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Abstract: Diabetes is the most common cause of end-stage renal disease, also called kidney failure.
The link between the renal artery receptor angiotensin II type I (AT1R) and endothelin-1 (ET-1),
involved in vasoconstriction, oxidative stress, inflammation and kidney fibrosis (collagen) in diabetes-
induced nephropathy with and without metformin incorporation has not been previously studied.
Diabetes (type 2) was induced in rats and another group started metformin (200 mg/kg) treatment
2 weeks prior to the induction of diabetes and continued on metformin until being culled at week 12.
Diabetes significantly (p < 0.0001) modulated renal artery tissue levels of AT1R, ET-1, inducible nitric
oxide synthase (iNOS), endothelial NOS (eNOS), and the advanced glycation end products that were
protected by metformin. In addition, diabetes-induced inflammation, oxidative stress, hypertension,
ketonuria, mesangial matrix expansion, and kidney collagen were significantly reduced by metformin.
A significant correlation between the AT1R/ET-1/iNOS axis, inflammation, fibrosis and glycemia was
observed. Thus, diabetes is associated with the augmentation of the renal artery AT1R/ET-1/iNOS
axis as well as renal injury and hypertension while being protected by metformin.

Keywords: diabetic nephropathy; AT1R/ET-1/iNOS axis; renal artery; mesangial expansion; kidney
fibrosis; metformin
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1. Introduction

Diabetic nephropathy (DN, also known as diabetic kidney disease) is the most common
cause of renal failure. It represents over 40% of admitted cases of end-stage renal disease in
the USA, and about one-third of patients living with diabetes have DN [1,2]. The type of
obesity that induces insulin resistance is involved in the development of diseases such as
diabetes, hypertension, fatty liver, and cardiovascular diseases, which are well recognized
as hallmarks of metabolic syndrome [3,4]. Excessive consumption of a Western diet rich
in processed food and decreased physical activity account for the rapid rise in obesity
in genetically vulnerable people and cause non-communicable diseases such as diabetes,
which claims the lives of millions around the world [3,4]. Additionally, obesity is also
associated with renal dysfunction and contributes to DN, glomerulopathy and proteinuria
and end-stage renal disease [5–7].

Kidney injury due to diabetes affects glomerular filtration barrier cells such as podocytes
and glomerular endothelial cells and causes mesangial expansion and thickening of the
glomerular basement membrane due to deposition of collagen and other proteins and leads
to proteinuria [8,9]. This, together with the activation of the renin–angiotensin system
(RAS), which increases the glomerular capillary pressure and decreases the glomerular
filtration rate (GFR), contribute to the development of DN [8,9]. Indeed, (i) in patients
with DN, the inhibition of RAS with captopril, an angiotensin-converting enzyme inhibitor,
reduced the risk of DN patients reaching end-stage renal disease by half [9]; (ii) proteinuria
is a recognized marker of kidney injury and is used to monitor the prognosis and the
response to treatment of injured kidneys [10]; and angiotensin II type I receptor (AT1R)
inhibitors decreased proteinuria in patients with DN [11].

Damaged renal blood vessels in DN tip the balance towards vasoconstriction and
hence blood pressure elevation and endothelial dysfunction. This plays an important role
in the prognosis of the disease via the augmentation of endothelin (ET-1) release [12] as
well as inhibition of eNOS activity, which increases oxidative stress [13]. The antidiabetic
drug metformin was reported to treat renal diseases such as DN by decreasing renal
inflammation, oxidative stress and fibrosis in animals and to reduce the progression to
end-stage renal disease in humans [14]. Metformin also protects against acute kidney injury
induced by gentamycin in rats [15]. However, the association between the renal artery
AT1R/ET-1/iNOS axis and DN with and without metformin administration has not been
previously investigated. Thus, our aim in this study was to investigate whether such an
association can be demonstrated as well as whether the anti-diabetic drug metformin was
able to ameliorate any potential deleterious findings.

2. Materials and Methods
2.1. Animals

All experimental protocols (protocol number H-01-R-059) were authorized by the
research ethical committee at Princess Nourah Bint Abdulrahman University in accordance
with the Guide for the Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH publication No. 85-23, revised 1996). The experiments were
carried out on Wistar male rats weighing 170–200 g. During the acclimation period, rats
were fed standard pellets. The rats were also given free access to water and kept in a clean
environment with a 12 h light/dark cycle.

2.2. Experimental Design

After a one-week adaptation period, 24 rats were randomly allocated into three groups:
control group (Control), comprised of non-diabetic, non-treated rats fed with standard
laboratory chow for 12 weeks; and diabetic type 2 group (T2DM), in which diabetes
mellitus was induced in this group of rats using standard methods, i.e., a combination
of a high carbohydrate and fat diet (HCFD) and a single injection of streptozotocin, as
previously described [16]. These rats were kept on a HCFD until the end of week 12.
The metformin plus T2DM group (Met + T2DM) consisted of animals that were given
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metformin (200 mg/kg) from day 1 and were fed HCFD for 2 weeks before T2DM was
induced. For another 10 weeks, the rats were given metformin and were fed an HCFD.
Blood samples were collected by heart puncture under anesthesia (sodium thiopentone
at 40 mg/kg body weight) at the end of experiment; thereafter, rats were euthanized by
cervical dislocation and cardiac tissue samples were taken. Diabetes was confirmed in the
model group 1 week after STZ injection using a Randox reagent kit to measure fasting
blood glucose levels (>200 mg/dL) (Randox Laboratories Ltd., Crumlin, UK ).

2.3. Determination of Glucose, HbA1c, Urea, Creatinine, High Sensitivity C-Reactive Protein
(hs-CRP), Tumor Necrosis Factor-Alpha (TNF-α), Interleukin-6 (IL-6), Malondialdehyde (MDA),
Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Urine Albumin and Ketones

A Randox reagent kit was used to colorimetrically determine glucose levels in the
blood (Randox Laboratories Ltd., Crumlin, UK). An ELISA kit (Cat. # 80300; Crystal Chem,
Inc., Elk Grove Village, IL, USA) was used to assess HbA1c levels in the blood. Colorimetric
methods were used to test blood urea and creatinine, as directed by the manufacturer
(BioAssay Systems, Hayward, CA, USA). ELISA kits were used to test hs-CRP (Cat. #
ERC1021-1, ASSAYPRO, St Charles, MO, USA), TNF-α (Biotang Inc., Lexington, MA, USA),
IL-6 (Biotang Inc., Lexington, MA, USA), MDA (Cayman Chemical, Ann Arbor, MI, USA),
GPx (Cayman Chemical, Ann Arbor, MI, USA). ELISA kit was used to measure urinary
albumin levels (Novus Biologicais, Centennial, CO, USA). Urine dipsticks were used to test
for ketonuria and specific gravity (Williams Medical Supplies, Gwent, UK).

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) of iNOS and eNOS
Gene Levels

qRT-PCR was carried out as explained previously [17]. To summarize, total RNA was
isolated from rat renal arteries using Trizol Reagent (Qiagen, Germantown, MD, USA)
and reverse-transcribed using the Fermentas cDNA synthesis kit (Fermentas, Waltham,
MA, USA) according to the manufacturer’s instructions. cDNA samples were amplified
with primers specific for iNOS (sense 5′-CACCACCCTCCTTGTTCAAC-3′ and antisense
5′-CAATCCACAACTCGCTCCAA-3), eNOS (sense 5′-TATTTGATGCTCGGGACTGC-3′

and antisense 5′-AAGATTGCCTCGGTTTGTTG-3′) and β-actin in Master Mix containing
SYBR-Green Supermix (Molecular Probe, Eugene, OR, USA). The comparative Ct technique
was used to calculate the relative gene expression levels.

2.5. Western Blotting Analysis of AT1R

Proteins were collected from renal arteries and immunoblotted using 25 µg of protein
per sample, as described earlier [17]. Anti-angiotensin II Type-1 receptor polyclonal anti-
body (AT1R, Catalog # ABIN6288600, antibodies-online GmbH, Aachen, Germany) was
used to probe membranes overnight at 4 ◦C. The ECL detection kit was used to visualize
the proteins (Merck Life Science, Gillingham, Dorset, UK). On the Chemi Doc MP imager,
relative expression was calculated by reading the band intensity of the target proteins
against the control sample using Image analysis software after normalization by β-actin.

2.6. Immunostaining and Assessment of Kidney Pathology

Kidney specimens were obtained from various experimental groups and fixed in 10%
formal saline for 1 day before dehydration with ascending grades of alcohols, followed
by clearing and embedding these samples in paraffin using conventional techniques, as
previously reported [18]. Paraffin blocks were sectioned into 5 µm thick slices and stained
with Periodic acid Schiff (PAS) as well as immunostained overnight at 4 ◦C with anti-iNOS
(Cat # ab15323, Abcam, Cambridge, UK) antibody, followed by half an hour incubation with
a secondary antibody at room temperature. Meyer’s hematoxylin was used to counterstain
the sections.

To measure renal collagen deposition, we used Sirius red staining of tissue sections.
Embedded kidney slices were dewaxed in xylene and rehydrated in water via a series
of graded alcohols. After an overnight incubation with 0.1 percent Sirius red (Sigma-
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Aldrich, Gillingham, Dorest, UK), the slides were dipped in 0.01 M hydrochloric acid and
dehydrated with progressive ethanol doses without water. Morphometry of the areas’
percent collagen deposition in Sirius Red stained sections and the areas’ percent iNOS
immunostaining were done in 10 non-overlapping fields for each group using a “Leica
Qwin 500 C” image analyzer (Cambridge, UK). The means and standard deviations (SD) of
quantitative data were calculated and compared using analysis of variance (ANOVA) and
post hoc analysis (Tukey test). p-values less than 0.05 were deemed statistically significant.
The calculations were performed using Version 19 of the statistical package for social science
(SPSS) software.

2.7. Determination of Tissue Levels of ET-1 and Advanced Glycation End Products (AGEs)

Renal artery tissue samples from all groups of rats were washed in phosphate buffered
saline (PBS) at pH 7.4. They were then homogenized in a cold phosphate buffer containing
ethylene-diamine-tetra-acetic acid using an ultrasonic homogenizer (EDTA). Each rat’s
supernatant was aliquoted into separate tubes and stored at –70 ◦C for analysis of ET-1 and
AGEs levels using ELISA kits provided by Abcam, Cambridge, UK, and Ray Biotech, USA,
respectively, according to manufacturer’s instructions.

2.8. Determination of Mean Arterial Blood Pressure

The tail-cuff technique was used to measure blood pressure in conscious rats (BP moni-
tor, LE 5001, LETICIA scientific Instruments, Barcelona, Spain), as previously reported [18].

2.9. Statistical Analysis

The means ± standard deviations were used to represent the data (SD). SPSS version
10.0 was used to analyze the data (SPSS, Inc., Chicago, IL, USA). Tukey’s post hoc test
was used after performing a one-way ANOVA. For the purpose of detecting a possible
relevance between two separate values, a Pearson correlation statistical analysis was used.
If the p-value was less than or equal to 0.05, the results were considered significant.

3. Results
3.1. Metformin Is Associated with the Inhibition of the AT1R/ET-1 Axis and AGEs in the Renal
Artery Induced by Diabetes

Over stimulation of AT1R and ET-1R vascular receptors by angiotensin II (AngII)
and endothelin-1 (ET-1), respectively, lead to sustained vasoconstriction and hence blood
pressure elevation and endothelial dysfunction [19]. In addition, AngII can increase the
expression of ET-1 [20] and the activity of ET-1 is increased in patients with type 2 diabetes
mellitus (T2DM) [21]. To determine whether the AT1R/ET-1 axis is induced by diabetes in
the renal artery of the model group of rats and whether metformin treatment can inhibit
this process, we assessed tissue levels of AT1R and ET-1 in all rat groups 10 weeks after
the induction of T2DM (Figure 1). Western blot and ELISA analyses showed an increase in
the expression of AT1R and ET-1 proteins by diabetes, which appeared to be significantly
(p ≤ 0.0002) inhibited by metformin (Figure 1A–C). Metformin treatment also significantly
(p ≤ 0.0013) decreased glycemia (Figure 1D,E) and renal artery tissue levels of AGEs
(Figure 1F) compared to the untreated diabetes group.

3.2. Metformin Protects against Diabetes-Modulated NOS Enzymes in Renal Artery and
Kidney Tissue

eNOS knockout mice exhibit exacerbated diabetic nephropathy [13] and the upreg-
ulation of iNOS, causing damage to the proximal renal tubule [22]. We investigated the
hypothesis that diabetes augments iNOS and ameliorates eNOS in the renal artery of
rats and that metformin can protect against the actions of diabetes. qRT-PCR analysis of
renal artery tissue samples prepared from the T2DM group showed an increase in iNOS
(Figure 2A,B) and a decrease in eNOS (Figure 2A,C) gene expression. Metformin treatments
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significantly (p ≤ 0.0005) protected against these adverse changes in comparison to the
untreated diabetes group.
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Figure 1. Diabetes activates the AT1R/ET-1 axis with suppression being associated with metformin.
At the end of the animal experiment, Western blots of AT1R (A,B) and ELISA analysis of ET-1 (C)
of renal artery tissue samples collected from the rat groups (Control, T2DM and Met + T2DM) are
presented. The levels of glucose (D) and glycated hemoglobin (E) in the blood, as well as the levels of
AGEs in the renal arteries (F) in the animal groups stated above, were measured at the end of the
experiment. All of the p values shown are significant. ** p ≤ 0.0013 versus T2DM, * p < 0.03 compared
control. T2DM: type 2 diabetes mellitus; AT1R: angiotensin II type I receptor; ET-1: endothelin-1;
HbA1C: glycated hemoglobin; AGEs: advanced glycation end products.
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and eNOS gene expression. At the end of the animal experiment, qRT-PCR analysis (A–C) of iNOS
(A,B) and eNOS (A,C) mRNA of renal artery tissue samples acquired from the rat groups (Control,
T2DM and Met + T2DM) is shown. Immunohistochemistry of iNOS (200×) of kidney sections taken
from the rat groups Control (D), T2DM (E) and treatment group, Met + T2DM, (F,G) are displayed.
The histograms in (G) show a quantitative study of the percentage of iNOS immunostaining region
in kidney slices from the various groups. (H) Mean arterial blood pressure values were measured
in all animal groups at the end of experiment. All of the p values shown are significant. * p < 0.02
versus control, ** p < 0.001 versus T2DM. T2DM: type 2 diabetes mellitus; iNOS: inducible nitric
oxide synthase; eNOS: endothelial nitric oxide synthase; β-actin: beta-actin; MAP: mean arterial
blood pressure.

We then evaluated levels of nitrosative stress (iNOS) induced by diabetes in kidneys
harvested from all animal groups and assessed disease phenotype in the presence and
absence of metformin. Immunohistochemical staining of iNOS (Figure 2D–F) prepared from
kidney sections showed that diabetes enhanced the number of iNOS + ve immunostaining
cells (Figure 2E) when compared to cells which stained negative in the control group
(Figure 2D). Metformin treatment appeared to markedly decrease iNOS + ve (Figure 2F,G)
kidney tissue immunostaining to significant levels compared to the control group of rats.

Based on the above results showing that diabetes upregulated the vasoconstrictive
proteins and downregulated the vasorelaxant eNOS gene in renal arteries that are blocked
by metformin, we measured the mean arterial blood pressure (MAP) in all rats (Figure 2H).
Diabetes significantly (p < 0.0001) induced increased MAP, which was inhibited by met-
formin. However, the effects of metformin were still significant (p = 0.0124) when compared
with the untreated control group.

3.3. Metformin Inhibits Biomarkers of Inflammation and Oxidative Stress Induced by Diabetes

The AT1R antagonist losartan inhibited renal inflammatory and oxidative stress
biomarkers as well as reduced blood pressure [23]. Therefore, in view of the upregu-
lation of AT1R in our model of diabetic nephropathy, we evaluated levels of inflammation
and oxidative stress markers induced by diabetes in all animal groups. Table 1 shows
that diabetes substantially augmented inflammation (hs-CRP, TNF-α and IL-6) and oxida-
tive stress (MDA measured as lipid peroxidation), whereas, levels of antioxidants (SOD
and GPx) were significantly inhibited by diabetes. All these parameters were protected
by metformin.

Table 1. Effects of metformin (Met) on diabetes-modulated inflammation, oxidative stress and
antioxidants. Blood levels of hs-CRP, TNF-α, IL-6, MDA, SOD and GPx were evaluated in all rat
groups 10 weeks after diabetes induction. Values are expressed as mean ± SD for each group.
Presented p values are all significant (p < 0.05). a: significant in comparison to control; b: significant
in comparison to T2DM. T2DM: type 2 diabetes mellitus; hs-CRP: high sensitivity C-reactive protein;
TNF-α: tumor necrosis factor-alpha; IL-6: interleukin-6; MDA: malonodialdehyde; SOD: superoxide
dismutase; GPx: glutathione peroxidase.

Animal
Groups

hs-CRP
(µg/mL)

TNF-α
(pg/mL)

IL-6
(pg/mL)

MDA
(nmol/L)

SOD
(U/L)

GPx
(nmol/min/mL)

Control 1.22 ± 0.28 33.32 ± 2.26 16.60 ± 4.91 13.44 ± 2.97 2.41 ± 0.40 161.3 ± 9.07

T2DM 8.24 ± 2.10 a 113.00 ± 7.93 a 118.70 ± 6.85 a 80.44 ± 6.42 a 0.74 ± 0.160 a 80.57 ± 5.62 a

Met + T2DM 4.29 ± 1.31 ab 55.29 ± 13.57 ab 37.29 ± 10.25 ab 28.09 ± 11.46 ab 2.07 ± 0.52 b 114.6 ± 5.29 ab

3.4. Metformin Is Associated with Inhibition of Mesangial Matrix Expansion and Kidney Fibrosis
Induced by Diabetes

Mesangial matrix expansion and glomerular basement membrane thickening are hall-
marks of diabetic nephropathy that lead to renal fibrosis and eventually to end-stage renal
disease [24]. In addition, an AT1 receptor blocker inhibits kidney fibrosis in an animal
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model of chronic kidney disease [25]. Therefore, in view of the results described above that
showed the upregulation of AT1R by diabetes, 10 weeks after the induction of T2DM we
assessed the levels of kidney injury and fibrosis in all rat groups (Figure 3). After staining
with periodic acid Schiff (PAS), kidneys were examined by light microscopy (Figure 3A–D).
Compared to normal kidney architecture (Figure 3A), diabetes caused expanded mesangial
regions and thickening of glomerular basement membranes, parietal layers and tubular
membranes, with the loss of the brush borders of the tubular cells and PAS-stained regions
in the cytoplasm of the tubular epithelium (Figure 3B,C). Metformin treatment substantially
protected against diabetes-induced kidney injury (Figure 3D). Furthermore, quantification
of mesangial matrix expansion obtained from tissues stained with PAS (Figure 3E) demon-
strated an effective (p < 0.0001) inhibition of mesangial expansion by metformin to levels
comparable to the control group.
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ameliorated by metformin. At the end of the animal experiment, PAS-stained pictures (400×) of kid-
ney sections taken from the rat groups Control (A), T2DM (B,C) and treatment group, Met + T2DM,
(D) are shown. The glomerular (arrow), tubular (curved arrow) and parietal layer (arrowhead) base-
ment membranes, as well as the brush borders of tubular cells, show high positive PAS staining (star).
Positive PAS staining in the tubular epithelium is indicated by wavy arrows in (C). M stands for the
growth of the mesangial matrix. The histograms in (E) show a quantitative examination of mesangial
growth in kidney slices from the different groups. Sirius red-stained pictures (400×) of kidney sec-
tions obtained from the rat groups Control (F), T2DM (G) and treatment group, Met + T2DM, (H,I) are
shown. The arrows in (G) indicate strong positive staining, while the arrows in (F,H,I) indicate faint
positive staining. The histograms in (J) demonstrate a quantitative percentage analysis of collagen
deposition (fibrosis) in kidney slices from each of the groups All of the p values shown are significant.
* p < 0.0001 versus control, ** p < 0.0001 compared to T2DM. T2DM: type 2 diabetes mellitus.

Sirius red-stained kidney tissue sections of the model group (T2DM) revealed sub-
stantial coarse collagen deposition in the renal interstitium and surrounding blood vessels
(Figure 3G) compared with the fine collagen cell staining kidney sections of the control
group (Figure 3F). Metformin treatment for 12 weeks significantly (p < 0.0001) protected
against diabetes-induced collagen deposition (Figure 3H–J), but it was not completely
prevented by the drug.
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3.5. Metformin Inhibits Biomarkers of Kidney Injury Induced by Diabetes

The diabetic kidney produces ketone bodies [26]. We measured biomarkers of kidney
injury induced secondary to T2DM 10 weeks post diabetes induction in all rat groups.
As shown in Table 2, diabetes caused a sharp increase in proteinuria (urine albumin
mg/24 h), ketonuria, urine specific gravity, blood urea and creatinine, which was signif-
icantly (p ≤ 0.0036) ameliorated by metformin to levels still significant (p ≤ 0.0225) to
the control group for specific gravity and creatinine. This means a partial inhibition for
these parameters by metformin. On the other hand, uncontrolled diabetes significantly
(p < 0.0001) decreased animal body weight, which was otherwise protected with metformin.

Table 2. Effects of metformin (Met) on diabetes-modulated kidney injury biomarkers and body
weight. Urine albumin, ketones, specific gravity and blood levels of urea and creatinine as well as
body weight were evaluated in all rat groups 10 weeks after diabetes induction. Values are expressed
as mean ± SD for each group. Presented p values are all significant (p < 0.05). a: significant in
comparison to control; b: significant in comparison to T2DM. T2DM: type 2 diabetes mellitus.

Animal Groups Urine Albumin
(mg/24 h)

Ketonuria
(mmol/L)

Urine Specific
Gravity
(pg/mL)

Urea Creatinine
(mg/dL)

Body Weight
(gram)

Control 13.71 ± 3.69 0.00 ± 0.00 1005.83 ± 2.04 37.67 ± 12.60 0.17 ± 0.06 270.0 ± 5.25

T2DM 42.86 ± 4.67 a 5.54 ± 2.25 a 1030.0 ± 0.00 a 78.75 ± 15.49 a 1.05 ± 0.32 a 163.3 ± 7.52 a

Met + T2DM 24.57 ± 6.02 ab 1.18 ± 1.64 b 1020.83 ± 5.85 ab 49.89 ± 11.21b 0.533 ± 0.23 ab 305.83 ± 31.05 ab

3.6. Correlation between AT1 or Kidney Fibrosis Score and Biomarkers of Vascular and
Kidney Injuries

To draw a link between the pathogenesis of T2DM-induced renal vascular abnormali-
ties and kidney injury including fibrosis, we determined the correlation between AT1R or
the collagen deposition score (kidney fibrosis) and the tissue and blood levels of ET-1, eNOS,
iNOS, AGEs, MAP, urea and glucose. This also confirms that the role of metformin is steady
and proper in serious diabetic complications such as diabetic nephropathy. Figure 4A–D
shows a significant (p ≤ 0.0004) correlation between AT1R score and these parameters: ET-1
(r = 0.880), eNOS (r = −0.850), AGEs (r = 0.802), MAP (r = 0.957) and IL-6 (data not shown),
and Figure 4E–H displays a significant (p < 0.0001) correlation between the collagen score
and these parameters: AT1R (r = 0.899), urea (r = 0.741), iNOS (r = 0.909) and glucose
(r = 0.907).

Biomedicines 2022, 10, x FOR PEER REVIEW 9 of 13 
 

Table 2. Effects of metformin (Met) on diabetes-modulated kidney injury biomarkers and body 
weight. Urine albumin, ketones, specific gravity and blood levels of urea and creatinine as well as 
body weight were evaluated in all rat groups 10 weeks after diabetes induction. Values are ex-
pressed as mean ± SD for each group. Presented p values are all significant (p < 0.05). a: significant 
in comparison to control; b: significant in comparison to T2DM. T2DM: type 2 diabetes mellitus. 

Animal Groups 
Urine Albumin 

(mg/24 h) 
Ketonuria 
(mmol/L) 

Urine Specific 
Gravity 
(pg/mL) 

Urea 
Creatinine  

(mg/dL) 
Body Weight 

(gram) 

Control 13.71 ± 3.69 0.00 ± 0.00 1005.83 ± 2.04 37.67 ± 12.60 0.17 ± 0.06 270.0 ± 5.25 
T2DM 42.86 ± 4.67 a 5.54 ± 2.25 a 1030.0 ± 0.00 a 78.75 ± 15.49a 1.05 ± 0.32 a 163.3 ± 7.52 a 

Met + T2DM 24.57 ± 6.02 ab  1.18 ± 1.64 b 1020.83 ± 5.85 ab 49.89 ± 11.21b 0.533 ± 0.23 ab 305.83 ± 31.05 ab 

3.6. Correlation between AT1 or Kidney Fibrosis Score and Biomarkers of Vascular and Kidney 
Injuries 

To draw a link between the pathogenesis of T2DM-induced renal vascular abnormal-
ities and kidney injury including fibrosis, we determined the correlation between AT1R 
or the collagen deposition score (kidney fibrosis) and the tissue and blood levels of ET-1, 
eNOS, iNOS, AGEs, MAP, urea and glucose. This also confirms that the role of metformin 
is steady and proper in serious diabetic complications such as diabetic nephropathy. Fig-
ure 4A–D shows a significant (p ≤ 0.0004) correlation between AT1R score and these pa-
rameters: ET-1 (r = 0.880), eNOS (r = −0.850), AGEs (r = 0.802), MAP (r = 0.957) and IL-6 
(data not shown), and Figure 4E–H displays a significant (p < 0.0001) correlation between 
the collagen score and these parameters: AT1R (r = 0.899), urea (r = 0.741), iNOS (r = 0.909) 
and glucose (r = 0.907). 

 
Figure 4. The AT1R or kidney fibrosis score correlates with biomarkers of renal artery and kidney 
injury as well as glycemia. All rat groups had their renal artery AT1R expression and collagen dep-
osition in kidney tissues assessed and the relationship between either AT1R and ET-1 (A), eNOS 
(B), AGEs (C) and MAP (D) or kidney fibrosis versus AT1R (E), urea (F), iNOS (G) and glucose (H) 
are shown. AT1R: angiotensin II type I receptor; ET-1: endothelin-1; eNOS: endothelial nitric oxide 
synthase; AGEs; advanced glycation end products MAP: mean arterial blood pressure; iNOS: in-
ducible nitric oxide synthase. 

4. Discussion 
These studies are the first to investigate renal artery expression of two signaling mol-

ecules, angiotensin II type I receptor (AT1R) and endothelin (ET-1), involved in vascular 
dysfunction [19] in an animal model of diabetic nephropathy. Renal artery dysfunction 

Figure 4. The AT1R or kidney fibrosis score correlates with biomarkers of renal artery and kidney injury
as well as glycemia. All rat groups had their renal artery AT1R expression and collagen deposition in



Biomedicines 2022, 10, 1644 9 of 12

kidney tissues assessed and the relationship between either AT1R and ET-1 (A), eNOS (B), AGEs
(C) and MAP (D) or kidney fibrosis versus AT1R (E), urea (F), iNOS (G) and glucose (H) are shown.
AT1R: angiotensin II type I receptor; ET-1: endothelin-1; eNOS: endothelial nitric oxide synthase;
AGEs; advanced glycation end products MAP: mean arterial blood pressure; iNOS: inducible nitric
oxide synthase.

4. Discussion

These studies are the first to investigate renal artery expression of two signaling
molecules, angiotensin II type I receptor (AT1R) and endothelin (ET-1), involved in vascular
dysfunction [19] in an animal model of diabetic nephropathy. Renal artery dysfunction
(stenosis) is reported in 33% of diabetic patients with hypertension and/or renal impair-
ment, and the presence of stenosis has implications for the treatment of these patients [27].
Therefore, we investigated renal artery AT1R/ET-1/iNOS axis–mediated endothelial dys-
function, kidney injury and fibrosis in a rat model of T2DM-induced nephropathy with
and without the incorporation of the antidiabetic drug metformin. This drug is thought
to have pleotropic effects, including anti-oxidant properties. An association between the
pathophysiology of T2DM-induced nephropathy, vascular dysfunction and glycemia was
also investigated in this animal model. We therefore modeled renal artery and kidney in-
juries in rats secondary to T2DM and demonstrated that diabetes has the capacity to trigger
renal artery AT1R/ET-1/iNOS axis–mediated endothelial dysfunction, kidney injury and
fibrosis in rats 10 weeks after diabetes induction. Furthermore, this axis appeared to be
inhibited by metformin (Figure 5). In addition, our data demonstrate a significant correla-
tion between renal artery dysfunction and kidney fibrosis (collagen score) as well as these
parameters also being associated with diabetes, inflammation, kidney injury and blood
pressure. This demonstrates an important association between renal artery dysfunction
and the development of kidney injury in diabetes as well as highlights the reno-protective
effects of metformin.
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Diabetic nephropathy is a common and serious microvascular complication of diabetes
that, if left unchecked, results in progressive and irreversible renal failure. The maladaptive
activation of the renin–angiotensin system (RAS) increases glomerular capillary pressure,
thus playing a fundamental role in the pathophysiology of diabetic nephropathy progres-
sion [9,28]. Indeed, in patients with diabetic nephropathy, upregulation of angiotensin II
type I receptors (AT1R) is often reported in renal biopsies [29] as well as increased urinary
levels of angiotensin converting enzyme 2 (ACE2) also being observed [30]. AT1R inhibitors
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have been shown to ameliorate arterial blood pressure and urinary albumin excretion in
T1DM patients with diabetic nephropathy [11] as well as in hypertensive patients with
T2DM [31]. Both AT1R and iNOS gene and protein expression as well as inflammation and
oxidative stress are increased in the renal cortex tissues obtained from diabetic rats [32],
with eNOS gene polymorphism in patients with T1DM [33] and eNOS deletion in mice [13]
being associated with advanced diabetic nephropathy. Metformin has been shown to
decrease mean arterial blood pressure in addition to levels of AT1 and AGEs receptors
in both the aorta and kidney of rats that have been fed a high-fructose diet [34]. These
reports appear consistent with our data (shown in Figures 1 and 2), which demonstrate
an increase in MAP, a decrease in eNOS and the augmentation of AT1R, iNOS and AGEs
renal artery expression in diabetic nephropathy. Furthermore, these all appear to have been
ameliorated by metformin.

Diabetes and hypertension account for the majority of cases of chronic kidney disease
and thus end-stage renal failure, so targeting the RAS is not enough to slow down the
progression to renal failure [35]. Therefore, investigating another pathway that comple-
ments the RAS, such as ET-1, is warranted. Interestingly, Ang II can increase the expression
of ET-1 [20] with the latter’s activity being upregulated in patients with type 2 diabetes
mellitus (T2DM) [21]. In addition, ET-1 increases proteinuria, fibrosis and chronic kidney
disease [36]. Our data demonstrate ET-1 upregulation and eNOS downregulation in renal
artery tissues harvested from the model group of rats and appear consistent with a recent
report showing a similar pattern of renal artery ET-1/eNOS expression obtained from
obese pigs following renal denervation [37]. In addition, in vitro tissue bioassay using
main branch human renal arteries demonstrated potent vasoconstriction induced by ET-1
with EC50 values of 4.06 nM [38]. Furthermore, plasma ET-1 levels have been shown to be
reduced by metformin in women with polycystic ovary syndrome [39] as well as in rats
with pulmonary hypertension [40]. These reports again appear to be congruous with our
findings, which appear to demonstrate significant inhibition of ET-1 renal artery levels
with metformin.

AT1R expression is elevated in T2DM and is positively associated with renal fibrosis.
The latter, as demonstrated by the deposition of course collagen within renal sections,
was observed in all diabetic rat models. AT1 receptor blockers are known to inhibit
kidney fibrosis in an animal model of chronic kidney disease [25]. We have been able to
demonstrate that metformin is not only able to reduce ET-1 expression but also importantly
translates into reduced course collagen staining and thus fibrosis, hinting again at the
pleotropic properties of metformin.

In conclusion, we demonstrated the activation of renal artery AT1R, ET-1, AGEs
and iNOS as well as the downregulation of eNOS expression in a rat model of diabetic
nephropathy. Metformin, a commonly prescribed, cheap and well-tolerated anti-diabetic
drug is known to act in a pleotropic manner in addition to its well-recognized hypoglycemic
action. We have been able to demonstrate that metformin ameliorates many of these
deleterious pathways that are critical in the progression of renal artery dysfunction and
chronic kidney disease, thereby providing further justification for its routine use in patients
with diabetes, irrespective of glycemic control.

Limitations of the Study

We demonstrated an association between metformin and suppression of the AT1R/ET-
axis. However, to conclusively determine that protein expression is inhibited by metformin,
we suggest a future study that examines the use of specific inhibitors of downstream
signaling pathways.

While we demonstrated that metformin reduces diabetes-induced hypertension through
modulation of renal artery iNOS and eNOS gene expression, it would have been additionally
favorable to measure protein concentration as a consequence of such gene expression modulation.
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The addition of profibrogenic biomarkers such as alpha smooth muscle–actin and tissue
inhibitors of metalloproteinases-1 would have been complementary to the study’s finding of
coarse collagen deposition within the renal interstitium and surrounding blood vessels.

Finally, SGLT2 inhibitors have recently been described as the ‘new frontier’ in dia-
betes care. Future studies should also interrogate whether this class of drug is also able
to ameliorate renal artery AT1R/ET-1 axis–mediated kidney injury to the same extent
as metformin.
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