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We are pleased to present the first Special Issue (SI) of “Mitochondria and Brain
Disease”. The scope of the present SI was to collect papers devoted to the multifaceted
investigation of mitochondrial function and mitochondrial-directed interventions in the
broad and heterogeneous field of brain diseases. Several renowned researchers contributed
to this diverse collection, which includes five original research articles and eleven literature
reviews. Topics addressed in this SI include the comprehensive discussion of mitochondrial
function in early life stress (ELS)-affected brain [1], as well as in age-related neurodegenera-
tive disorders such as Parkinson’s (PD) [2] and Alzheimer’s diseases (AD) [3]. In the same
line, Leal and Martins [4] provide an updated review on the involvement of mitochondria—
endoplasmic reticulum contact sites (MERCS) in neurodegenerative disorders, in particular
AD. In turn, Onyango et al. [5] discuss the interaction between age-related mechanisms
of disease (i.e., mitochondrial dysfunction, oxidative stress, defective autophagy, cellular
senescence, etc.) and neuroinflammation in the pathogenesis of late-onset AD. A different
perspective is presented by Bennett and Onyango [6] that discuss the involvement of mito-
chondria in age-related diseases from a thermodynamic point-of-view. In addition, a review
manuscript by Brunetti et al. [7] discusses the role of defective mitochondrial proteostasis,
namely due to the dysfunctional activity of pitrilysin metallopeptidase 1 (PITRM1), as a
possible driving factor of several neurodegenerative conditions, particularly AD. Likely,
another review manuscript by Lucini and Braun [8] discusses the role of mitochondria in
TDP-43 proteinopathy and the involvement of TDP-43-mediated mitochondrial dysfunction
in neurodegenerative diseases. In turn, the study of Kurokin et al. [9] shows that changes
in lipid classes within mitochondria may correlate with the APP processing, i.e., whether it
goes through the amyloidogenic or non- amyloidogenic pathway, and may compromise mi-
tochondrial function. In the context of mental disorders, the review manuscript by Bressan
and Kramer [10] presents a broad perspective on how mental disease relates to the different
evolutionary strategies of men and women and to growth, metabolism, and mitochondria.
In addition, Marques et al. [11] demonstrate that the loss of mitochondrial function is an
early event implicated in bipolar disorder pathophysiology that might trigger neuronal
changes and the modification of brain circuitry. The role of mitochondria in ischemic stroke
and I/R injury is also discussed by Carinci et al. [12] who comprehensibly review the
principal mitochondrial molecular mechanisms that function during the insults and present
potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial
homeostasis. The importance of mitochondria in the cascade of events regulated by the
IGF1/1GF1R signalling pathway is also described by Cardoso et al. [13]. In the same line,
Lu et al. [14] demonstrate that mitochondrial function is improved in an animal model of
epilepsy treated with medicinal plant-derived substances. Finally, this SI comprises two
manuscripts that address the importance of mitochondria in oligodendrocyte function. One
of those is an original study reporting that mitochondria is an important mediator in the
loss of oligodendrocytes and myelin that characterizes Krabbe disease (KD) [15]. The other
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one discusses the role of mitochondria and endoplasmic reticulum in the malfunction of
oligodendrocytes induced by harmful exogenous stimuli [16].

Given all these varied contributions, it is clear that mitochondria are powerful or-
ganelles that enable our existence, and the disruption of its function is theorized to have a
causative role in several brain-related diseases. Importantly, these studies also highlight the
therapeutic potential of rescuing mitochondrial integrity in such brain-related pathologies.
There are still many important questions that remain unanswered, promising a great future
for this field.
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