrized to organize the calculation: the inner box, which
can be monitored in the advanced panel and where the ligand center is allowed to move
during the site point search, and the outer box, which is the box within which all the ligand
atoms must be contained. Its size is function of the inner box, and the inner box has to be
included within the outer box. For the inner box, the center was set up at residue serine
120 and the lengths of the boxes for both protein conformations were as follows: 33 Å for X,
40 Å for Y, and 35 Å for Z. For the outer box, 10 Å were added to the dimensions of the
inner box (43 Å for X, 50 Å for Y, and 45 Å for Z).

FLAP [70,71], AutoDock [72], and VINA [73]: As the receptor grids were already set up
with GLIDE, the same grids were chosen for these programs. The GLIDE coordinates were
kept for VINA but were converted into AutoDock coordinates using a scaling calculation
tool. In the case of FLAP, the pockets of MD-2 were identified and defined by the FLAP’s
pocket search algorithm.

2.1.6. Docking
Structure-Based Virtual Screening (SBVS) with FLAP

The FLAP software explicitly distinguishes between the so-called SBVS method and
docking [70,71]. While in FLAP docking is primarily used for pose prediction and a more
precise quantification of binding energies, SBVS is a tool for large-scale virtual screening.
Even though docking is often used as a structure-based virtual screening technique, [74]
the term SBVS hereafter refers only to the FLAP’s corresponding screening program.

The SBVS program first creates MIFs of the receptor’s binding site. During screening,
the MIFs of the ligand are compared with those of the binding site. Time-consuming
calculations describing each atom–atom interaction are not needed here. One downside of
this method is that there is no energy penalty for atom clashing with the target. In some
scenarios, however, this might even be an advantage since it overcomes the rigidity of the
target to some extent.

The SBVS in FLAP was performed on a 3D structure of the human coreceptor MD-2.
The structure was obtained from the PDB (PDB ID: 2E56) [50], and the MOE software
was used to prepare the protein by removing water molecules, adding hydrogens and the
missing atoms and side chains [75]. The optimized structure was loaded into FLAP and
the Search for Pockets function was used to define the binding area. The results were then
treated similarly to the LBVS approach.

SBVS with GLIDE

The molecules were subjected to grid-based ligand docking with energetics (GLIDE,
Schrodinger, version 6.9) [67–69] using the Virtual Screening Workflow protocol. It is
designed to run an entire sequence of jobs for screening large collections of compounds
against one or more targets. However, as the compounds and the grids had already been
prepared, in this case, only the docking steps of the program were used. The compound
files and the receptor grid files were imported into the Virtual Screening Workflow program.
Regarding the docking step parameters, Epik state penalties for docking were used, and
the nonpolar part of the ligand potential was softened by scaling the van der Waals radii of
ligand atoms with small partial charges. To do so, the scaling factor was 0.80, and the partial
charge cutoff was 0.15. The full workflow includes three docking stages, each step differing
from the preceding step in the amount of time taken to dock each molecule and the scoring
system used to evaluate each pose. The first stage performs HTVS (high-throughput virtual
screening) docking. The ligands that are retained are then passed to the next stage, which
performs SP (standard precision) docking.
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The survivors of this stage are passed onto the third stage which performs XP (extra
precision) docking, a more powerful and discriminating procedure.

The dock flexibility method was used for the HTVS, SP, and XP docking allowing us
to penalize nonplanar conformations for amide bonds. Post-docking minimization was
also performed, as well as constraints for the docking stages. One pose per compound
state was generated and 100% of the best compounds that passed the HTVS, SP, and XP
docking were kept. For the HTVS and SP docking, all the states were retained, but only the
best-scoring state was retained for the XP docking.

SBVS with AutoDock4 and AutoDock VINA

Docking was also performed independently with both AutoDock [72] and VINA [73].
In AutoDock, the Lamarckian evolutionary algorithm was chosen and all the parameters
were kept default except for the number of genetic algorithm (GA) runs which was set to 50
to sample more docked poses. VINA (Vina Is Not AutoDock) uses an iterated local search
global optimizer [73] based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
which approximates Newton’s method, and the number of docking poses was set to 20,
which is the maximum for the program. The TLR4/MD-2 receptors were kept rigid and the
ligands were set to be partially flexible (i.e., maximum of 32 dihedral angles) for AutoDock
and totally flexible for VINA.

Ligand Redocking Using GLIDE

The shortlisted molecules were submitted to a redocking procedure using GLIDE. All
the parameters were kept as mentioned in the docking paragraph using GLIDE, except for
the docking poses which were set to 50 per molecule.

Molecular Redocking Using FLAP

FLAP implements a fragmentation-based docking algorithm called FLAPdock, which
works as follows. MIFs are calculated for the target-binding site in a similar manner to
the SBVS approach but with more points to describe the site in more detail (reference
manual for FLAP 2.0, © 2014 Molecular Discovery Ltd., Hertfordshire, UK). A set of ligand
conformations is generated using a stochastic search and a customized implementation
of the MM3 force field [76] with a cutoff of 30 kcal/mol−1 to remove high energy and
duplicate conformations. The ligands are then split into fragments with only 1–3 rotatable
bonds. For each fragment conformation, GRID MIFs are calculated. The first fragment is
docked into the binding site and the best-scoring solutions, according to the global S-Score,
are retained for the next iteration. In the next step, the next fragment is attached to the
first one and scored in the same way. The S-Score is a scoring function that includes terms
from the GRID MIF similarities (hydrogen bonding and hydrophobic interactions as well
as shape matching), Lennard–Jones and electrostatic interactions.

It was validated, amongst other targets, on those of the Astex and DUD datasets [68,77,78].
In each iteration, the best-scoring solutions are kept and filtered by RMS clustering. Once
the reconstruction of the ligand has finished, the final pose can be optionally optimized by
minimization, and the final score is recalculated. The benefit of FLAPdock in comparison
with the SBVS method lies in the more detailed chemical interactions that are considered for
docking and the consideration of steric clashes that are not regarded in the SBVS method.
In order to obtain score reference values, a set of known MD-2 inhibitors was docked,
followed by the docking of compounds from the Log P 1000 and the SPECS dataset.

2.2. Biological Characterization

HEK-Blue TLR4 assay: HEK-Blue TLR4 cells (InvivoGen, Toulouse, France) and
parental cell line HEK-Blue Null 2 (InvivoGen) were used to test the agonist or antagonist
effect of different compounds. This cell line expresses TLR4, MD-2, and CD14 and does
not express any other TLRs. The activation of TLR4 leads to the expression of SEAP, a
protease that enzymatically hydrolyzes the molecule present in the medium. The amount
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of hydrolysis can be measured using colorimetric methods. These cells were cultured
according to the manufacturer’s instructions. Briefly, the cells were cultured in a high-
glucose DMEM supplemented with 10% fetal bovine serum (FBS), 1% glutamine, 1%
penicillin/streptomycin, 1× Normocin (InvivoGen). The experiments were performed
when 70–80% of confluence was reached. The cells were detached by the use of PBS and
tapping the flask and the cell concentration was estimated using Trypan Blue (Sigma-
Aldrich, St Louis, MO, USA). Four different compound concentrations were used: 0.1, 1, 5,
and 10 µg/mL. Twenty microliters of the diluted compound were added to a 96-well plate
in triplicate (three wells for each concentration), seeded in a multiwall plate at a density of
2 × 104 cells/well in 200 µL. LPSs were used as the positive control (final concentration of
20 ng/mL) and 1× PBS was used as the negative control. The cells were detached using
4 mL of PBS, and a 140,000 cells/mL solution was prepared using the HEK-Blue Detection
medium. One hundred eighty microliters of this solution were added into each well
(25,000 cells/well). After a 30 min incubation, 20 µL of the LPS solution were added to each
well (final LPS concentration: 20 ng/mL) (LPSs were diluted in PBS as well). The plates
were incubated for 16 h in the dark at 37 ◦C, 95% humidity, and 5% CO2 and then the plate
reading was assessed using a spectrophotometer at 620 nm. The results were normalized
with the positive control (LPSs alone) and expressed as the mean percentage ± SD of at
least three independent experiments.

TNF-α detection: An adherent murine macrophage cell line J774.2 was grown in
75 cm3 cell culture flasks in Dulbecco’s modified Eagle’s medium supplemented with 5% fe-
tal bovine serum and 1% penicillin/streptomycin. Approximately 2 × 106 cells were plated
in individual wells of a 12-well plate. The cells were stimulated with LPSs from Escherichia
coli (Sigma-Aldrich) at a final concentration of 2 ng/mL. The respective compounds were
added to 1 ng/mL of LPSs at 5 µg/mL. As the positive control, LPSs (1 ng/mL) with DMSO
were used. Two wells per compound and control were used. The plates were incubated
for 24 h at 37 ◦C and 5% CO2. The cell supernatants collected after 24 h stimulation assays
were analyzed for TNF-α. Commercial enzyme-linked immunosorbent assay kits were
used (Mouse TNF-α DuoSet ELISA, R&D Systems). ELISA was performed in 96-well plates,
and the plates were read at 450 nm in a microplate reader.

3. Results and Discussion
3.1. Searching for TLR4/MD-2 Modulators: Virtual Screening
General Overview of the Virtual Screening Protocol

TLR4 is specialized in the recognition of lipopolysaccharides from Gram-negative bac-
teria through the extracellular domain (ectodomain) with the participation of an essential
coreceptor, myeloid differentiation factor 2 (MD-2) (Figure 1) [66,79–81]. The LPS fatty acid
chains are inserted into the MD-2 pocket while the oligosaccharide binds to TLR4 and the
partner TLR4. Dimerization of the ectodomain promotes the TLR4/MD-2 dimerization at
the intracellular site and recruitment of the binding of adaptor proteins that finally triggers
the activation of downstream signaling and the inflammatory response (Figure 1) [79–81].
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Figure 1. (A) Full-atom 3D model of the agonist LPS-bound TLR4 dimer in a membrane environ-
ment [81]; ectodomain is framed in a red box. (B) X-ray structure of the TLR4/MD-2 dimer in complex
with E. coli LPSs (from PDB ID 3FXI). (C) Three-dimensional model of TLR4/MD-2 in the antagonist
conformation [66].

Molecular docking screening was performed against the different databases based on
both the agonist conformation of the hTLR4/MD-2 complex from PDB ID 3FXI and our
modeled antagonist conformation of the hTLR4/MD-2 complex [66]. Ligand-based (LBVS)
and structure-based (SBVS) virtual screening were carried out following the protocols
shown in Figure 2. The Log P 1000 and SPECS databases were submitted for LBVS (step
III) and SBVS (step I) with the FLAP tool. WORLD (subset of the ZINC database) and
in-house databases were submitted for SBVS with the combined GLIDE/AutoDock/VINA
approach (step II). The resulting screened compounds (189 in total) were redocked (step IV)
by means of FLAP and GLIDE, finally yielding 27 compounds that were experimentally
tested (step V). Seven compounds were identified as TLR4 antagonists.
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3.2. Performance of the Virtual Screening Study
3.2.1. Step I. Structure-Based Virtual Screening (SBVS) with FLAP

The FLAP’s SBVS method was used to perform target-based virtual screening on
the TLR4/MD-2 receptor with the SPECS and Log P 1000 databases. As the benchmark,
the method was applied initially to a set of reference compounds: small molecules with
known activity as TLR4 antagonists. The results are shown in Table 1 with the ligands
ranked according to their Glob-Sum score. This score is a global similarity score calculated
by summing the four single contributions: shape (H), hydrogen bond acceptor (N1),
hydrophobic (DRY), and hydrogen donor acceptor (O) descriptors.

Table 1. Reference antagonists of MD-2 ranked by the Glob-Sum score obtained from structure-based
virtual screening (SBVS) in descending order.

Antagonist Glob-Sum Antagonist Glob-Sum

Paclitaxel 3.245 6-Shogaol 2.498

JSH 2.714 Isoxanthohumol 2.465

Curcumin 2.695 Isoquiritigenine 2.239

1D10G 2.669 Cinnamaldehyde 2.179

CAPE 2.621 C34 2.136

Xanthohumol 2.611 OSL7 1.799

JTT705 2.513 Sulforaphane 1.707

The Glob-Sum scores obtained for the known ligands were used as reference values to
identify potential hits. The highest score was obtained by paclitaxel (Glob-Sum = 3.245)
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which was then used as a cutoff value for the screened unknown ligands. From the Log
P 1000 and SPECS libraries, 26 and 2012 compounds were obtained, respectively, having
a score equal to or higher than 3.245 (Figures S1 and S2). The highest contribution to the
global score was given by the hydrophobic score which can easily be explained by the high
hydrophobicity of the target pocket and the screening model that is obtained from it.

3.2.2. Step II. Structure-Based Virtual Screening (SBVS) with GLIDE, AutoDock, and VINA

The WORLD database from ZINC and in-house databases (PM, JCM, JRP, and AM)
were docked into both the agonist and antagonist protein conformations using three
docking programs, GLIDE, AutoDock, and VINA, to avoid the limitation of one scoring
function. The receptor grid was set up in order to fully contain the E. coli LPSs, allowing
small molecules to interact with the entire MD-2 pocket, as well as its rim and its entrance
(see the Materials and Methods). During the docking process, all the ligands were kept
to facilitate visual inspections, comparisons, and selections between the three docking
programs. Fifty poses per ligand were generated with AutoDock, 20 poses per ligand—with
VINA (which is the maximum for the program), and only one pose per ligand was generated
with GLIDE using the HTVS, SP, and XP protocols in order to also facilitate the comparisons,
choosing GLIDE as the main docking software. For the docking program validation analysis
either with GLIDE, AutoDock, or VINA, the scoring results for all the compounds were
consistent and correlated to each other. However, the correlation between AutoDock and
VINA was stronger than between GLIDE and AutoDock or VINA. The docked compounds,
as well as all their corresponding predicted binding poses, were visually analyzed to detect
any computational errors. The docking scores, defined by the average score of all the
poses from one ligand for each docking program, were analyzed. The selected screened
compounds from each docking program were visually inspected, and those binding outside
MD-2 were discarded. Finally, only the top 10% in the case of the WORLD and PM databases
and 20% from the JCM, JRP, and AM databases were kept. Among them, 89 compounds
were ranked at the top by at least two docking programs and were predicted to bind into
one (at least) of the two TLR4 conformations (agonist/antagonist). These 89 compounds
were then submitted to the following analysis step (step IV), redocking with AutoDock
and GLIDE.

3.2.3. Step III. Ligand-Based Virtual Screening (LBVS) with FLAP

Only in the case of the Log P 1000 and SPECS commercial databases we also performed
LBVS with the FLAP tool [39]. The FLAP’s LBVS method uses a common reference
framework to align a set of candidate molecules to the template binder to find the optimal
overlap according to the GRID molecular interaction fields (MIFs) [39]. The similarity
between the fields is quantified using the Tanimoto coefficient. In the output table, the
user can see the individual scores obtained by the single MIF contributions (Glob-Prod),
as well as the global score representing the sum (Glob-Sum) for each compound. For the
LBVS with FLAP, a set of known active antagonists of MD-2 was built based on a literature
search (Figure S3). The two datasets Log P 1000 and SPECS were screened on each known
active compound separately and ranked by their obtained Glob-Sum scores. LBVS was
performed individually by using the 14 known MD-2 ligands as templates for the screening.
The best ranked results are shown in Table 2. The 2D representations of the compounds of
Log P 1000 and SPECS can be found in Figures S1 and S2, respectively.
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Table 2. Best-ranked compounds from LBVS of the Log P 1000 (blue) and SPECS (white) sets for
each template (reported MD-2 ligands). The Glob-Sum score is a global similarity score calculated
by summing the four single contributions: shape (H), hydrogen bond acceptor (N1), hydrophobic
(DRY), and hydrogen donor acceptor (O) descriptors.

Template Compound Glob-Sum H N1 DRY O

6-Shogaol 152 1.326 0.663 0.508 0.224 0.239

481 1.742 0.598 0.271 0.254 0.702

Xanthohumol
568 1.269 0.699 0.283 0.340 0.124

19,907 1.912 0.703 0.368 0.508 0.359

Paclitaxel
383 0.847 0.505 0.175 0.134 0.337

20,513 1.022 0.565 0.171 0.105 0.321

1D10G
368 1.152 0.579 0.203 0.181 0.310

20,700 1.857 0.654 0.306 0.260 0.734

JSH 492 1.165 0.598 0.359 0.229 0.144

21,315 1.421 0.515 0.371 0.304 0.329

Isoliquiritigenin 42 1.181 0.637 0.364 0.195 0.010

120 1.706 0.750 0.431 0.343 0.294

Isoxanthohumol
138 1.054 0.638 0.234 0.308 0.010

28 1.493 0.634 0.430 0.304 0.305

CAPE
575 1.149 0.625 0.242 0.181 0.243

22,298 1.528 0.587 0.230 0.159 0.700

Curcumin
548 1.041 0.631 0.242 0.204 0.010

23,010 1.562 0.519 0.264 0.173 0.623

Sulforaphane 46 1.104 0.650 0.361 0.166 0.000

3203 1.184 0.684 0.296 0.000 0.000

Cinnamaldehyde 40 1.489 0.684 0.581 0.383 0.000

23,599 1.500 0.580 0.673 0.273 0.000

OSL7
35 1.007 0.648 0.295 0.128 0.000

1171 1.285 0.702 0.445 0.191 0.000

C34
187 1.142 0.506 0.205 0.137 0.512

10,959 1.428 0.560 0.216 0.102 0.903

JTT705 439 1.033 0.539 0.391 0.188 0.010

14,650 1.127 0.592 0.347 0.188 0.000

The results shown in Table 2 indicate that for each of the known active compound,
the best-scoring SPECS compound scored higher than the best-scoring one from the Log P
1000 database. This could be explained by the sole fact that the SPECS set contains a much
higher number of compounds than Log P 1000. Consequently, the probability of finding a
well-scoring compound is higher.

Regarding the single contributions of the four similarities, the shape similarity (H)
seems to have the highest impact on the global score in most of the cases. In four cases (6-
shogaol, CAPE, curcumin, C34), the hydrogen bond acceptor and in one case the hydrogen
bond donor (cinnamaldehyde) similarities made the biggest contribution to the global
score. All the five compounds are from the SPECS set. The reason why the influence of
hydrophobic (DRY) similarity is comparatively low might be the relatively small size of the
compounds. While strong hydrogen bond similarities can be derived from single donor
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or acceptor atoms, the hydrophobic potential needs larger nonpolar surfaces to show a
strong impact.

3.2.4. Step IV. Redocking with FLAP and GLIDE

To better understand the interactions of the potential inhibitors retrieved by LBVS
and SBVS with TLR4/MD-2, a molecular redocking approach was carried out. In order
to narrow down the number of compounds to dock, only molecules were selected which
obtained a good score in the LB and SBVS approaches. From the SBVS, in total, 2038
compounds (26 from Log P 1000 and 2012 from SPECS) obtained a score higher than the
cutoff value of 3.245. Since an analogous cutoff value was not available for the LBVS
approach, the same number of compounds was chosen here, i.e., the top ranked 26 and
2012 compounds from Log P 1000 and SPECS, respectively.

From the Log P 1000 set, three common compounds were found in the top ranks of both
the LBVS and SBVS, while SPECS shared 556 top-ranked compounds. This total number of
559 compounds still seemed large considering the time-consuming FLAP docking program.
For this reason, only the top 100 highest-scoring ligands were taken for the final redocking
(step IV). This selection procedure was found to be in agreement with examples from the
literature [82].

The screened compounds from the above steps (189 compounds in total) were re-
docked by means of FLAP and GLIDE, finally leading to the selection of 27 compounds.
This selection was based on (i) the agreement in the most probable clusters from both
programs and (ii) the visual analysis of the best clusters from both docking programs with
special attention to the ligand/receptor interactions (discussed below).

The finally selected compounds were as follows: one compound from Log P 1000 (ID-
5382), two compounds from SPECS (AG-690/11203225 and AF-399/1512855) (Table S1),
five compounds from the WORLD database (compounds 146, 157, 177, 179, and 208)
(Table S2), eight compounds from PM (PM1097, PM1811, PM1779, PM567, PM1090, PM810,
PM1758, and PM1200) (Table S3), eight compounds from JCM (MS14, MS20, MS21, MS32,
MS35, MS40, MS45, and MS49) (Table S4), and three compounds from JRP–AM (JRP07,
JRP07p, and JRP10) (Table S5).

The three ligands from the Log P 1000 and SPECS datasets were initially screened
with FLAP and had an S-score equal to or higher than the threshold of 1.074 obtained by
the best-scoring known inhibitor sulforaphane. The compounds, their 2D description, and
the respective scores are listed in Table S1. The highest-scoring compound was ID-5382
from the Log P 1000 set, with an S-score of 1.231. The two compounds of the SPECS set
AG-690/11203225 and AF-399/15128553 obtained the scores of 1.114 and 1.074, respectively.

When studying the docked poses, in all the three cases (ID-5382, AG-690/11203225,
and AF-399/15128553), the docked ligand was located at the entrance of the hydrophobic
pocket of MD-2, adopting similar poses. The principal interactions were hydrophobic
and polar. The three compounds showed polar interactions with Arg90 and Lys122. The
hydrophobic interactions were more widespread and not with the same set of amino
acids for the three compounds. It could be observed that compound ID-5382 was in close
contact with hydrophobic residues Ile46, Leu63, Leu78, Phe121, Ile124, Val135, and Phe151
(Figure 3). Compound AG-690/11203225 interacts with residues Ile52, Phe76, Leu78, Ile80,
Val82, Glu92, Phe121, Ile124, Val135, and Ile153. Finally, the hydrophobic interactions of
AF-399/15128553 were established with the Ile46, Leu61, Ile80, Val82, Leu87, Phe121, Ile124,
Tyr131 and Phe151 side chains.
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Residues Arg90 and Lys122 from MD-2 are able to build salt bridges with compounds
ID-5382 (Figure 3) and AG-690/11203225 due to their sulfonyl groups. This would explain
why the polar score is significantly higher for these two ligands than for compound AF-
399/15128553 which possesses no sulfonyl groups. The latter one only forms hydrogen
bonds between the Arg90 and Lys122 side chains and the basic nitrogen atoms from the
triazole ring. Interactions with Cys133, such as those reported in the literature [83], could
not be observed due to the inability to predict/model covalent bonds with FLAP.

From the JRP–AM database, the selected compounds established stacking interactions
with Phe76, and CH–π interactions were observed with the side chains of Cys133, Phe151,
Phe104, and Leu61. The other interactions observed were hydrophobic, with residues Val24,
Ile32, Ile44, Val48, Ile52, Leu78, Ile80, Ile94, Ile117, Phe119, Val135, and Ile153.

Regarding the compounds from the PM database, they established π–π interactions
with Phe104 and Phe151, as well as CH–π interactions with Phe76 and Phe121 (Figure 4).
The other interactions observed were hydrophobic, with Ile32, Ile52, Leu61, Ile117, Val135,
leu149, and Ile153.

Finally, in the case of the compounds from the JCM database, the principal interactions
observed were as follows: CH–π interactions between both sides of the tricycle and the
side chains from the Ile32, Ile52, Leu61, Leu63, Ile94, and Val135 residues, edge-to-face
interactions between the tricycle and side chains from Phe76 and Phe147, and π–π or
edge-to-face interactions between the aromatic ring attached to the tricycle and the Phe151
side chain (Figure 5).
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In summary, it is possible to say that for the Log P 1000, SPECS, WORLD databases
and the in-house databases (JCM, PM, and JRP–AM), the docked ligands are predicted to
bind at the entrance of the hydrophobic cavity of TLR4/MD-2 in similar docked poses. The
principal interactions are hydrophobic ones within the inner region of MD-2 and polar ones
at the rim of MD-2. Most compounds also show polar interactions with Arg90 and Lys122.
Hydrophobic interactions, however, are more widespread and not with the same set of
amino acids for all the compounds. To note, some of these interactions have been suggested
to be key interactions for the reported TLR4/MD-2 ligands. For example, Arg90 is assumed
to participate in interactions with sulforaphane, JTT705, isoxanthohumol, isoliquiritigenin,
CAPE, and JSH, while Lys122 interacts with OSL07 and cinnamaldehyde; the Ile80 side
chain interacts with xanthohumol, JSH, OSL07, cinnamaldehyde, and 6-shogaol; side chains
from Phe121 and Ile124 are also reported as involved in the key interactions with many
reported ligands either through π–π or CH–π interactions [33,34].

From all the screening structures that came after the virtual screening protocol, we can
extract a common scaffold: two hydrophobic moieties separated by a polar linker. The large
hydrophobic part occupies the hydrophobic MD-2 cavity, while the small one is placed
in the same hydrophobic region where one of the lipid A alkyl chains is also located in
the TLR4/MD-2 X-ray crystallographic structure (PDB ID: 3FXI). The key interactions are
those established with residues Arg90 (capable of forming ionic interactions and hydrogen
bonds), Phe121 and close Phe126 (capable of forming π–π or CH–π interactions), and Tyr131
(also capable of establishing hydrogen bonds). These interactions were common for all
the compounds and conferred them the highest predicted binding energy among all the
screened compounds. The polar linker interacts with the positively charged amino acids,
Arg90 and Lys122, at the entrance region of the pocket which have already been shown to
be important for the binding of the reported active compounds [34,84]. Furthermore, all
these screened compounds share a relatively high lipophilicity.

Virtual screening of the WORLD subset from the ZINC database identified five com-
pounds outperforming the remaining ones (Table S2, compounds 146, 157, 177, 179, and
212). Surprisingly, compared to the previous analysis conducted only with the best GLIDE
pose, compounds 157 and 212 did not show good results in the last analysis. Indeed,
having a wider number of poses in GLIDE permitted to observe for these two compounds
that the first pose was not part of the most probable cluster, or any cluster at all, for both
conformations. Moreover, it was shown that the most probable clusters for these two
compounds were ranked in a low-energy position and with a medium total percentage
of interaction against the main residues. Compound 208, previously identified in the first
analysis as having a good cluster position, was observed to have medium total percentage
of interaction against the main residues. Compounds 157, 208, and 212 were kept as a query
for a future structure similarity search.

In ascending order of better predicted binding, compounds 146, 177, and 179 out-
performed all the other compounds. Compounds 146 and 177, already revealed by the
first cluster analysis, showed having in each pose interactions with almost all the main
residues. Moreover, in around 50% of the poses, they were able to make two hydrogen
bonds simultaneously, and in around 70% of the poses—two salt bridge interactions simul-
taneously. Compound 179 was predicted to have the highest affinity potential with all the
main residues. It interacted with all the main residues with high affinity, making in 80% of
the poses up to three hydrogen bonds and a salt bridge in 50% of the poses. Compounds
146, 177, and 179 were also kept as queries for a future structure similarity search.

Compound 146 is known as diphenoxylate. It is a meperidine congener used as an
antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine.
Its unesterified metabolite difenoxin has similar properties and is used similarly. It has
little or no analgesic activity because it does not cross the blood–brain barrier. According to
DrugBank, it is categorized as an analgesic, opioid, anti-peristaltic agent, alimentary tract
and metabolism agent, antidiarrheal, intestinal anti-inflammatory/anti-infective agent,
and anti-propulsive. Because TLR pathways can be related to inflammatory and microbial
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pathologies, it is conceivable that diphenoxylate could have a certain affinity for TLR4. It has
also been shown that diphenoxylate can regulate NF-κB [85], a protein present downstream
in the TLR pathway. Moreover, some studies have proven the binding between morphine
and TLR4 [86–88], suggesting a conceivable effect of diphenoxylate in TLR4 as well.

Compound 177 is known as Ono-Rs 411, or pranlukast. It is a cysteinyl leukotriene
receptor 1 antagonist. It antagonizes or reduces the bronchospasm caused, principally in
asthmatics, by an allergic reaction to accidentally or inadvertently encountered allergens.
It is classified as an anti-asthmatic agent, respiratory system agent, drug for obstructive
airway diseases, leukotriene receptor antagonist, cytochrome P-450 CYP2C9 inhibitor,
cytochrome P-450 CYP2C9 inducer, and CYP3A4 inhibitor. Besides, some studies have
shown that pranlukast can inhibit NF-κB activation [89,90]. It has also been shown that
it indirectly induces cytoplasmic membrane depolarization of Gram-negative bacteria,
promoting E. coli outer membrane detachment [91], releasing microbial products that are
recognized by TLR4.

Compound 179 is known as vemurafenib, a V600 mutant BRAF enzyme inhibitor
for the treatment of late-stage melanoma [92]. Vemurafenib inhibits the active form of
the kinase [93,94], firmly anchoring itself in the ATP-binding site. By inhibiting only the
active form of the kinase, it selectively inhibits the proliferation of cells with unregulated
BRAF, normally those that cause cancer. It is classified as an antineoplastic agent, protein
kinase inhibitor, antineoplastic and immunomodulating agent, cytochrome P-450 CYP1A2
inhibitor, cytochrome P-450 CYP1A2 inducer, CYP2D6 inducer, CYP2D6 inducer (strong),
and CYP3A4 inhibitor. To date, it has been shown that TLR4 and its signaling pathway
promote migration of human melanoma cells [95,96], but no studies showing a direct effect
of vemurafenib on TLR4 have been conducted yet.

3.2.5. Step V. Biological Testing

After the identification of possible TLR4 binders, we tested them in HEK-BlueTM cells
transfected with hTLR4 to check their ability to act as TLR4 agonists or antagonists and in
J744 macrophage cells to check their ability to decrease TNF-α secretion.

The ability of the ligands to interfere with LPS-triggered TLR4 activation in HEK-Blue
hTLR4 cells model was investigated. This HEK293 cell line is stably transfected with human
TLR4, MD-2, and CD14 genes. In addition, HEK-BlueTM cells express a secreted alkaline
phosphatase (SEAP) produced upon activation of NF-κB. LPS binding activates TLR4 and
NF-κB, leading to SEAP secretion, which is detected by an alkaline phosphatase substrate
in cell culture media (Figure S4). In this assay, the HEK-BlueTM cells were treated with
increasing concentrations of synthetic molecules and then stimulated with LPSs from E. coli
(20 ng/mL). The results were normalized to activation by LPSs alone and expressed as the
mean percentage ± SD of three independent experiments. The screened 27 compounds
were tested and, from them, compounds B (ID-5382), F (MS21), H (MS32), I (MS35), J (MS45),
X (PM1090), Z (PM1200), and M4 (179) inhibited TLR4 activation in a dose-dependent way
(Figure 6 and Table 3). As the negative control, compounds were tested in a null cell line
(InvivoGen) transfected with the same plasmids as the HEK-BlueTM cells but without the
TLR4, MD-2, and CD14 genes, and no effect was observed.
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Table 3. Non LPS-like compounds identified with the TLR4/MD-2 antagonist activity. The calculated
ADME parameters show the compounds have promising drug-like properties. The calculated logP is
shown to illustrate the importance of a relatively high lipophilicity for the activity. a ChemScketch
and b MolInspiration (www.molinspiration.com, accessed on 8 September 2022). Additional ADME
parameters calculated with Swiss-ADME (http://www.swissadme.ch/, accessed on 8 September
2022) are c drug-likeness according to Lipinski’s rule and water solubility as d logS.
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We also tested the activity of these compounds on J744 macrophage cells in order
to detect the amount of TNF-α secreted by the cells in the presence of the compounds.
Moreover, in order to test the toxicity of the selected compounds, MTT assay was performed
on the same cell line (Figure 7). Compound H showed a strong TNF-α production inhibition
at both concentrations, and no significant cytotoxicity effect was observed (cell viability
was maintained, Figure 7). These results make compound H one of the most promising
scaffolds. Compound F also showed an inhibitory activity at 1 µg/mL, but high levels of
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cytotoxicity were observed at 5 µg/mL (cell viability decreased, Figure 7). On the other
hand, compound X markedly inhibited the production of TNF-α at 5 µg/mL, while no
cytotoxic effect was observed at both concentrations (viability was maintained, Figure 7).
Compounds B, J, I, and Z did not show any inhibitory effect, and compounds I and M4
showed high cytotoxicity even at 1 µg/mL.
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Figure 7. Expression of TNF-α secretion (black bars) and cell viability (white bars) in the J744 cell line
upon treatment with the screened compounds B, F, I, J, X, Z, and M4. The results were normalized
with the positive control (LPSs alone) and expressed as the mean percentage ± SD of at least three
independent experiments.

4. Conclusions

In this work, we applied virtual screening and computational repositioning strategies
for the discovery of novel non-LPS-like TLR4 modulators. Our computational proto-
col made use of different conformations of TLR4/MD-2 and included ligand-based and
structure-based virtual screening and deep ligand/receptor analysis. Our protocol showed
to be a robust approach for the identification of eight non-LPS-like compounds with the
TLR4/MD-2 antagonist activity. Compounds B (ID-5382), F (MS21), H (MS32), I (MS35),
J (MS45), X (PM1090), Z (PM1200), and M4 (sorafenib) inhibited TLR4 activation in a
dose-dependent manner as putative of TLR4 modulators. In addition, compounds F and
H showed antagonist activity in the J744 cell line with no signs of cytotoxicity. The com-
putationally identified hits represent interesting non-LPS-like scaffolds for a new class of
possible inhibitors for the TLR4/MD-2 complex. We also showed the molecules identified
by computational screening from the different chemical libraries studied, commercial and
public databases, and from the academia. We aimed to share with the scientific community
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the chemical identity of the compounds resulting from our collaborative work in order to
serve as inspiration for future design.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10092326/s1, Figure S1: Top scoring compounds
obtained by SBVS and LBVS on the Log P 1000 database. Figure S2: Top scoring compounds
obtained by SBVS and LBVS on the SPECS database. Figure S3: Known antagonists of the MD-2
reported in the literature. Figure S4: Cell-based colorimetric assay for the detection of biological
active endotoxin. Figure S5: Colchicine (left), pironetin (center) and euodenine A (right) chemical
structures. Table S1: 2D description and the respective scores from ID-5382, AG-690/11203225
and AF-399/15128553.Table S2: 2D Chemical structure of predicted TLR4 modulators identified
by computational drug repurposing, and kept for future structure similarity search.Table S3: 2D
Chemical structure from PM databases obtained from SBVS. Table S4: 2D Chemical structure from
JCM databases obtained from SBVS. Table S5: 2D Chemical structure from JRP and AM databases
obtained from SBVS.
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