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Abstract: Patients with severely impaired antibody responses represent a group at-risk in the SARS-
CoV-2 pandemic due to the lack of Spike-specific neutralizing antibodies. The main objective of this
paper was to assess, by a longitudinal prospective study, COVID-19 infection and mortality rates, and
disease severity in the first two years of the pandemic in a cohort of 471 Primary Antibody Defects
adult patients. As secondary endpoints, we compared SARS-CoV-2 annual mortality rate to that
observed over a 10-year follow-up in the same cohort, and we assessed the impact of interventions
done in the second year, vaccination and anti-SARS-CoV-2 monoclonal antibodies administration on
the disease outcome. Forty-one and 84 patients were infected during the first and the second year,
respectively. Despite a higher infection and reinfection rate, and a higher COVID-19-related mortality
rate compared to the Italian population, the pandemic did not modify the annual mortality rate for
any cause in our cohort compared to that registered over the last ten years in the same cohort. PADs
patients who died from COVID-19 had an underlying end-stage lung disease. We showed a beneficial
effect of MoAbs administration on the likelihood of hospitalization and development of severe
disease. In conclusion, COVID-19 did not cause excess mortality in Severe Antibody Deficiencies.

Keywords: COVID-19; SARS-CoV-2; inborn errors of immunity; antibody deficiency; incidence;
mortality rate; monoclonal antibodies

1. Introduction

Patients with Inborn Errors of Immunity (IEI) represent interesting models to provide
insight on different immunological mechanisms involved in protection against infections.
The protective role of functional innate immune responses has been recently shown in
patients with IEI and Innate Immune Defects impairing type I interferon responses who
developed a severe disease course [1]. Likewise, patients with IEI and severe antibody
deficiencies (PADs) might help to better clarify the distinct role of antibodies in protection
from SARS-CoV-2 infectivity and from COVID-19 severity [2–4].
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Primary antibody deficiencies (PADs) are a heterogeneous group of immune disor-
ders characterized by defective antibody production and/or inability to mount specific
antibody responses. Patients with X-linked or Autosomal Recessive Agammaglobulinemia
lack mature circulating B lymphocytes and present a severe decrease in all Ig subtypes,
whereas patients with Common Variable Immunodeficiency (CVID) have dysfunctional
B lymphocytes and decreased circulating levels of IgG, IgA and possibly IgM. In Hyper
IgM Syndrome (HIGM), a defect may be present either in the T cell-dependent B cells’
co-stimulation or in the class switch recombination process, leading to decreased IgG and
IgA levels with possible increase in circulating IgM. Good’s syndrome is a phenocopy of
PAD occurring in patients with an underlying thymoma [5].

Neutralizing antibodies are widely considered the main protective mechanisms for
SARS-CoV-2 infectivity, directly preventing the virus from replicating [6]. After SARS-
CoV-2 immunization and infection, PADs patients showed low or absent neutralizing
antibodies, generation of low frequency of specific memory B cells with low binding
capacity to the Spike protein, absence of Receptor Binding Domain-positive memory B
cells, and variable generation of Spike-specific T cells, indicating a different capability of B
cells to undergo somatic mutation and affinity maturation in the germinal centers which
are indispensable for the establishment of long-term immunity [7,8]. However, despite
the functional impairment of their B cell compartment, when infected with SARS-CoV-2,
one fourth of the PADs adult patients remained asymptomatic and half of them showed a
mild disease [9,10]. The discrepancy between the clinical evidence and the impaired B cell
function underlines the limitation to consider the specific antibody responses as a main
correlate of clinical protection against severe forms of COVID-19 and death.

The main objective was to assess COVID-19 infection, and mortality rates and disease
severity in the first two years of the SARS-CoV-2 pandemic in a cohort of Primary Antibody
Defects adult patients. As secondary endpoints, we considered: (a) SARS-CoV-2 annual
mortality rate in comparison to that observed over a 10-year follow-up in the same cohort;
(b) the impact of vaccination and anti-SARS-CoV-2 monoclonal antibodies administration
on the disease outcome.

2. Materials and Methods
2.1. Study Design

Since the beginning of the SARS-CoV-2 pandemic in Italy, we have conducted a still
ongoing, longitudinal, prospective study in a cohort of 471 adult patients with Inborn Errors of
Immunity (IEI) and severely impaired antibody responses affected with SARS-CoV-2 infection.
The overall annual mortality rate observed in the period 1 March 2020 to 22 February 2022 was
compared with the annual mortality rate observed in the previous ten years in the same cohort
of patients followed at three Italian Referral Hospitals for adults with IEI (Padua, Northern
Italy; Rome, Central Italy; Naples, Southern Italy). SARS-CoV-2 infection was diagnosed by
reverse transcription-polymerase chain reaction (RT-PCR). All patients were tested every time
they attended a hospital site, in an inpatient and outpatient setting, when a positive familiar
contact was identified irrespective of symptoms, and upon onset of COVID-19-like illness.
Easy access to the test had been granted since the very beginning of the pandemic, due to
assumed at-risk status. Data regarding microbiological diagnosis of SARS-CoV-2 infection,
disease severity, hospitalization, vaccination status, and SARS-CoV-2-specific treatments were
derived from the existing database on PAD diagnosis and follow-up, already shared between
the three centers participating in the Italian Primary Immune Deficiencies Network (IPINet)
registry. Due to the status of regional referral centers, the three institutions had been directly
involved in the management of each single infection, thus avoiding the risk of data loss. Data
regarding the general Italian population were available at the Italian National Health Institute
(Istituto Superiore di Sanità-ISS) website.

COVID-19 severity was defined according to WHO classification [11]. Re-infection
data for comparison with the general population were recorded between 24 August 2021
and 2 March 2022, according to data availability from ISS reports. During the study time,
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patients continued their therapies, including immunoglobulin substitution as a standard
therapy for the underlying antibody defect. From March 2021, according to the Italian
vaccination rules, patients who agreed to undergo SARS-CoV-2 immunization received the
BNT162b2 vaccine (Pfizer) administered as prescribed, in 2 doses, 21 days apart followed
by a booster dose 3–4 months later. From March 2021, soon after diagnosis of COVID-19
disease, patients were treated with monoclonal antibodies unless they refused. In Italy, the
original Wuhan strain was first isolated on 21 February 2020, and the number of active
cases peaked on 21 March 2020. The SARS-CoV-2 B.1.1.7 (Alpha) variant was first isolated
in December 2020. Three peaks of active cases were reported in April 2020, in November
2020, and in March 2021. During the last peak, the B.1.617.2 (Delta) variant was isolated for
the first time and it is still circulating. On 28 November 2021, the B.1.1.529 Omicron variant
was first identified in Italy. The new peak of the epidemic curve has been reached recently.

The study was approved by the Ethical Committee of the Sapienza University of
Rome (CE 5834, Prot. 0521/2020). The same cohort of adult patients with IEI and severely
impaired antibody responses have been enrolled in the AIEOP/IPINET Italian registry that
analyzes, retrospectively from 2010 to 2016 and prospectively since 2016, individual clinical
and immunological data collected annually. The IPINet registry and the related informed
consent forms have been approved by the local ethical committee (CE 4604, n. 316/2016).
Both studies were performed in accordance with the Good Clinical Practice guidelines, the
International Conference on Harmonization guidelines, and the most recent version of the
Declaration of Helsinki.

2.2. Statistical Analysis of Numerical Data

Fisher’s exact test was used to investigate the infection and mortality rate in compari-
son to the Italian population, the effect of vaccination, and MoAbs on COVID-19 severity
and mortality. Binomial logistic regression models were fitted to calculate odds ratios (OR)
with 95% confidence intervals (CI) for the need of hospitalization and the presence of severe
disease in association with MoAbs administration and vaccination status. Multivariable
logistic regression analysis was then performed, to confirm the findings, taking into consid-
eration age and sex as covariates. The impact of vaccination and MoAbs on disease severity
and mortality was found by statistical significance which was considered as a two-tailed
p < 0.05. All the analyses were performed using IBM SPSS statistics 27.0.

3. Results
3.1. Incidence/Infection Rate

The study included patients with Common Variable Immune Deficiency (n. 427),
X-linked or Autosomal Recessive Agammaglobulinemia (n. 26), Good’s syndrome (n. 12),
and Hyper IgM Syndrome (n. 6) diagnosed according to the ESID criteria (https://esid.org).
In this cohort, since the beginning of the pandemic, the number of SARS-CoV-2 infections
was 125/471 (26.54%); in detail, 112/427 (26.23%) patients with CVID; 9/26 (34.62%) with
XLA or Agammaglobulinemia; 3/12 (25.00%) with Good’s syndrome, and 1/6 (16.67%)
with HIGM syndrome were found infected. Cumulative infection rate was higher than
that reported in the Italian population: (26.54% vs. 21.42%, p = 0.0076). Forty-one patients
were infected within the first year (8.70% vs. 4.89% of the Italian population, p < 0.001), and
84 patients were infected in the second year (17.83% vs. 16.40 % of the Italian population,
p = 0.439). It is possible to hypothesize that these infection rates were high but somehow
mitigated by the application of the preventive measures our patients are used to following
since the diagnosis of primary immune deficiency [12]. As expected, the rapid spread of the
highly contagious Omicron variant [13] overcame these precautions, causing the recently
observed increase in the number of positive cases (Figure 1).

https://esid.org
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Figure 1. Number of SARS-CoV-2-infected patients in the cohort of IEI patients with antibody
deficiencies in the first twenty-four months of the pandemic. In blue, patients who recovered; in
yellow, patients treated with MoAbs and recovered; in orange, patients who died despite MoAbs; in
red, patients who died. Cumulative incidence is indicated by a black line, and initial date of MoAbs
availability in Italy is indicated by a red dotted line. The two periods of first/second doses of vaccine
administration, and of booster dose administration are indicated by a shadowed area.

3.2. Vaccination and Monoclonal Antibodies Treatment

In the second year of the pandemic, since 1 March 2021, we introduced two main
strategies in the disease management based on: (1) SARS-CoV-2 vaccination by BNT162b2
(Pfizer–BioNtech), or mRNA-1273 (Moderna) administered according to the Italian na-
tional vaccination program: first dose and second dose were administered between March
and April 2021, the booster dose between October and November 2021; (2) monoclonal
antibodies (MoABs) administration available as treatment for SARS-CoV-2-infected frag-
ile patients [14] (Figure 1). Between March 2021 and December 2021, 24 infections were
identified before the appearance of the Omicron strain, whose pathogenicity in fragile
patients is still unknown. Fourteen of these patients were infected before having the chance
to be vaccinated and two patients refused vaccination due to personal concerns. Of the
remaining eight patients, one became infected after one dose and seven were infected after
two doses.

Since the spread of the Omicron variant in December 2021, we registered 60 addi-
tional infections, of which 54 were new infections and 6 re-infections: 46 patients were
fully vaccinated, 11 had received two doses, and 3 did not undergo vaccination due to
personal concerns.

Data on SARS-CoV-2 re-infection in the Italian population have been available from
ISS since 24 August 2021. In the time interval between 24 August 2021 and 2 March 2022,
the re-infection rate reported in the general population was 3%. A total of seven re-infection
cases were observed in the same time interval in our PAD cohort: three in fully vaccinated
patients, three in patients who underwent two doses of vaccine, and one in a patient who
received one dose of vaccine only; six of seven were documented after the Omicron variant
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spread. Thus, the re-infection rate in the PAD cohort was 10%, higher when compared to
the rate observed in the Italian population (p = 0.003). Six of the re-infections occurred in the
CVID patient subgroup (10% vs. 3%, p < 0.001, when compared to the Italian population).

Since our data showed absent or low immune responses in our patients [7], we in-
troduced the treatment with SARS-CoV-2 MoABs in recently infected patients (within
5 days from SARS-CoV-2 swab positivity by PCR). Therapeutic monoclonal antibodies
used until December 2021 included imdevimab, casirivimab, etesivimab, regdanivimab,
and bamlanivimab. These were used individually (bamlanivimab) or as combinations
(casirivimab and etesivimab or bamlanivimab and imdevimab) to prevent viral resis-
tance. Twelve patients received MoAbs: three patients had received two doses of vaccine,
and nine patients were not immunized. Moderate/severe COVID-19 was diagnosed in
4/12 patients: two of them refused vaccination and two received two doses of vaccine, of
which one died.

After the spread of the Omicron variant in December 2021, a total of 45 patients
received Sotrovimab, a MoAb proved to be active against the variant [15]. Moderate/severe
COVID-19 was diagnosed in 5/45 patients: three vaccinated with three doses, and two
patients who had received two doses. None died.

3.3. COVID-19 Disease Severity and Fatality Rate

Table 1 summarizes COVID-19 severity stages, rate of hospitalization, and fatality rate
in the first and in the second year.

Table 1. Summary of absolute number and percentages of SARS-CoV-2 infections in PADs patients
grouped according to COVID-19 stages. Hospitalizations and deaths observed in the first and second
year of the cohort study were also reported.

Asymptomatic/Mild
n (%)

Moderate/Severe
n (%)

Hospitalizations
n (%)

Deaths
n (%)

1st YEAR
(n = 41)

All PADs 25 (60.98%) 16 (39.02%) 16 (39.02%) 2 (4.87%)
CVID only 22 (59.5%) 15 (40.5%) 15 (40.5%) 2 (5.4%)

2nd YEAR
(n = 84)

All PADs 70 (83.33%) 14 (16.67%) 14 (16.67%) 3 (3.57%)
CVID only 64 (85.3%) 11 (14.7%) 11 (14.7%) 2 (2.67%)

The percentage of moderate/severe COVID-19 and hospitalizations decreased in the
second year of the pandemic from 39.02% to 16.67% (p = 0.008). During the first two
years of the pandemic, the COVID-19-related mortality rate in our cohort of PADs patients
was higher when compared to the mortality registered in the Italian general population
(4% vs. 1.19% p = 0.013). Two patients died in the first year, with a COVID-19 fatality
rate accounting for 4.87%, and three patients died in the second year, with a COVID-19
fatality rate accounting for 3.57% (Table 1). The analysis of the CVID sub-population
demonstrated that during the first year of pandemic, no differences were observed with the
other PAD in COVID-19 severity, hospitalization, and mortality rate. Differently, during
the second year, in the CVID cohort, we recorded lower incidence of hospital admission
(due to moderate/severe COVID-19 stage), and severe COVID-19 course in comparison
to the other PADs cohort (14.7% vs. 16.67%, p = 0.049 and 2.67% vs. 33.33%, p = 0.008,
respectively) (Table 1).

The binomial logistic regression analysis performed in the 84 patients infected in
the second year allowed us to assess the effects of vaccination status and MoAbs admin-
istration on the likelihood of admission to the hospital, development of severe disease,
and death. COVID-19-related hospital admission and mortality rate were not signifi-
cantly higher in non-vaccinated SARS-CoV-2-infected PAD in comparison to patients who
underwent full immunization (24% vs. 15.5% and 4% vs. 3.4%, respectively) (Table 1).
Differently, MoAbs administration resulted to be significantly associated with a decreased
likelihood of admission to the hospital (p = 0.020, OR 0.253, 95%CI 0.079–0.808), with
no impact on death and development of severe disease (Table 2). However, after adjust-
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ment for age, sex, and vaccination status, multivariable logistic regression analysis high-
lighted a beneficial effect of MoAbs administration both on the likelihood of hospitalization
(p = 0.009; OR 0.187, 95%CI 0.053–0.653) and development of severe disease (p = 0.045;
OR 0.095, 95%CI 0.009–0.951), thus confirming our previous data observed in a lower
number of patients [14].

In this cohort, when considering CVID patients (n = 75) only, binomial logistic regres-
sion analysis, when adjusted for age, sex, and vaccination status, confirmed the positive
impact of MoAbs administration on the risk of hospitalization (p = 0.029, OR = 0.199,
95%CI 0.047–0.844).

Table 2. Impact of Vaccination and MoAbs administration on COVID-19 course during the second
year of pandemic (84 SARS-CoV-2-infected PADs patients).

Hospitalization n (%) Unadjusted
OR (95% CI)

Adjusted
OR (95% CI)

Vaccinated vs. not vaccinated 9 (15.5) vs. 6 (24.0) 0.582 (0.182–1.857) p = 0.360 * 0.453 (0.131–1.561) p = 0.210 §
MoAbs vs. not MoAbs 6 (10.7) vs. 9 (32.1) 0.253 (0.079–0.808) p = 0.020 * 0.187 (0.053–0.653) p = 0.009 #

Severe Disease n (%) Unadjusted
OR (95% CI)

Adjusted
OR (95% CI)

Vaccinated vs. not vaccinated 3 (5.2) vs. 2 (8.0) 0.627 (0.098–4.006) p = 0.622 * 0.664 (0.096–4.564) p = 0.677 §
MoAbs vs. not MoAbs 1 (1.8) vs. 4 (14.3) 0.109 (0.012–1.028) p = 0.053 * 0.095 (0.009–0.951) p = 0.045 #

Mortality n (%) Unadjusted
OR (95% CI)

Adjusted
OR (95% CI)

Vaccinated vs. not vaccinated 2 (3.4) vs. 1 (4) 0.857 (0.074–9.909) p = 0.902 * 0.781 (0.059–10.294) p = 0.851 §
MoAbs vs. not MoAbs 1 (81.8) vs. 2 (7.1) 0.236 (0.020–2.726) p = 0.248 * 0.110 (0.013–2.147) p = 0.167 #

* Binomial logistic regression analysis. § Adjusted for age and gender by multivariable logistic regression analysis.
# Adjusted for age, gender, and vaccination status by multivariable logistic regression analysis.

3.4. PADs Fatality Rate

Remarkably, three of five patients who died from COVID-19 over two years of pan-
demic had an underlying end-stage (defined as chronic oxygen dependent respiratory
failure) Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) (Table 3) [16].
Chronic lung disease remains a major clinical problem in PADs. Overall, after initiation
of Ig replacement therapy, in PADs patients, we observed a reduction in the prevalence
of pneumonia, whereas the cumulative risk of developing chronic lung disease increases
in relation to age at diagnosis and diagnostic delay. The increased prevalence of chronic
lung disease may be related both to the immune-mediated GLILD and to the well-known
“vicious circle” infection-inflammation-remodeling, sustained by other immunological
co-factors such as low frequency of memory B cells, very low IgA serum level (<7 mg/dL),
and poor response to vaccination [16,17].

In the pandemic period, we counted an additional four and seven deaths for COVID-
19-unrelated causes in the first year and in the second year of the pandemic, respectively
(Table 4). In relation to the causes of death listed, when a known infectious agent was
documented, (e.g., CMV) the cause of death was attributed to the infection, even in chronic
lung disease patients. When chronic lung disease is reported as the cause of death, it stands
for fatal exacerbation of an end-stage respiratory failure without a documented viral or
bacterial or fungal pathogen. Of note, no previous infection, not even influenza, has been
so efficiently investigated and accurately microbiologically documented on a large scale as
SARS-CoV-2, both in the inpatient and outpatient setting. Thus, we cannot exclude that, at
least in some of the listed cases, an unrecognized or just not specifically documented viral
or bacterial infection may have at least triggered the fatal respiratory exacerbation.
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Table 3. Data of patients who died during the two years of SARS-CoV-2 pandemic.

Patient Sex Age PID Comorbidity Date of
Infection Vaccination Status MoABs Therapy

1 F 59 CVID GLILD, chronic
respiratory failure

March
2020 Not done No

2 M 52 CVID
GLILD, bilateral lung

transplantation, chronic
respiratory failure

December 2020 Not done No

3 F 48 CVID GLILD, chronic
respiratory failure September 2021 2 doses Yes

4 M 78 CVID Chronic heart failure,
bronchiectasis September 2021 2 doses No

5 M 46 XLA
Post-poliomyelitis flaccid

paralysis. Chronic obstructive
pulmonary disease

October 2021 Refused No

Table 4. Number of patients dead for a given cause observed in the last 10 years in the cohort of
Italian PADs patients.

Year All Causes of Death

2012 4, cancer; 1, CMV disseminated infection; 1, autoimmune cytopenias
2013 2, cancer; 1, chronic lung disease *; 1, CMV disseminated infection; 2, enteropathy
2014 4, cancer; 3, chronic lung disease *; 1, autoimmune cytopenias; 1, enteropathy
2015 2, cancer; 2, chronic lung disease *, 1, enteropathy
2016 5, cancer; 3, autoimmune cytopenias; 2, chronic lung disease *; 1, hepatic disease
2017 2, cancer; 2, autoimmune cytopenias; 1, chronic lung disease *; 3, enteropathy
2018 3, cancer; 3, autoimmune cytopenias; 2, chronic lung disease *; 1, hepatic disease
2019 3, cancer; 3, hepatic diseases; 3, chronic lung disease *; 1, autoimmune cytopenias; 1 enteropathy
2020 3, chronic lung disease *; 1, hepatic disease; 2, COVID-19
2021 2, cancer; 3, chronic lung disease *; 1, meningitis; 1, autoimmune cytopenias; 3, COVID-19

* chronic lung disease stands for fatal exacerbation of end-stage respiratory failure in chronic lung disease, without
a definite microbiological isolation.

As shown in Figure 2, the annual fatality rate for any cause registered, in our cohort, in
the last 10 years, ranged from 1.06 to 2.34 per cent. The annual mortality rate in the first two
years of the pandemic remained within this range (2020: 1.27 per cent; 2021: 2.13 per cent).
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4. Discussion

In the first two years of the pandemic, the impaired specific antibodies production
accounted for the high infection susceptibility to SARS-CoV-2 in PADs patients, confirming
the main role of specific antibodies in the protection against SARS-CoV-2 infection. Our
study demonstrates that, despite a high infection rate, a high reinfection rate, and a high
COVID-19-related mortality rate, the pandemic did not modify the annual mortality rate
for any cause in a population of adult patients with PADs. In fact, in the study time, the
latter was similar to the mortality rate observed in the last 10 years in the same cohort, and
PADS patients who died from COVID-19 over the two years had an underlying severe
lung disease. Despite the percentage of moderate/severe COVID-19 and hospitalizations
decreased in the second year of the pandemic after changing the patients’ management by
vaccination and by introducing monoclonal antibody therapies; in SARS-CoV-2- infected
patients, we could not prove a beneficial effect of full immunization on COVID-19 mortality
nor on hospitalization, while a protective effect was evident from the reduced number of
hospitalized patients when treated with Spike-specific MoAbs. The low or even absent
antibody response after infection and/or immunization, generated considerable anxiety in
our patient population who were aware of their immunodeficiency. The shift of attention
from an immunity exclusively mediated by antibodies to a more comprehensive model
of protection mediated by immune cells might help in the doctor–patient communication.
The high number of patients who had a mild disease and who survived COVID-19 offers
the opportunity to discuss the protective role of immune cells, other than antibodies
and B cells, in COVID-19 disease. Specific functional and protective virus-specific T cell
memory generated [18] could play a critical role in mitigating the disease. Specific T cell
activity has been widely recognized as a main protective mechanism in COVID-19 [19],
and it recently gained more attention as SARS-CoV-2 variants emerged [20]. All patients
with Agammaglobulinemia and the majority of patients with Common Variable Immune
Deficiency have functional T cell-dependent immunity, as also demonstrated by their
ability to respond to stimulation with influenza virus antigens [21]. SARS-CoV-2 specific
T cells residing in the lung or in the upper respiratory tract may contribute to control of
infection, similarly to T cells resident in the lung locally controlling other respiratory tract
viral infections [22]. Moreover, T cell activity and humoral immunity against SARS-CoV-2
proteins has been shown in PADs patients convalescent from COVID-19 [23]. Of note,
while the natural course of COVID-19 is controlled by the function of the innate immune
system, with a secondary involvement of T and B cells, SARS-CoV-2 vaccines are designed
to force the adaptive immune system. Differently from infection, poor Spike-specific T cell
responses were generated in PADs patients by the first two doses of immunization [24]. In
PADs, the first antigenic stimuli provided by vaccination with a novel virus with Spike-
and the RBD-domains differing from the S proteins of most members of the family of
coronavirus [8,17], and may have not been sufficient to induce antibody responses and to
generate memory B cells as well as to induce effective T cells, and to activate circulating
T follicular helper cells [2]. Differently, additional booster immunizations could lead to
enhancement of SARS-CoV-2 circulating T follicular helper cells as in vaccination against
influenza [21], and vaccine booster doses might render patients’ antigen-specific T cells
more responsive to stimulation or increase their numbers. Interestingly, our patients have
similar immunological conditions to the low-responder convalescents described in a recent
paper [25] who did not report any relevant symptoms during SARS-CoV-2 infection. Apart
from T cell contribution, the lack of induction of adaptive B cell immunity might also be
compensated by functional innate immunity cells [26,27]. Only in patients with innate
immune deficiencies, indeed, a more severe COVID-19 course and a poor prognosis have
been suggested, due to a pivotal role of innate immunity in the response against SARS-CoV-
2 infection [1,28]. In this way, polyclonal immunoglobulin substitutive treatment, regularly
administered in all our patients, could also have contributed to mitigate COVID-19 due to
their immunomodulatory function, mainly active on innate immune cells [29], even when
administered at replacement dosages.
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A limitation of our study was the low rate of re-infection reported in our cohort
possibly related to the study observational period, because in the general population and in
PADs, the number of re-infection dramatically increased just at the end of the study period,
due to the spread of the first Omicron variant in Italy. However, this should not impair our
conclusions in terms of mortality and therapeutic management. This could just open the
way for specifically designed follow-up studies. A further limitation was the impossibility
to perform a proper timely comparison between PADs patients and the general populations.
The vaccination rate registered in our cohort at the end of the study period was > 95%,
whereas the vaccination rate reported in the Italian population was 86.04% (2 March 2022).
However, according to the Italian national vaccination program, the first and the second
dose of BNT162b2 (Pfizer–BioNtech), or mRNA-1273 (Moderna) COVID-19 vaccine were
administered to PADs and other at-risk patients between March and April 2021 whereas
the booster dose between October and November 2021. Vaccination was offered, without
limitation, to the general adult Italian population only from July 2021.

5. Conclusions

The identification of a strategy to control SARS-CoV-2 infection and to mitigate COVID-
19 severity in patients with impaired immune mechanisms of protection from infections
remains a priority. The administration of MoAbs resulted to be significantly associated
with a decreased hospitalization, as well as substitutive therapy with polyclonal gamma
globulins might further contribute to mitigate the clinical consequences of COVID-19.
The potential role of therapy with polyclonal gamma globulins is based not only on their
replacement and immunomodulatory effects, but also on the possibility to infuse SARS-
CoV-2 antibodies by the coming of new lots of gamma globulins [30]. Currently, on the
basis of our results, we are continuing to administer MoAbs, with a proven efficacy against
the new viral variants, to immunize with additional booster doses of vaccine, to analyze
the short- and long-term immune responses, and to administer newly available antiviral
drugs. An additional strategy in the management of COVID-19 disease in PADs patients
could be based on the prophylactic use of MoAbs, which might modify the clinical course
of the disease. Finally, accurate and prompt microbiological diagnosis and treatment as
well as characterization of the immunological determinants of response to vaccination
and infections has always been a cornerstone of the management of PADs patients. Thus,
understanding COVID-19 clinical and biological behavior in patients with IEI will hopefully
help in designing new therapeutic strategies for immunocompetent populations.
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et al. Dynamics of spike-and nucleocapsid specific immunity during long-term follow-up and vaccination of SARS-CoV-2
convalescents. Nat. Commun. 2022, 13, 153. [CrossRef] [PubMed]

3. Terpos, E.; Karalis, V.; Sklirou, A.D.; Apostolakou, F.; Ntanasis-Stathopoulos, I.; Bagratuni, T.; Iconomidou, V.A.; Malandrakis, P.;
Korompoki, E.; Papassotiriou, I.; et al. Third dose of the BNT162b2 vaccine results in very high levels of neutralizing antibodies
against SARS-CoV-2: Results of a prospective study in 150 health professionals in Greece. Am. J. Hematol. 2022, 97, E147–E150.
[CrossRef] [PubMed]

4. Delmonte, O.M.; Bergerson, J.R.E.; Burbelo, P.D.; Durkee-Shock, J.R.; Dobbs, K.; Bosticardo, M.; Keller, M.D.; McDermott, D.H.;
Rao, V.K.; Dimitrova, D.; et al. Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of
immunity. J. Allergy Clin. Immunol. 2021, 148, 1192–1197. [CrossRef] [PubMed]

5. Bousfiha, A.; Jeddane, L.; Picard, C.; Ailal, F.; Bobby Gaspar, H.; Al-Herz, W.; Chatila, T.; Crow, Y.J.; Cunningham-Rundles, C.;
Etzioni, A.; et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J. Clin. Immunol. 2018, 38, 129–143.
[CrossRef]

6. Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning
Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [CrossRef]

7. Fernandez Salinas, A.; Piano Mortari, E.; Terreri, S.; Milito, C.; Zaffina, S.; Perno, C.F.; Locatelli, F.; Quinti, I.; Carsetti, R. Impaired
memory B-cell response to the Pfizer-BioNTech COVID-19 vaccine in patients with common variable immunodeficiency. J. Allergy
Clin. Immunol. 2022, 149, 76–77. [CrossRef]

8. Fernandez Salinas, A.; Mortari, E.P.; Terreri, S.; Quintarelli, C.; Pulvirenti, F.; Di Cecca, S.; Guercio, M.; Milito, C.; Bonanni, L.;
Auria, S.; et al. SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: Everybody Does their Best. J.
Clin. Immunol. 2021, 41, 1709–1722. [CrossRef]

9. Meyts, I.; Bucciol, G.; Quinti, I.; Neven, B.; Fischer, A.; Seoane, E.; Lopez-Granados, E.; Gianelli, C.; Robles-Marhuenda, A.;
Jeandel, P.Y.; et al. Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. J. Allergy Clin.
Immunol. 2021, 147, 520–531. [CrossRef]

10. Ameratunga, R.; Longhurst, H.; Steele, R.; Lehnert, K.; Leung, E.; Brooks, A.E.S.; Woon, S.T. Common Variable Immunodeficiency
Disorders, T-Cell Responses to SARS-CoV-2 Vaccines, and the Risk of Chronic COVID-19. J. Allergy Clin. Immunol. Pract. 2021, 9,
3575–3583. [CrossRef]

11. WHO Working Group on the Clinical Characterisation and Management of COVID-19 Infection. A minimal common outcome
measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [CrossRef]

12. Milito, C.; Lougaris, V.; Giardino, G.; Punziano, A.; Vultaggio, A.; Carrabba, M.; Cinetto, F.; Scarpa, R.; DellePiane, R.M.; Baselli,
L.; et al. Clinical outcome, incidence, and SARS-CoV-2 infection-fatality rates in Italian patients with inborn errors of immunity. J.
Allergy Clin. Immunol. Pract. 2021, 9, 2904–2906.E2. [CrossRef] [PubMed]

13. Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.;
Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [CrossRef]
[PubMed]

14. Pulvirenti, F.; Milito, C.; Cinetto, F.; Salinas, A.F.; Terreri, S.; Mortari, E.P.; Auria, S.; Soccodato, V.; Miriam, L.; Nicastri, E.; et al.
SARS-CoV-2 monoclonal antibody combination therapy in patients with COVID-19 and primary antibody deficiency. J. Infect.
Dis. 2021, 225, 820–824. [CrossRef] [PubMed]

15. Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al.
COMET-ICE Investigators. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med.
2021, 385, 1941–1950. [CrossRef]

16. Cinetto, F.; Scarpa, R.; Pulvirenti, F.; Quinti, I.; Agostini, C.; Milito, C. Appropriate lung management in patients with primary
antibody deficiencies. Expert. Rev. Respir. Med. 2019, 13, 823–838. [CrossRef]

17. Quinti, I.; Soresina, A.; Guerra, A.; Rondelli, R.; Spadaro, G.; Agostini, C.; Milito, C.; Trombetta, A.C.; Visentini, M.; Martini, H.;
et al. IPINet Investigators. Effectiveness of immunoglobulin replacement therapy on clinical outcome in patients with primary
antibody deficiencies: Results from a multicenter prospective cohort study. J. Clin. Immunol. 2011, 31, 315–322. [CrossRef]

18. Grau-Expósito, J.; Sánchez-Gaona, N.; Massana, N.; Suppi, M.; Astorga-Gamaza, A.; Perea, D.; Rosado, J.; Falcó, A.; Kirkegaard,
C.; Torrella, A.; et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 2021, 12, 3010.
[CrossRef]

19. Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [CrossRef]
20. Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.S.;

Winkler, M.S.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of
the COVID-19 pandemic. Cell 2022, 185, 447–456.E11. [CrossRef]

21. Friedmann, D.; Goldacker, S.; Peter, H.H.; Warnatz, K. Preserved Cellular Immunity Upon Influenza Vaccination in Most Patients
with Common Variable Immunodeficiency. J. Allergy Clin. Immunol. Pract. 2020, 8, 2332–2340.E5. [CrossRef] [PubMed]

http://doi.org/10.1097/MOP.0000000000001062
http://doi.org/10.1038/s41467-021-27649-y
http://www.ncbi.nlm.nih.gov/pubmed/35013191
http://doi.org/10.1002/ajh.26468
http://www.ncbi.nlm.nih.gov/pubmed/35025124
http://doi.org/10.1016/j.jaci.2021.08.016
http://www.ncbi.nlm.nih.gov/pubmed/34492260
http://doi.org/10.1007/s10875-017-0465-8
http://doi.org/10.1056/NEJMoa2114583
http://doi.org/10.1016/j.jaci.2021.08.031
http://doi.org/10.1007/s10875-021-01133-0
http://doi.org/10.1016/j.jaci.2020.09.010
http://doi.org/10.1016/j.jaip.2021.06.019
http://doi.org/10.1016/S1473-3099(20)30483-7
http://doi.org/10.1016/j.jaip.2021.04.017
http://www.ncbi.nlm.nih.gov/pubmed/33894392
http://doi.org/10.1038/s41586-021-04389-z
http://www.ncbi.nlm.nih.gov/pubmed/35016199
http://doi.org/10.1093/infdis/jiab554
http://www.ncbi.nlm.nih.gov/pubmed/34746954
http://doi.org/10.1056/NEJMoa2107934
http://doi.org/10.1080/17476348.2019.1641085
http://doi.org/10.1007/s10875-011-9511-0
http://doi.org/10.1038/s41467-021-23333-3
http://doi.org/10.1016/j.cell.2021.01.007
http://doi.org/10.1016/j.cell.2021.12.032
http://doi.org/10.1016/j.jaip.2020.04.019
http://www.ncbi.nlm.nih.gov/pubmed/32330665


Biomedicines 2022, 10, 1026 11 of 11

22. Pizzolla, A.; Nguyen, T.H.O.; Smith, J.M.; Brooks, A.G.; Kedzieska, K.; Heath, W.R.; Reading, P.C.; Wakim, L.M. Resident memory
CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2017, 2, eaam6970.
[CrossRef] [PubMed]

23. Kinoshita, H.; Durkee-Shock, J.; Jensen-Wachspress, M.; Kankate, V.V.; Lang, H.; Lazarski, C.A.; Keswani, A.; Webber, K.C.;
Montgomery-Recht, K.; Walkiewicz, M.; et al. Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody
Deficiency. J. Clin. Immunol. 2021, 41, 1146–1153. [CrossRef] [PubMed]

24. Steiner, S.; Sotzny, F.; Bauer, S.; Na, I.K.; Schmueck-Henneresse, M.; Corman, V.M.; Schwarz, T.; Drosten, C.; Wendering, D.J.;
Behrends, U.; et al. HCoV- and SARS-CoV-2 Cross-Reactive T Cells in CVID Patients. Front. Immunol. 2020, 11, 607918. [CrossRef]

25. Sauerwein, K.M.T.; Geier, C.B.; Stemberger, R.F.; Akyaman, H.; Illes, P.; Fischer, M.B.; Eibl, M.M.; Walter, J.E.; Wolf, H.M.
Antigen-Specific CD4+ T-Cell Activation in Primary Antibody Deficiency After BNT162b2 mRNA COVID-19 Vaccination. Front.
Immunol. 2022, 13, 827048. [CrossRef]

26. Quinti, I.; Locatelli, F.; Carsetti, R. The Immune Response to SARS-CoV-2 Vaccination: Insights Learned From Adult Patients With
Common Variable Immune Deficiency. Front. Immunol. 2022, 12, 815404. [CrossRef]

27. Stravalaci, M.; Pagani, I.; Paraboschi, E.M.; Pedotti, M.; Doni, A.; Scavello, F.; Mapelli, S.N.; Sironi, M.; Perucchini, C.; Varani, L.;
et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol. 2022,
23, 275–286. [CrossRef]

28. Zhang, Q.; Bastard, P.; COVID Human Genetic Effort; Cobat, A.; Casanova, J.L. Human genetic and immunological determinants
of critical COVID-19 pneumonia. Nature 2022, 603, 587–598. [CrossRef]

29. Quinti, I.; Mitrevski, M. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells. Front.
Immunol. 2017, 8, 697. [CrossRef]

30. Volk, A.; Covini-Souris, C.; Kuehnel, D.; De Mey, C.; Römisch, J.; Schmidt, T. SARS-CoV-2 Neutralization in Convalescent Plasma
and Commercial Lots of Plasma-Derived Immunoglobulin. BioDrugs 2022, 36, 41–53. [CrossRef]

http://doi.org/10.1126/sciimmunol.aam6970
http://www.ncbi.nlm.nih.gov/pubmed/28783656
http://doi.org/10.1007/s10875-021-01046-y
http://www.ncbi.nlm.nih.gov/pubmed/33983545
http://doi.org/10.3389/fimmu.2020.607918
http://doi.org/10.3389/fimmu.2022.827048
http://doi.org/10.3389/fimmu.2021.815404
http://doi.org/10.1038/s41590-021-01114-w
http://doi.org/10.1038/s41586-022-04447-0
http://doi.org/10.3389/fimmu.2017.00697
http://doi.org/10.1007/s40259-021-00511-9

	Introduction 
	Materials and Methods 
	Study Design 
	Statistical Analysis of Numerical Data 

	Results 
	Incidence/Infection Rate 
	Vaccination and Monoclonal Antibodies Treatment 
	COVID-19 Disease Severity and Fatality Rate 
	PADs Fatality Rate 

	Discussion 
	Conclusions 
	References

