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Abstract: The gut mucosa is actively absorptive and functions as the physical barrier to separate the
gut ecosystem from host. Gut microbiota-utilized or food-derived metabolites are closely relevant to
the homeostasis of the gut epithelial cells. Recent studies widely suggested the carcinogenic impact
of gut dysbiosis or altered metabolites on the development of colorectal cancer (CRC). In this study,
liquid chromatography coupled-mass spectrometry and long-read sequencing was applied to identify
gut metabolites and microbiomes with statistically discriminative abundance in CRC patients (n = 20)
as compared to those of a healthy group (n = 60) ofenrolled participants diagnosed with adenomatous
polyp (n = 67) or occult blood (n = 40). In total, alteration in the relative abundance of 90 operational
taxonomic units (OTUs) and 45 metabolites were identified between recruited CRC patients and
healthy participants. Among the candidates, the gradual increases in nine OTUs or eight metabolites
were identified in healthy participants, patients diagnosed with occult blood and adenomatous
polyp, and CRC patients. The random forest regression model constructed with five OTUs or four
metabolites achieved a distinct classification potential to differentially discriminate the presence of
CRC (area under the ROC curve (AUC) = 0.998 or 0.975) from the diagnosis of adenomatous polyp
(AUC = 0.831 or 0.777), respectively. These results provide the validity of CRC-associated markers,
including microbial communities and metabolomic profiles across healthy and related populations
toward the early screening or diagnosis of CRC.
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1. Introduction

Epidemiological studies indicated that colorectal cancer [CRC] is the third most com-
mon morbidity and has the second highest mortality rate among all cancers. With high
mortality and increasing incidence, CRC is classified as the second leading cause of cancer-
mediated deaths worldwide [1,2]. Morbidity and mortality of CRC is related to complex
factors, including genetic susceptibility, dietary intake, or environmental stress [3,4]. Even
though the correlation of CRC occurrence or progression with gut environment composed
of microbiota and metabolites is increasingly acknowledged, demonstrating the influence
of gut microbiomes on susceptibility to or development of CRC remains a critical challenge.

Emerging research has demonstrated the impact of specific bacteria or dysbiosis
of resident microbiota on carcinogenesis of gut epithelium via activating inflammatory,
mis-regulated cell proliferation, or altered genome stability [5]. The association of CRC
development with an increase in the relative abundance of Fusobacterium nucleatum in gut
microbiota has been widely identified [6]. Continuous studies demonstrated the influ-
ence of Fusobacterium nucleatum on activating Cdk5-mediated Wnt/β-catenin pathways,
subsequently promoting CRC progression [7]. An increase in the relative abundance of
Peptostreptococcus anaerobius, a Gram-positive anaerobic bacterium in the fecal or tissue
samples of CRC patients was noted as well in recent reports [8]. Peptostreptococcus anaero-
bius exhibits the activity on activating the PCWBR2-integrin a2/b1-PI3K-Akt-NFkB axis
throughout CRC occurrence, which was considered a potential therapeutic target toward
CRC [9]. In contrast, the supplementation of probiotics, including Bifidobacterium, Lactobacil-
lus genera, or Clostridium butyricum, was demonstrated to improve clinical prognosis or
suppress development of CRC via lessening of CRC-associated signaling or manipulating
gut microbiota [10–12].

Despite great effort being taken to comprehend the correlation of gut microbiota
profiles with disease, the influence of gut microorganisms on homeostasis of host cells is
primarily conveyed through metabolite-mediated pathways [13]. A diet-derived or artifi-
cial small molecule was identified as a signal to manipulate the risk toward the occurrence
or progression of CRC [14]. Untargeted metabolomics is considered a well-established
approach for the comprehensive and concomitant identification of metabolite composition
that is increasingly applied to reveal the alteration in metabolism throughout the develop-
ment of diverse diseases, including CRC [15]. Short-Chain Fatty Acids [SCFAs], including
acetic acid, propionic acid, and butyric acid, are predominant metabolite generated by
diverse bacteria with the intake of dietary fiber. Presence of SCFA was relevant to the per-
meabilization of lysosomal membrane or mitochondrial malfunction which subsequently
sensitized the CRC cells toward programmed cell death [16]. Clostridium butyricum was
documented to lessen the proliferation of CRC cells by manipulating Wnt/β-catenin sig-
naling with the production of butyric acid [17]. In contrast, bile acid [BA] is first derived
from cholesterol in the liver and further metabolized by gut microorganisms, including
Firmicutes, Bacteroidetes, or Actinobacteria genera to genotoxic secondary BA [18,19]. Intake
of high-fat diets resulted in the colonic excretion of secondary BA, such as deoxycholic
acid and lithocholic acid, which diminishes the tumor-suppressive effect of the farnesoid
X receptor signaling toward the carcinogenic process of CRC [20,21]. Nevertheless, the
interplay between gut dysbiosis, gut metabolite composition, and gene expression profile
throughout the development of CRC is largely uncharacterized.

In this study, the gut dysbiosis and fecal metabolite profile in CRC patients (n = 20)
was classified using long-read sequencing and a LC-QTOFMS platform compared to those
of patients diagnosed with colonic occult blood (n = 40), adenomatous polyp (n = 67), or
healthy participants (n = 60). The increases in the relative abundance of Peptostreptococcus



Biomedicines 2022, 10, 1741 3 of 15

stomatis, Shigella boydii, allocholic acid, and S-Adenosylhomocysteine were specifically
identified in feces samples of CRC patients. The results of a random forest regression
model suggested that CRC-related microbial and metabolite composition have the potential
to serve as an auxiliary test toward the early prediction of CRC occurrence. The impact
of gut dysbiosis and metabolite-mediated mechanisms involved in CRC occurrence and
development is worthy of further investigation.

2. Materials and Methods
2.1. Ethics Statement of Sample Collection

The procedure regarding recruitment of healthy participants and patients was ap-
proved by the Joint Institutional Review Board of Taipei Medical University (TMU; approval
no. 201901013). CRC patients were recruited from the Division of Colorectal Surgery at
Taipei Medical University. Patients diagnosed with adenomatous polyp were recruited
from the Division of Gastroenterology at Taipei Municipal Wan Fang Hospital. The healthy
participants and patients diagnosed with colonic occult blood were enrolled at the Depart-
ment of Family Medicine at Taipei Municipal Wan Fang Hospital. The medical intervention,
such as taking antibiotics, chemotherapy or radiation therapy, or taking feces softener for
3 months, were the exclusion criteria in this study.

2.2. Extraction of Bacterial Genomic DNA

Feces samples were collected using DNA/RNA Shield Fecal Collection tubes (Zymo
Research, Irvine, CA, USA) to prevent contamination. Total genomic DNA were isolated
from feces by using a Quick-DNA Fecal/Soil Microbe Microprep Kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instructions. The concentration of
the genomic DNA sample was quantified by using a fluorometric assay (GeneCopoeia,
Rockville, MD, USA).

2.3. Sequencing of 16S Ribosomal RNA Gene

Microbial community in gut of the recruited participants was classified with utilization
of a MinION sequencing platform (Oxford Nanopore Technologies (ONT), Oxford, UK).
In total, 10 ng of total gDNA was subjected for library construction by using the SQK-
16S024 Barcoding kit (ONT) according to the manufacturer’s protocol. The library was
sequentially washed and then eluted from the magnetic beads (AMPure XP, Beckman
Coulter, High Wycombe, UK). Then, 2 ng of barcoded DNA of each participant was pooled,
adapter-ligated, and sequenced on a flow cell (FLO-MIN106D R9.4.1; ONT). The average
read number of each sample was set to 100,000 to meet a reading depth of over 100.

2.4. Extraction of Fecal Metabolites

A total of 50 mg fece was mixed with 1 mL extract solution (acetonitrile: methanol:
water = 2:2:1) and subjected to vigorous vortex. The mixture was homogenized, sonicated,
and incubated at −20 ◦C for 1 h. After centrifugation (12,000× g rpm for 15 min at 4 ◦C),
the supernatant was transferred to a glass vial.

2.5. UPLC-MS/MS Analysis

In total, 10µL of supernatant was injected into a vanquish-focused ultra-high-performance
liquid chromatography (UHPLC) system coupled with an Orbitrap Elite Mass Spectrometry
(Thermo Fisher Scientific; San Jose, CA, USA). The binary mobile phase was composed of
deionized water with 0.1% formic acid (solvent A) and LC-MS grade acetonitrile with 0.1%
formic acid (solvent B). Blank injection was utilized to diminish the carry over effect prior to
each injection. A QC injection was performed for normalization after every five injections.
Mass spectrometry data were collected in positive mode with a default data-dependent
acquisition method. An MS full1 scan was performed in profile mode at 60,000 resolution,
followed by 10 data-dependent MS2 scans at 15,000 resolution. The mass scan range was
set from 70 to 1000 m/z.
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2.6. Processing, Annotation, and Statistical Analysis of Sequencing Results

The quantity of sequencing reads was accessed using Microbial Genomics Module
(CLC genomics workbench (Qiagen v22.0.1; CLC bio, Aarhus, Denmark)). Qualified reads
were mapped to the 16S rRNA reference released by the NCBI database. Annotation,
taxonomic diversity, and relative abundance of microbial profiling were assessed using
the Microbial Genomics Module (CLC genomics workbench (Qiagen v22.0.1). Relative
alteration of identified taxa between each group was evaluated using the linear discriminant
analysis (LDA) effect size (LEfSe) method with the default setting (https://huttenhower.
sph.harvard.edu/galaxy/root (accessed on 23 March 2022)). The relative abundance of taxa
was identified as significantly different with a p value < 0.05 and an LDA score (log10) > 3.

2.7. Processing and Annotation of UPLC-MS/MS Data

The original data was converted to the mzXML format using ProteoWizard software
(V2.0, Taipei, Taiwan). Detection of signal strength, signal extraction, alignment, and
integration of the original result was assessed using an XCMS-based program using R
program. A BiotreeDB-based MS2 database was utilized for the annotation of metabolite
profile with the cutoff value of 0.3.

2.8. Statistical Analysis

Statistics regarding the generated results were shown as the mean ± standard error.
A one-way analysis of variance (ANOVA) combined with Tukey’s multiple comparison
post-hoc test was used to compare continuous variables. A variable was identified signif-
icant with a p value of <0.05 (* p < 0.05; ** p < 0.01; *** p < 0.005). Zero-inflated negative
binomial (ZINB) regression (R package pscl) was applied to assess the association be-
tween CRC-enriched metabolite and OTU. In brief, the read number of identified OTU
was identified as a dependent variable and the identified strength of metabolite was con-
sidered a independent variable in the ZINB regressions. The association was shown by
−log10(p-value)*sign (Beta) and the results of ZINB regressions and Beta presented the
regression of the metabolite. The predictive utility of OTU or metabolite to the occurrence
of CRC was estimated with the utilization of the receiver operating characteristic (ROC)
curve and area under the ROC curve (AUC) ratio by using SPSS Statistics 19 (IBM, Armonk,
NY, USA).

3. Results
3.1. Metadata of Enrolled Participants in This Study

In total, 20 CRC patients, 40 patients diagnosed with colonic occult blood, 67 patients
diagnosed with colonic adenomatous polyp, and 60 healthy participants were recruited
in this study. No statistical difference in the included confounders of age, gender, regular
exercise, or a history of smoking or drinking was noted among all groups (Table 1, p > 0.05).
Nevertheless, the relevance of CRC occurrence with other primary malignancy (p < 0.01) or
family history of cancer (p < 0.01) was noted in this study.

Table 1. Demographics of healthy participants and enrolled patients diagnosed with colonic occult
blood, adenomatous polyp, and CRC.

Group Healthy (n = 60) Colonic OB (n = 40) Adenomatous Polyp (n = 67) CRC (n = 20) p

Age (Median(IQR)) 61 (31–72) 52 (35–63) 48 (39–60) 64 (43–88) >0.05
Sex (n,%)

>0.05Female 35 (58.33) 22 (55) 39 (58.2) 13 (65)
Male 26 (41.67) 18 (45) 28 (41.8) 7 (35)

History of cancer (n,%) 6 (11.32) 3 (8.33) 5 (11.63) 4 (20) (p < 0.01) >0.05
Family history of cancer (n,%) 10 (16.67) 8 (20) 13 (19.4) 8 (40) (p < 0.01) >0.05

History of smoking (n,%) 15 (25) 8 (20) 13 (19.4) 5 (25) >0.05
History of drinking (n,%) 6 (10) 8 (20) 12 (17.91) 5 (20) >0.05

History of regular exercise
(n,%) 27 (45) 21 (52.5) 24 (35.82) 8 (40) >0.05

https://huttenhower.sph.harvard.edu/galaxy/root
https://huttenhower.sph.harvard.edu/galaxy/root
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3.2. Statistical Analysis of Sequencing Throughput in Each Enrolled Group

For characterizing the gut microbial communities of enrolled participants in this study,
the genomic DNA extracted from the fecal sample was subjected to the long-read sequenc-
ing platform (MinION, ONT, Oxford, UK). Numbers with an average of sequenced and
qualified reads per sample were evaluated by using the CLC Genomics Workbench soft-
ware (v.22.0.1; Aarhus, Denmark). As shown in Table 2, no statistical difference was noted
regarding the sequencing efficiency with the DNA extracted from each group (Table 2).

Table 2. Statistical summary of long-read sequencing results.

Group Healthy (n = 60) Colonic OB (n = 40) Adenomatous
Polyp (n = 67) CRC (n = 20) p

Number of Raw reads per
sample 84,534 (±5079) 87,817 (±4121) 81,775 (±2719) 83,756 (±3217) >0.05

Number of qualified reads
per sample 62,749 (±3226) 65,292 (±2884) 51,944 (±2431) 54,645 (±2005) >0.05

Reads in identified taxa 58,505 (±2845) 60,297 (±2355) 45,403 (±1977) 49,446 (±2105) >0.05
Correctly classified (% (SD)) 93.24 (±3.64) 92.35 (±4.97) 91.59 (±3.55) 90.49 (±2.69) >0.05
Number of identified taxa

per sample 1114 1075 931 948 >0.05

Statistical difference in species diversity (α-diversity) between the microbial communi-
ties of healthy participants and CRC patients (p < 0.05) or patients diagnosed with colonic
occult blood (p < 0.005), but not patients diagnosed with adenomatous polyp (p > 0.05),
was identified with the analyses using the Simpson index (Figure 1A) or Shannon entropy
(Figure 1B). The dissimilarity between the microbial communities in the distinct group was
subsequently evaluated with the Weighted Unifract distance (Figure 2A) or Bray-Curtis
index (Figure 2B). Statistical results of the principal coordinate analyses (PCoA) showed the
unique population aggregates in fecal samples of CRC patients (Figure 2, red dot), patients
diagnosed with adenomatous polyp (Figure 2, orange dot), or patients diagnosed with
colonic occult blood (Figure 2, green dot), compared to those of the healthy group (Figure 2,
blue dot), which constituted the disease or disorder-related enterotype [22].

Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

Figure 1. Diversity of taxonomic alignments between healthy group (blue), Colonic OB (green), Ad-

enomatous polyp (brown), and CRC (red) with long-read sequencing results. The α-diversity in all 

groups is illustrated using (A) Simpson index and (B) Shannon entropy (No difference (N.D.) > 0.05; 

* p < 0.05; *** p < 0.005). 

 

Figure 2. The dissimilarity of gut microbial community among the enrolled participants with se-

quencing results is identified using principal component analysis (PCoA), including (A) Weighted 

Unifrac and (B) Bray-Curtis method. 

3.3. Identification of CRC-Associated Microbial Community with Result of Long-Read 

Sequencing 

The long-read sequencing approach has been reported to exhibit a resolution for tax-

onomic identification of the microbial community at the species level [23]. In this study, 

around 1000 operational taxonomic units (OTUs) were identified in individual groups 

(Table 2). The bar chart presented top 25-ranked OTUs based on the average reads classi-

fied from all recruited group with the utilization of MinION sequencing results coupled 

with the CLC Genomics Workbench (Qiagen) pipeline (Figure 3 and Supplementary Table 

S1). A heat map was generated based on 19 OTUs with relatively high abundances and 13 

OTUs with relatively low abundance and statistically significance in CRC group as com-

pared to the healthy participants (Supplementary Table S2; p < 0.05; FDR < 0.05; Bonferroni 

Figure 1. Diversity of taxonomic alignments between healthy group (blue), Colonic OB (green),
Adenomatous polyp (brown), and CRC (red) with long-read sequencing results. The α-diversity in
all groups is illustrated using (A) Simpson index and (B) Shannon entropy (No difference (N.D.) > 0.05;
* p < 0.05; *** p < 0.005).



Biomedicines 2022, 10, 1741 6 of 15

Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

Figure 1. Diversity of taxonomic alignments between healthy group (blue), Colonic OB (green), Ad-

enomatous polyp (brown), and CRC (red) with long-read sequencing results. The α-diversity in all 

groups is illustrated using (A) Simpson index and (B) Shannon entropy (No difference (N.D.) > 0.05; 

* p < 0.05; *** p < 0.005). 

 

Figure 2. The dissimilarity of gut microbial community among the enrolled participants with se-

quencing results is identified using principal component analysis (PCoA), including (A) Weighted 

Unifrac and (B) Bray-Curtis method. 

3.3. Identification of CRC-Associated Microbial Community with Result of Long-Read 

Sequencing 

The long-read sequencing approach has been reported to exhibit a resolution for tax-

onomic identification of the microbial community at the species level [23]. In this study, 

around 1000 operational taxonomic units (OTUs) were identified in individual groups 

(Table 2). The bar chart presented top 25-ranked OTUs based on the average reads classi-

fied from all recruited group with the utilization of MinION sequencing results coupled 

with the CLC Genomics Workbench (Qiagen) pipeline (Figure 3 and Supplementary Table 

S1). A heat map was generated based on 19 OTUs with relatively high abundances and 13 

OTUs with relatively low abundance and statistically significance in CRC group as com-

pared to the healthy participants (Supplementary Table S2; p < 0.05; FDR < 0.05; Bonferroni 

Figure 2. The dissimilarity of gut microbial community among the enrolled participants with
sequencing results is identified using principal component analysis (PCoA), including (A) Weighted
Unifrac and (B) Bray-Curtis method.

3.3. Identification of CRC-Associated Microbial Community with Result of Long-Read Sequencing

The long-read sequencing approach has been reported to exhibit a resolution for tax-
onomic identification of the microbial community at the species level [23]. In this study,
around 1000 operational taxonomic units (OTUs) were identified in individual groups
(Table 2). The bar chart presented top 25-ranked OTUs based on the average reads classified
from all recruited group with the utilization of MinION sequencing results coupled with
the CLC Genomics Workbench (Qiagen) pipeline (Figure 3 and Supplementary Table S1). A
heat map was generated based on 19 OTUs with relatively high abundances and 13 OTUs
with relatively low abundance and statistically significance in CRC group as compared to
the healthy participants (Supplementary Table S2; p < 0.05; FDR < 0.05; Bonferroni < 0.05).
The results illustrated the relevance of identified CRC-enriched OTUs from all enrolled
participants. Among these candidates, the gradual increases in the relative abundant levels
of 9 OTUs (Figure 4, red character) in gut microbial communities were noted from the
enrolled patients diagnosed with colonic occult blood (Figure 4, green), adenomatous polyp
(Figure 4, orange) to CRC patients (Figure 4, red). In contrast, the decreases in relative abun-
dances of 13 OTUs was identified in enrolled CRC patients as compared to those of healthy
participants (Figure 4, blue character). The adenomatous polyp-associated abundance of
Pectobacterium or Klebsiella genera was noted in a minority of CRC patients (Supplementary
Figure S1A, red character). Nevertheless, the relevance of colonic occult blood-related mi-
crobial communities with occurrence of adenomatous polyp or CRC was sparsely identified
in this study (Supplementary Figure S1B). A linear discriminant analysis (LDA) effect-size
(LEfSe) assay was subjected to further evaluate the differential abundances of identified
OTUs between healthy participants, patients with distinct disorders, and CRC patients.
Discriminative abundance was considered statistically convincing for p value of <0.05 and
a logarithmic LDA score cutoff of >3 or <−3. The statistical score showed the numerically
abundant Peptostreptococcus stomatis, Escherichia marmotae, Brenneria alni, Shigella boydii, and
Trabulsiella odontotermitis in the microbial communities of CRC patients (Figure 5a, red
bar) compared to the healthy group (LDA score (log 10) < −3). In contrast, the relative
abundance of Prevotella copri, Selenomonas ruminantium, and Coprococcus comes were much
higher in the gut microbial communities of healthy participants than those of enrolled CRC
patients (LDA score (Figure 5a, green bar; LDA score (log 10) > 3). The statistical results
showed gradual increases in the relative abundance of Peptostreptococcus stomatis, Escherichia
marmotae, Brenneria alni, Shigella boydii, and Trabulsiella odontotermitis in gut microbial com-
munities of the enrolled patients diagnosed with colonic occult blood, adenomatous polyp,
and CRC patients as compared to those of healthy participants (Figure 5b).
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patients with MinION sequencing results. Stacked bar chart is applied to present the relative
abundances of the top 25 classified OTUs to species level.
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Figure 4. The relevance of 19 CRC-enriched OTUs (black and red character) and 13 OTUs with
relatively low abundances in CRC patients as compared to those of the healthy participants (blue
character) at the species level among all recruited participants is illustrated using a heatmap chart.
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Figure 5. Differential abundances of identified OTU at the species level between healthy participants
and enrolled patients. (A) Histogram of linear discriminant analysis (LDA) scores presents differential
abundances of identified OTUs in healthy participants (green bar) and CRC patients (red bar).
(B) Relative abundances of identified OTUs in the fecal samples of enrolled patients diagnosed with
colonic occult blood, adenomatous polyp, and CRC.

3.4. Untargeted Identification of CRC-Associated Metabolite Profile with LC-MS/MS Analysis

With the utilization of the UPLC-MS/MS platform and coupling analytic pipeline,
a total of 187 metabolites were quantified in the fecal samples of enrolled patients. The
result of the principal component analysis (PCA) showed the statistical difference in the
gut metabolite profiles among CRC patients (Figure 6, red dot), patients with adenomatous
polyp (brown dot) or colonic occult blood (green dot), and healthy subjects (blue dot)
(PERMANOVA, p = 0.001). As shown in Supplementary Table S3, a total of 45 metabolites
with discriminating abundance between healthy participants and CRC patients were iden-
tified with the criteria, including a variable importance in projection value (VIP) > 1.5,
a significant alteration in relative abundance (−2 > fold-change > 2), and a significant
p value < 0.05. As shown in Figure 7, a heat map was shown to illustrate the relatively
differential abundances of identified metabolites among the enrolled groups as compared
to those of healthy group with a significant alteration (−2 > fold-change > 2) and sta-
tistical result (p value < 0.05; FDR value < 0.05). Among the candidates, the gradual in-
creases in the relative abundances of four metabolites, including S-Adenosylhomocysteine,
N,N-Dimethylaniline, Stearic acid, and allocholic acid, were noted in gut microbial commu-
nities of the enrolled CRC patients as compared to those of healthy participants (Figure 7).
These results suggested the potential application of identified metabolites to function as
the disorder or CRC-associated biomarker.
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Figure 7. Z-score heatmap is constructed with 45 distinctly differential metabolites between enrolled
patients diagnosed with colonic occult blood, adenomatous polyp, and CRC. Significance of identified
metabolites were evaluated using variable importance in projection value (VIP) and alteration in
relative abundance from pairwise PLD-DA analysis and Wilcoxon rank-sum test, with VIP > 1.5,
alteration in relative abundance (−2 > fold-change > 2), p value < 0.05, and FDR value < 0.05 as the
cut-off for significance.
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Subsequently, the Zero-inflated negative binomial (ZINB) regression (R package pscl)
was applied to evaluate the relevance between CRC-enriched metabolites and 19 OTUs
with relatively high abundance at the species level in CRC patients [24]. Among the
identified OTUs discriminating the enrolled CRC patients from healthy participants, the
statistically significant association between Shigella, Escherichia, Enterobacter, Streptococ-
cus, and Peptostreptococcus and six CRC-enriched metabolites, including L-Phenylalanine,
L-valine, Gibberellin A3, S-Adenosyl Homocysteine, stearic acid, and allocholic acid was
classified along with CRC occurrence (Figure 8, p < 0.05). These results indicated the sig-
nificant associations among particular gut metabolites and OTU which were relevant to
colorectal carcinogenesis.
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Figure 8. Associations among CRC-enriched metabolites and gut dysbiosis in enrolled CRC pa-
tients. Heatmap for the relevance between metabolites and OTUs along with CRC occurrence. The
metabolites-OTUs associations were evaluated by using zero-inflated negative binomial (ZINB)
regressions. The strengths of associations were measured by -log10 (p-value)*sign (Beta) from the
results of ZINB regressions and p value < 0.05 was identified as the cut-off for significance.

3.5. Predictive Utility of Identified Gut OTUs or Metabolites toward Occurrence of Adenoma
or CRC

To estimate the utility of identified OTU or metabolite on distinguishing patients
with CRC or adenomatous polyp from healthy participants, a random forest regression
model was applied with the relative abundances of identified OTUs or metabolite using
the receiver operating characteristics (ROC) curve. The ROC curve were generated with the
relative abundance of five identified OTUs, including Peptostreptococcus stomatis, Trabulsiella
odontotermitis, Shigella boydii, Brenneria alni, and Escherichia marmotae, or four CRC-enriched
metabolites, such as S-Adenosylhomocysteine, N,N-Dimethylaniline, stearic acid, and
allocholic acid. The same identified OTUs discriminated adenomas occurrence from the
healthy group with an area under the ROC curve (AUC) of 0.713 and CRC occurrence from
healthy participants with and AUC of 0.785 (Figure 9, left). To distinguish adenoma from
healthy groups, four CRC-enriched metabolites were characterized with an AUC of 0.725
and CRC occurrence from healthy condition with an AUC of 0.756 (Figure 9, middle). To
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estimate whether more significant discrimination between healthy conditions and CRC
or adenoma occurrence was achieved, the CRC-enriched OTUs and metabolites with
significant association as demonstrated in Figure 8 were subjected to the ROC assay. For
distinguishing CRC from the healthy group, utilization of five CRC-enriched metabolites
(L-Phenylalanine, Gibberellin A3, S-Adenosyl Homocysteine, stearic acid, and allocholic
acid) and four CRC-related OTUs (Peptostreptococcus stomatis, Shigella boydii, Enterobacter
hormaechei, and Streptococcus lutetiensis) resulted in a higher AUC of 0.9155 (Figure 9, right)
as compared to that with only metabolites or OTUs. The same combination exerted better
discrimination to adenoma from the healthy group with an AUC of 0.9027 (Figure 9, right)
than that with only metabolites or OTUs. These results demonstrated that the relevant
gut dysbiosis-associated metabolite constituted a potential biomarker to the diagnosis of
adenoma or CRC occurrence.
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Figure 9. Predictive utility of identified gut OTUs or metabolites toward the occurrence of CRC or
adenomatous polyp was evaluated using the random forests model. The area under the receiver
operating characteristics (ROC) curve (AUC) was applied for differentiating CRC patients or enrolled
patients diagnosed with adenomatous polyp from the healthy group with the relative abundances
of identified OTUs (left), the intensity of identified gut metabolites (middle), or combination of gut
dysbiosis-associated metabolites in CRC patients (right).

4. Discussion

Along with the advance of the analytic pipeline for microbial and metabolomic profil-
ing, accumulating results continuously illustrate the impact of gut microbiota and metabo-
lites on colorectal tumorigenesis. Emerging perspectives, including early prevention,
screening, or diagnosis of CRC might be applied with clinical treatment [25]. It is crucial as
well to realize whether gut dysbiosis or toxic metabolite is causative of CRC occurrence
or progression, or consequent biomarkers of the disease state. Herein, we executed a
cross-sectional cohort study to identify microbial communities and metabolomics profile
that functioned as putative markers toward diagnosis or prediction of CRC.

Immunological fecal occult blood test [iFOBT] has been a non-invasive method and
continuously implemented for early screening in average-risk populations of CRC world-
wide [26]. Nevertheless, the highly diagnostic sensitivity of iFOBT toward CRC comes
at the cost of false positive rate [27]. It has been widely documented the potential of
fecal bacteria on serving an auxiliary biomarker for non-invasive screening in average or
high-risk population of CRC, such as Fusobacterium, Escherichia, or Bacteroides genera [28,29].
Nevertheless, diverse variation was noted among wide studies for the identification of
CRC-associated microbial markers [30]. Insufficient reading depth of taxonomy and high
dependence on reference database resulted in the diverse variation regarding the identifica-
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tion of CRC-related OTU [31]. Several pioneering studies focused on the discriminating
microbial communities in CRC patients from the healthy counterparts by executing the
cross-section cohort assays [32]. Other studies aimed at identifying the microbial communi-
ties associated with diagnosis of adenomatous polyp to serve the early screening biomarker
toward CRC occurrence or progression [33]. The execution of a longitudinal cohort study
constitutes a practicable strategy to shed light on the relevance of gut dysbiosis with the
progression of adenomatous polyp to CRC occurrence. The advancement of long-read
sequencing approach conferred species-level resolution toward the identification of gut
microbiota, and resulted in the construction of an emerging and convincing model with an
identified feature to discriminate CRC from adenoma or a healthy state [34]. In addition
to a 2.64-fold increase in the relative abundance of Fusobacterium nucleatum, the relatively
high levels of emerging species, such as Trabulsiella, Franconibacter, and Brenneria genera
in gut microbial communities of CRC patients compared to those of healthy participants
was noted in this study. Nevertheless, the impact or relevance of this phenomenon to
pathogenesis of CRC should be further pursued with larger CRC patient cohorts.

Accumulating reports suggested that gut metabolomic profiling represents another
promising approach for identifying CRC-specific biomarkers [35]. Aberrant abundances
of particular amino acids and the derived metabolites generated by particular bacteria
were widely characterized in the fecal samples of CRC patients as compared to the healthy
counterparts, which were relevant to the active proliferation of CRC cells by modulating
immune response or epigenetic regulation [36,37]. A high-fat diet was demonstrated to
result in colonic excretion of secondary bile acids (BAs), such as deoxycholic acid and litho-
cholic acid, which are metabolized by specific gut flora, including Firmicutes, Bacteroidetes,
and Actinobacteria genera [38,39]. Accumulation of secondary BAs was documented to
mediate the aberrant activation of Wnt/β-catenin, TGR5, or EGFR signaling pathways,
which was relevant to immortality, impaired intestinal barrier, or poor prognosis of colonic
carcinogenesis [7,21,40]. In contrast, supplementation of dietary fiber led to increases in
the gut short-chain fatty acids (SCFAs), including acetic acid, propionic acid, and butyric
acid, which are metabolized by Faecalibaculum rodentium and Clostridium butyricum [41,42].
Published reports documented that combined supplementation of diverse SCFAs or SCFA-
generated flora diminished tumor formation or lessened colonic inflammation in a mouse
model [43,44]. In addition to the identification of CRC-enriched metabolites in fecal sam-
ples, the metabolite-species association was assessed by using the ZINB regression model.
Among the interplays, the relevance of Streptococcus genera or other species with conversion
or metabolism of S-Adenosylhomocysteine was previously reported [45]. Relatively high
levels of S-Adenosylhomocysteine, a metabolite involved in methionine metabolism and
methylated modification, was identified in cancerous mucosa as compared to adjacent
normal tissues of CRC patients [46]. An elevation of S-Adenosylhomocysteine was re-
ported to result in hypermethylation of the promoter region and an impaired antioxidant
mechanism, which was closely related to oncogenesis [47]. These results suggested the
potential causation or correlation of metabolite-species interplay with the pathogenesis of
CRC. Nevertheless, the absence of standardization in identifying procedure and analytic
pipeline regarding metabolomic profiling is the limitation and critical issue for defining gut
metabolites as a clinical biomarker for clinical screening, prediction, or diagnosis.

5. Conclusions

In this cross-section cohort study, the relatively high-level structures of gut microbiota
or metabolites in CRC patients different from other counterparts was identified using a
dual-omics approach composed of a long-read sequencer and UPLC-MS/MS platform. The
identified fecal microbiota or metabolite profiling exhibited a distinct utility in differentiat-
ing the patients diagnosed with CRC from other enrolled participants. A longitudinal study
was subsequently conducted by employing the microbiota or metabolite-based candidate to
evaluate the participant for the risk of being diagnosed with CRC. The detailed functional
analysis regarding the impact of CRC-associated microbiota or metabolite community is
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crucial as well for driving the transformation of gut environment-derived strategies into
precision screening and diagnosis of CRC.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines10071741/s1. Supplementary Figure S1: Identified
OTU at the species level differed in the abundances between healthy participants and (A) enrolled
patients diagnosed with adenomatous or (B) recruited subjects diagnosed with colonic occult blood
(red character) are shown in a heat map chart. Supplementary Table S1: Relative abundance table
of identified OTUs at the species level in all recruited groups. Supplementary Table S2: Differential
abundance of identified OTUs in enrolled patients compared with healthy participants. Supplemen-
tary Table S3: Statistical summary of top 45 discriminating gut metabolites in feces samples of healthy
participants and CRC patients.
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