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Abstract: Excessive adiposity caused by high-fat diets (HFDs) is associated with testicular metabolic
and functional abnormalities up to grand-offspring, but the mechanisms of this epigenetic inheritance
are unclear. Here we describe an association of sperm small non-coding RNA (sncRNA) with
testicular “inherited metabolic memory” of ancestral HFD, using a transgenerational rodent model.
Male founders were fed a standard chow for 200 days (CTRL), HFD for 200 days (HFD), or standard
chow for 60 days followed by HFD for 140 days (HFDt). The male offspring and grand-offspring were
fed standard chow for 200 days. The sncRNA sequencing from epidydimal spermatozoa revealed
signatures associated with testicular metabolic plasticity in HFD-exposed mice and in the unexposed
progeny. Sperm tRNA-derived RNA (tsRNA) and repeat-derived small RNA (repRNA) content were
specially affected by HFDt and in the offspring of HFD and HFDt mice. The grand-offspring of HFD
and HFDt mice showed lower sperm counts than CTRL descendants, whereas the sperm miRNA
content was affected. Although the causality between sperm sncRNAs content and transgenerational
epigenetic inheritance of HFD-related traits remains elusive, our results suggest that sperm sncRNA
content is influenced by ancestral exposure to HFD, contributing to the sperm epigenome up to the
grand-offspring.

Keywords: high-fat diet; sperm parameters; sncRNA; paternal epigenetic inheritance; inherited
metabolic memory

1. Introduction

The adoption of high-fat diets (HFDs) associated with increased adiposity, often from
early life, is considered one of the major contributors for the present “fat pandemic”. Con-
currently, the prevalence of non-communicable diseases, such as type 2 diabetes (T2D), has
increased proportionally. The most recent figures by the World Health Organization (WHO)
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and by the International Diabetes Federation (IDF) estimate that more than 500 million
people worldwide have obesity, and 463 million suffer from T2D [1,2]. These reports also
highlight the earlier age of onset of obesity-related diseases, raising concerns about its
consequences to adults of active and reproductive age. In addition, reports suggest an
influence between unhealthy diets, as promoters of overweight and obesity, and health
outcomes in progeny, particularly the onset of metabolic disease [3,4]. Therefore, there is a
rising concern regarding the long-term consequences of excess adiposity associated with
the adoption of HFD to prospective parents and their offspring.

The role of sperm small non-coding RNA (sncRNA) in epigenetic inheritance has been
suggested by several authors [5,6]. Recent findings show that tRNA-derived small RNAs
(tsRNA), the most abundant sncRNA biotype in sperm, can induce an acquired pathology
in non-exposed mice [7], without the influence of any other epigenetic mechanism. Sperm
miRNA and tsRNA content have also been shown to be crucial for mammalian embryo
development [8]. Besides these functions directly related to epigenetic inheritance, other
sncRNA biotypes are crucial for spermatogenesis. For instance, piwi-interacting RNAs
(piRNAs) expressed by male germ cells during spermatogenesis have a critical role in
silencing transposable elements [9,10].

Obesity, T2D, and diet alter sperm sncRNA content [11–13], and those changes may
persist in the offspring for several generations [14,15]. Our group previously showed
detrimental effects of HFD exposure to mice testicular metabolism and function after
feeding with HFD for 200 days from weaning or HFD for 60 days from weaning and
then fed with standard chow for 140 days, compared to littermates exclusively fed with
standard chow [16,17]. These changes included a higher proportion of immotile, non-
viable, and morphologically abnormal spermatozoa; alterations in the testicular content of
several metabolites and fatty acids; and differences in the relative testicular proportions of
saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs),ω3 polyunsaturated
fatty acids (PUFAs), andω6 PUFAs [16,17]. We have further observed the inheritance of
these changes in testis up to two generations, a phenomenon that we coined as “inherited
metabolic memory” [18,19]. Particularly, we observed changes in the testicular content
of metabolites involved with the energy-obtaining pathways and insulin resistance, and
in the proportion ofω3 PUFAs andω6 PUFAs in the grand-offspring of mice exposed to
HFD, compared to the grand-offspring of mice fed with standard chow [18,19]. However,
the mechanisms underlying this heritable metabolic fingerprint of ancestral exposure to
HFD were unknown. In light of their response to increased adiposity due to diet and their
potential to mediate embryo development, sperm sncRNAs are a potential vehicle of the
“inherited metabolic memory” from fathers to sons and grandsons.

In this study, we describe sperm sncRNA response to lifelong exposure to HFD and
exposure to HFD until early adulthood. We further investigate if ancestral exposure to
HFD is reflected in the sperm sncRNA profile in the offspring. This work was conducted
by using the same animal model as our recent studies [16–19], expanding our previous
findings and providing the mechanistic evidence of “inherited metabolic memory” in the
testis of mice.

2. Materials and Methods
2.1. Animal Model

We designed a transgenerational ancestral exposure model based on three generations
of C57BL6/J mice [18,19]. Normoponderal male and female mice, fed with a standard
chow (#F4031, BioServ, Flemingtown, NJ, USA—Carbohydrate: 61.6%, Protein: 20.5%,
Fat: 7.2–16.3% Kcals) and water ad libitum, were used to produce the exposed founders
(Generation F0). After weaning (21–23 days), F0 mice (n = 36) were randomly divided
in three groups: control (CTRL) (n = 12), HFD (n = 12), and HFDt (n = 12). Each group
was assigned to a diet regimen: CTRL—standard chow (#F4031, BioServ, Flemingtown,
NJ, USA) during 200 days; HFD—fat-enriched diet (#F3282, BioServ, Flemingtown, NJ,
USA—carbohydrate = 35.7%, protein = 20.5%, and fat = 36.0–59.0% Kcals) during 200 days;
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and HFDt—fat-enriched diet (#F3282, BioServ, Flemingtown, NJ, USA) during 60 days,
then switched to standard chow (#F4031, BioServ, Flemingtown, NJ, USA) during 140 days.
When animals reached 120 days post-weaning age, F0 mice were mated with normopon-
deral, chow-fed, same-age, randomly selected females to generate the unexposed offspring
(Generation F1). Mating was performed in mating pairs, without access to water and
food for 6 h a day. The process was repeated over 8 days. After weaning, the F1 mice
were assigned to the same experimental group as their fathers: CTRL_F1—Offspring of
CTRL (n = 12), HFD_F1—Offspring of HFD (n = 12), and HFDt_F1—Offspring of HFDt
(n = 12), but all mice were fed with standard chow (#F4031, BioServ, Flemingtown, NJ, USA)
during 200 days. F1 mice were mated in the same scheme as their progenitors to generate
the unexposed grand-offspring (Generation F2). F2 mice were assigned to experimental
groups in the same way as their fathers (12 animals per group), and fed with standard
chow for 200 days after weaning. Food and water were supplied without restrictions to
all generations. Mice from all generations were killed by cervical dislocation 200 days
after weaning, and tissues were collected for further analysis. Total body weight, water,
and food intake were monitored weekly, from weaning to sacrifice. The animal model is
compliant with the ARRIVE guidelines, was internally reviewed by the Organization for
Animal Welfare (ORBEA) and approved and licensed by the Portuguese Veterinarian and
Food Department (DGAV) with the registration number 0421/000/000/2016. All animal ex-
periments were conducted in the Animal Facility of the Research Center in Health Sciences
(CICS) of the University of Beira Interior (Covilhã, Portugal), according to the “Guide for
the Care and Use of Laboratory Animals” published by the US National Institutes of Health
(NIH Publication No. 85–23, revised 1996) and European rules for the care and handling of
laboratory animals (Directive 86/609/EEC). None of the interventions performed on the
animals required the use of anesthetics.

2.2. Sperm Collection and RNA Extraction

Epididymides were isolated and placed in pre-warmed (37 ◦C) Hank’s Balanced Salt
Solution (HBSS), pH 7.4. Then small incisions were made using a scalpel blade, and the
suspension was incubated for 5 min (37 ◦C) to allow spermatozoa to swim out of the
epididymis. The purity of the sperm solution was accessed in sperm swabs stained by
eosin–nigrosin and observed by an optical microscope (Supplementary Figure S1). The
solution was then snap-frozen in liquid nitrogen and stored at −80 ◦C. This solution was
later thawed, and total RNA was extracted based on the acid guanidinium thiocyanate–
phenol–chloroform extraction method [20]. Before adding 1 mL of the ready-to-use reagent
for total RNA isolation (EXTRAzol, Blirt S.A., Gdańsk, Poland), the sperm solution was
centrifuged at 200× g for 5 min at room temperature, and the supernatant was discarded,
according to the manufacturer’s instructions (protocol for cells grown in suspension). RNA
pellets were resuspended in 20 µL of DEPC-treated water and stored at −80 ◦C until library
preparation.

2.3. cDNA Library Preparation and Next Generation Sequencing

Before library preparation, RNA concentration and integrity were screened by using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The RNA integrity
number (RIN) was globally low (ranging 2–5), a normal value for RNA obtained from
mature spermatozoa, which lacks 18S and 28S rRNA peaks [21]. RNA concentration was
considered acceptable between 1 ng and 2 µg. Library preparation was performed with
NEXTFLEX® Small RNA-Seq Kit v3 for Illumina (Bioo Scientific Corporation, Austin, TX,
USA) according to the manufacturer instructions. Pooled libraries were sequenced by using
Next-Generation Sequencing (NGS), in single-end mode, on NextSeq 500 with NextSeq
500/550 High Output Kit version 2, 75 cycles (Illumina, San Diego, CA, USA). All pooled
libraries passed Illumina’s default quality control.
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2.4. Processing and Annotation of Sequenced Reads

Cutadapt version 2.10 [22] was used to trim the 3′ adapter (TGGAATTCTCGGGTGC-
CAAGG) and four nucleotides upstream and downstream the adapter from sequenced
reads. The adaptor is a nucleotide sequence added during library preparation to allow the
amplification of sncRNAs. This sequence will also be sequenced as part of the fragments,
therefore contaminating them and hindering the correct annotation of the RNA sequences.
Only trimmed reads containing adaptor sequence, and with 80% of the nucleotides having
Illumina quality scores (Q-scores) > 20, were retained. Trimmed reads were mapped to
small RNAs by using SPORTS 1.1 (https://github.com/junchaoshi/sports1.1; accessed
on 1 June 2020), a perl-based analytical workflow tweaked for the annotation of sncR-
NAs [23]. SPORTS does not presently annotate piwi-interacting RNAs (piRNA), but it can
identify sequences as piRNA. Representative sperm RNA diagnosis statistics obtained by
SPORTS 1.1 are represented in Supplementary Figure S2. We used the default settings
and custom databases for the mouse genome: full genome from GRCm38/mm10 UCSC
(https://hgdownload.soe.ucsc.edu/downloads.html#mouse; accessed on 1 June 2020),
miRNA from miRbase 22 (http://www.mirbase.org/; accessed on 1 June 2020), rRNA-
derived small RNA (rsRNA) from NCBI/Nucleotide (available at SPORTS repository),
tRNA-derived small RNA (tsRNA) from GtRNAdb
(http://gtrnadb.ucsc.edu/genomes/eukaryota/Mmusc10/; accessed on 1 June 2020), and
piRNA from pirBase 2.0 (http://www.regulatoryrna.org/database/piRNA/download.
html; accessed on 1 June 2020). Fragment counts for specific sequences and for sncRNA
biotypes (miRNA, rsRNA, tsRNA, and piRNA), per sample, were based on the default
annotations in SPORTS result output files.

2.5. Annotation of piRNA Clusters and Repeats

SPORTS 1.1 is unable to annotate piRNAs and repRNAs (transcripts from transposable
elements, such as LINEs and SINEs, among others); therefore, an alternative annotation
using HISAT2 [24], SAMtools [25], and featureCounts [26] was applied. The annotation
of individual piRNA sequences is not consensual, due to their ambiguity and multiplicity
of targets; thus, a reliable alternative is the annotation of sequences according to the
pachytene piRNA cluster from which they are transcribed [27,28]. Trimmed samples
were annotated against the total mouse genome from GRCm38/mm10 UCSC database,
using HISAT2. The output files containing the fragment reads were then indexed by using
SAMtools. Eventually, index files were used to map piRNAs to their precursor cluster in the
mouse piRNA cluster database [28] (https://www.smallrnagroup.uni-mainz.de/piCdb/;
accessed on 3 June 2020), and interspersed repeats to their genomic region in to Dfam 3.1
database [29] (https://www.dfam.org/home; accessed on 3 June 2020), using featureCounts
to aggregate the final sequence counts.

2.6. Term Enrichment Analysis

Differently expressed sncRNAs were selected for term enrichment analysis based on
gene ontology (GO) terms [30,31]. First, miRNA and tsRNA targets were estimated by
using sRNAtools (https://bioinformatics.caf.ac.cn/sRNAtools; accessed on 15 August
2020) [32], based on the union of the potential gene targets calculated by miRanda [33] and
RNAhybrid [34] interaction algorithms. The miRanda parameters were set to minimal free
energy cutoff = −20 and miRanda score cutoff = 160, whereas RNAhybrid parameters were
set to energy cutoff = −20 and p-value cutoff = 0.01. Differently expressed piRNA clusters
were added to the list of potential miRNA and tsRNA targets. This list was uploaded
to R 4.1.0 [35] and annotated to gene ontology (GO) terms by using the packages topGO
2.42.0 [36] and GO.db 3.8.2 [Mus Musculus] [37]. Target genes were coalesced, and unique
targets were filtered out. GO terms were annotated as for biological process, molecular
function, and cellular component. Terms with less than 10 gene annotations were excluded.
Term enrichment analysis was performed by using the “weight01” algorithm included in
topGO.

https://github.com/junchaoshi/sports1.1
https://hgdownload.soe.ucsc.edu/downloads.html#mouse
http://www.mirbase.org/
http://gtrnadb.ucsc.edu/genomes/eukaryota/Mmusc10/
http://www.regulatoryrna.org/database/piRNA/download.html
http://www.regulatoryrna.org/database/piRNA/download.html
https://www.smallrnagroup.uni-mainz.de/piCdb/
https://www.dfam.org/home
https://bioinformatics.caf.ac.cn/sRNAtools
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2.7. Statistics

Raw sequence counts obtained by SPORTS and featureCounts were imported as
dataframes into R 4.1.0 [35]. A non-conservative coverage filter was applied to discarded
fragments with <17 nucleotides and <0.01 reads per million (RPM) per group. All statistics
were performed by using DESeq2 package v1.28.1 [38]. Samples were normalized by the
package’s code, based on a Generalized Linear Model (GLM) and Bayesian shrinkage [38].
The differential expression analysis is based on the Negative Binomial distribution, using
Wald statistics. Multiple hypotheses are corrected for the False Discovery Rate (FDR) based
on the Benjamini–Hochberg method. The proportion of sncRNA families was considered
changed if adjusted p < 0.1. A fragment was considered differently expressed whenever
log2 Fold Change (FC) > |1.5| and adjusted p < 0.1. GO term enrichment analysis was
tested by Fisher Exact test. GO term annotations were sorted according to their “weight01”
score. GO terms were considered significant when p < 0.1, regardless of the statistical test.
Whenever more than 10 GO terms met the criteria, only the top 10 terms were considered.

3. Results
3.1. Dietary Changes Affect Sperm sncRNA Content

To understand how the sperm sncRNA profile responds to chronic (200 days) exposure
to high-fat initiated at weaning, we collected mature spermatozoa from chow-fed (CTRL)
and HFD-fed mice (HFD) for small RNA-sequencing. We also analyzed sperm from mice
on transient HFD (HFDt, 60 days of HFD started at weaning, followed by 140 days of
chow before sacrifice) to study if the exposure to HFD and adiposity cause irreversible
changes in sperm sncRNA content. To get a general view on the mapping of sperm RNA
reads into different RNA biotypes, annotated RNA sequences were categorized as miRNA,
tRNA-derived small RNA (tsRNA), mitochondrial tRNA-derived small RNA (mtRNA),
Piwi-interacting RNA (piRNA), rRNA-derived small RNA (rsRNA), repeat-derived small
RNA (repRNA), and Y RNA, and their total counts were normalized by using DESeq2
based on total genome-matched sequences. We compared only animals which have lived
during the same period in order to limit the influence of uncontrollable variables that may
affect sperm sncRNA content, such as seasonal and environmental variation. This analytical
strategy has been commonly adopted in transgenerational inheritance models [39,40].

HFD or HFDt did not cause major changes in the relative fraction of the different
RNA biotypes in sperm in any of the generations (F0–F2). Only rsRNA reads were slightly
increased in F0 sperm after transient HFDt compared to CTRL (1.16 log2 FC, p = 0.0013) and
compared to HFD (0.76 log2 FC, p = 0.0945) (Figure 1A). Contrary to their F0 progenitors,
the F1 offspring of HFDt mice displayed reduced levels of rsRNA reads in sperm than the
offspring of CTRL mice (Figure 1A,B) (−1.18 log2 FC, p = 0.0128). The size distribution of
small RNA reads was as expected (Supplementary Figure S2) and was not affected by the
different diets.

3.2. Dietary Changes Affect Sperm sncRNA Content of the Offspring of Exposed Mice

To study the intergenerational effect of exposure to HFD in sperm sncRNA content,
mice founders (Generation F0) were randomly assigned to a normoponderal female in
mating pairs 120 days after weaning. The resulting male offspring (Generation F1) were
exclusively fed with chow diet for 200 days, independently of the diet regimen of its male
progenitor. Littermates were assigned to the same experimental group (lineage) as its
progenitor.
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Figure 2. Differently expressed sperm sncRNAs in Generation F0. Sperm sncRNA levels were
compared between mice (Generation F0, n = 3 per group) fed with standard diet (CTRL), high-fat diet
(HFD), or HFD for 60 days that was then replaced by a standard diet (HFDt). Results are presented as
MA plots (mean log2 FC vs. log2 mean expression). Differently expressed sequences are highlighted
and annotated. Data were tested by Wald’s test, corrected by the Benjamini-Hochberg method, using
DESeq2. Significance was considered when p < 0.1. (A) Transcription initiation RNA (tiRNA), HFD
vs. CTRL; (B) tiRNA, HFDt vs. CTRL; (C) repeat-derived small RNA (repRNA), HFD vs. CTRL;
(D) repRNA, HFDt vs. CTRL.

The DE analysis revealed that ancestral HFD and HFDt affect sperm RNA levels
in the offspring. Interestingly, different biotypes were affected in HFD and HFDt F1
offspring compared to offspring of CTRL group (Figure 3A–I). HFD F1 offspring sperm had
drastically lower levels of two miRNAs (215-5p, log2FC = −23.96, p < 0.0001 and 3068-5p,
log2FC = −6.78, p = 0.0701) and one tiRNA (mt_Gly-TCC_3_end, log2FC = −8.65, p = 0.046)
compared to the CTRL F1 offspring (Figure 3A,D,G). In contrast, HFDt F1 offspring tRF
levels were affected with five upregulated and eight downregulated tRFs compared to the
CTRL F1 offspring (Figure 3B,E,H).
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(tRNA-derived fragments) in F1 generation. Sperm sncRNA levels were compared between the
offspring (Generation F1, n = 2 per group) of mice fed with standard diet (CTRL), high-fat diet (HFD),
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DESeq2. Significance was considered when p < 0.1. (A) MiRNA, HFD vs. CTRL; (B) miRNA, HFDt vs.
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Interestingly, the DE analysis of piRNA clusters revealed, altogether, 18 clusters that
were downregulated in HFD F1 offspring sperm compared to CTRL offspring (Figure 4A).
Only one of them was downregulated in HFDt F1 offspring sperm (Figure 4B). This
suggests that, although the father’s exposure to chronic HFD does not affect sperm piRNA
levels in the exposed animal, it does induce intergenerational changes in F1 offspring
spermatogenesis that are reflected as differential levels of piRNAs in the offspring sperm.
In addition to piRNAs, a large number of differently expressed sperm repRNAs were found
between the HFD F1 offspring and the CTRL F1 offspring (29 up and 51 down) (Figure 4D).
Twenty-one sperm repRNAs were also more abundant in the offspring of HFDt compared
to the offspring of CTRL (Figure 4E). The different levels of repRNAs in F1 offspring sperm
may also originate from the father’s HFD-induced changes in offspring spermatogenesis
that affect the expression of repeat-derived RNAs.
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Figure 4. Differently expressed sperm piwi-interacting RNA (piRNA) and repeat-derived RNA
(repRNA) sequences between the offspring (Generation F1, n = 2 per group) of mice fed with standard
diet (CTRL), high-fat diet (HFD), or HFD for 60 days that was then replaced by a standard diet
(HFDt). Results are expressed as MA plots (mean log2 FC vs. log2 mean expression). Differently
expressed sequences are highlighted and annotated. Data were tested by Wald’s test, corrected by the
Benjamini–Hochberg method, using DESeq2. Significance was considered when p < 0.1. (A) PiRNA,
HFD vs. CTRL; (B) piRNA, HFDt vs. CTRL; (C) piRNA, HFDt vs. HFD; (D) repRNA, HFD vs. CTRL;
(E) repRNA, HFDt vs. CTRL; (F) repRNA, HFDt vs. HFD.

3.3. Ancestral Dietary Changes Can Be Detected in Sperm of the Grand-Offspring

To study the transgenerational effect of ancestral exposure to HFD in sperm sncRNA
content, the mice of Generation F1 were mated in the same conditions as their progenitors.
The resulting male offspring were exclusively fed with a chow diet for 200 days and
constitute the grand-offspring (Generation F2) of the male founders.

An ancestral chronic HFD did not leave any detectable RNA signatures in F2 sperm,
since no differentially expressed RNAs were identified (Figure 5A). However, we identified
some changes in the F2 offspring of mice exposed to transient HFDt compared to CTRL.
A majority of sncRNAs were not affected, but two miRNAs were upregulated in HFDt
F2 offspring sperm compared to CTRL F2 offspring sperm (196a-5p and 196b-5p) and
three were downregulated (144-3p, 34c-5p, and 471-5p) (Figure 5B). Moreover, 196a-5p and
196b-5p were also upregulated when the HFDt F2 offspring were compared to the HFD F2
offspring (Figure 5C). In addition, we identified two other upregulated miRNAs (127-3p
and 145a-5p) and two downregulated (135b-5p and 32-5p) miRNAs between these groups
(Figure 5C), possibly contributing to the testicular and sperm phenotype differences that
were reported earlier between these groups [18,19].

3.4. Targets of Differently Expressed Sperm sncRNAs Are Related with Crucial Biological Processes
for Testicular Function

To estimate the potential role of the sncRNA sequences in testicular function and
sperm parameters, targets of differently expressed miRNAs and tsRNAs were predicted by
using bioinformatic tools. These targets and the differently expressed piRNA clusters were
then annotated according to gene ontology (GO) terms for biological processes (Figure 6),
molecular function (Supplementary Figure S3), and cellular component (Figure S4), and
their overall GO term impact was calculated by using the R package topGO. Briefly, the
GO term impact was evaluated as a function of the pool of entered genes, the number of
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genes associated with a term, and the number of “hits” between the entered gene list and
the term gene list.
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Figure 5. Differently expressed sperm sncRNA sequences between the grand-offspring (Generation
F2, n = 3 per group) of mice fed with standard diet (CTRL), high-fat diet (HFD), or HFD for 60 days
that was then replaced by a standard diet (HFDt). Results are expressed as MA plots (mean log2 FC
vs. log2 mean expression). Differently expressed sequences are highlighted and annotated. Data
were tested by Wald’s test, corrected by the Benjamini–Hochberg method, using DESeq2. Significance
was considered when p < 0.1. (A) MiRNA, HFD vs. CTRL; (B) miRNA, HFDt vs. CTRL; (C) miRNA,
HFDt vs. HFD.

The most significant GO terms resulting from the targets of the differently expressed
sncRNAs between HFDt and CTRL mice are the sensory perception of smell and the G-
protein-coupled receptor signaling pathway (Figure 6), indicating a possible impact in the
chemotaxis of mature spermatozoa toward the oocyte.

Interestingly, this term is also prominent, considering the differences between the
offspring of HFDt compared to the offspring of HFD. Compared to the offspring of CTRL,
sperm sncRNAs from the offspring of HFD have several changes in GO terms of biological
processes linked to cell motility, cytoplasm projections, and even sperm activation (cell
morphogenesis, establishment or maintenance of cell polarity, locomotory behavior, and
positive regulation of transmembrane receptor protein serine/threonine kinase pathway).
Comparing the potential impact of differently expressed sperm sncRNAs between the
offspring of HFD and the offspring of HFDt, the most relevant biologic process terms are
related to antioxidant response and cell proliferation, especially of bone-related cells. How-
ever, in this comparison, relevant molecular function terms are related to ATP binding and
energy-sensing receptors (Supplementary Figure S3), whereas relevant cellular component
terms are related to the cytoskeleton and lipid membranes (Supplementary Figure S4).
Taken together, these results suggest an impact in the plasticity of the Sertoli cell membrane
that is crucial for spermatogenesis, but also for sperm morphology and motility.

The targets of the differently expressed sperm sncRNAs between the grand-offspring
of HFDt and grand-offspring of CTRL mice are mostly associated with metabolic regulation,
cell adhesion, and cell differentiation (Figure 6). The estimated impacts of the differently
expressed sperm sncRNA of the grand-offspring of HFD compared to the grand-offspring
of HFDt are linked to apoptosis, lipid metabolism, chemotaxis, and inflammation (Figure 6).
These findings suggest that the maintenance of the blood–testis barrier is affected by
ancestral excess adiposity caused by HFD, while the reversion to standard chow promotes
changes in testicular metabolism, reflected even in the grand-offspring.
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Figure 6. Gene ontology of the targets of differently expressed sperm sncRNAs, according to
biological process. Targets of sncRNAs were estimated recurring to the online suite sRNAtools
(https://bioinformatics.caf.ac.cn/sRNAtools/; accessed on 15 August 2020). The output was then
used for functional annotation based on the Gene Ontology Resource (http://geneontology.org/;
accessed on 17 August 2020). The annotation was performed by the topGO package run in R 4.1.0.
GO terms with less than 10 annotated genes, and single gene targets were excluded from the analysis.
CTRL—mice fed with standard diet, and their descendants; HFD—mice fed with high-fat diet, and
their descendants; HFDt—mice fed with high-fat diet for 60 days that was then replaced by a standard
diet, and their descendants.

4. Discussion

The increasing prevalence of obesity and associated comorbidities is primarily associ-
ated with risk behaviors, such as excessive caloric intake and physical inactivity. However,
several studies have suggested a modulation of the predisposition to weight gain and the
onset of non-communicable diseases due to ancestral exposure HFD [15,48,49], even in
humans [3,4]. We have previously shown that ancestral exposure to HFD causes metabolic
and functional changes in testes up to two generations, a phenomenon we have coined as
“inherited metabolic memory” [18]. In this work, we studied the role of sperm sncRNA con-
tent in the transmission of acquired testicular metabolic adaptions to HFD to the offspring
and grand-offspring of mice exposed to HFD.

In previous works [16,17], we have shown in mice that the adoption of HFD from
weaning led to an obese phenotype with markers of pre-diabetes and marked metabolic
reprogramming of the testicular tissue associated with lower sperm quality. We have further
reported that the reversion of the HFD during early adulthood prevented the pre-diabetic

https://bioinformatics.caf.ac.cn/sRNAtools/
http://geneontology.org/
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phenotype but could not revert the testicular metabolic reprogramming and rescue sperm
quality. Despite that, the replacement of the HFD with a chow diet promoted changes
in testicular metabolism, notably the fatty acid metabolism and fatty lipid composition
of the testes. Curiously, in this work, we exclusively found changes between the sperm
sncRNA content of transient HFD mice (HFDt) and controls (CTRL) (Figures 4 and 7A). A
majority of differently expressed sncRNA sequences in sperm are tiRNAs of mitochondrial
origin (Table 1). This finding supports our previous hypothesis that the reversion of
diet promotes the mobilization of fatty acids in testes that are used by mitochondria as
energy substrate [17]. Moreover, as previously reported [16,50], testicular metabolism is
susceptible to environmental factors, such as diet before sexual maturation. Hence, the
changes observed in sperm sncRNA content of HFDt compared to CTRL mice may reflect
the limited metabolic reprogramming in response to a new environmental factor (chow
diet). In addition, tiRNAs may also influence the post-transcriptional regulation of gene
transcripts via base-pair complementarity with gene transcription start sites and RNA
polymerase II binding motifs [43], and may inhibit gene translation via the assembly of
stress granules [41,42]. We have estimated the potential targets of differently expressed
tiRNAs and annotated then according to GO terms to predict their biological role (Figure 6).
This analysis estimated a significant impact in GO terms related to sensory perception
of smell. Odorant receptors have been identified in sperm for several years and have
been implicated in sperm capacitation, acrosome reaction, and oocyte fertilization [51,52].
However, as mature spermatozoa are transcriptionally silent, it is difficult to associate the
differently expressed tiRNAs with decreased expression of odorant receptors in sperm.
Moreover, we have not observed differences in fertility rates among founder mice [18].

Table 1. Number of differently expressed sncRNA sequences grouped by biotype. The detailed
annotation of the differently expressed sequences, sorted by biotype, is provided in Supplemen-
tary Materials Table S1. Abbreviations: miRNA—micro RNA; tsRNA—tRNA-derived small RNA;
tRF—tRNA-derived fragment; tiRNA—transcription initiation RNA; piRNA—piwi-interacting RNA;
repRNA—repeat-derived small RNA.

tsRNA

Generation Comparison miRNA tRF tiRNA piRNA repRNA

CTRL vs. HFD 0 0 0 0 0
F0 CTRL vs. HFDt 0 0 10 0 9

HFD vs. HFDt 0 0 0 0 0

CTRL vs. HFD 2 0 1 18 80
F1 CTRL vs. HFDt 0 13 0 1 21

HFD vs. HFDt 1 4 2 3 1

CTRL vs. HFD 0 0 0 0 0
F2 CTRL vs. HFDt 5 0 0 0 0

HFD vs. HFDt 6 0 0 0 0

Another striking difference between the results of this study and our previous studies
is related to the offspring of the mice exposed to HFD [18,19]. The intergenerational
effects of HFD and HFDt had a limited impact in the phenotype of the mice offspring,
even on testicular metabolism. Comparing the testicular metabolic fingerprints of the
offspring, it was not possible to segregate samples according to the diet of the founders.
In contrast, in this study, we have observed major differences in sperm sncRNA content
according to the diet of the founder mice (Figures 4, 5 and 7A). Both the offspring of HFD
and the offspring of HFDt had a large number of differently expressed sperm repRNAs
compared to the offspring of CTRL (Figure 4D,E). Notably, all the differently expressed
sperm repRNAs between HFDt and CTRL were upregulated. The expression of genomic
transposable elements must be repressed throughout meiosis to secure the integrity of the
DNA. PiRNAs have a central role in this function and are required to achieve a normal
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spermatogenesis [9,53,54]. Moreover, tRFs have been suggested to play a similar role [44,45],
but, contrary to piRNAs, their expression is not restricted to male germline cells. Curiously,
we have found differently expressed sperm piRNAs in the offspring of HFD compared
to CTRL (Figure 4A), and differently expressed tRFs in the offspring of HFDt compared
to CTRL (Figure 3H). Therefore, our data suggest that control over the transcription of
transposable elements is destabilized by paternal HFD via the piRNA-directed cleavage of
transcripts in the chromatoid body of spermatocytes and spermatids [10], and by paternal
HFDt via Angiogenin/DICER cleavage of mature tRNAs of germline cells [55].
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Figure 7. Number of differently expressed sperm sncRNA sequences varies significantly in each
generation and in each lineage of ancestral exposure to HFD. (A) Euler diagram illustrating the
scale of differently expressed sperm sncRNA sequences in every generation and considering all
the comparisons: HFD vs. CTRL, HFDt vs. CTRL, and HFDt vs. HFD. The breakdown of these
numbers according to sncRNA biotype is provided in Table 1. (B) Schematic representation of
“inherited metabolic memory” of testicular cells via sperm sncRNA. The exposure of the founder
mice to HFD is the stimulus driving epigenetic changes in somatic cells, including Sertoli cells and
spermatocytes. These changes are reflected in the sperm of the founders, which presented alterations
in the number of tiRNAs and repRNAs, compared to CTRL. This epigenetic fingerprint will be the
stimulus for epigenomic change in the offspring, especially during embryo development. Thus, the
soma of the offspring will have a different epigenetic configuration that will, in its turn, influence
the epigenome and the sncRNA content of produced sperm, distinct from the ancestors. This sperm
sncRNA fingerprint will be the stimulus for the next generation, influencing the embryo development
and the epigenome of the grand-offspring of the exposed mice.
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An interesting finding from our previous transgenerational studies [18,19] was the
reappearance of the defective sperm phenotype, characterized by decreased sperm con-
centration, in the grand-offspring of the mice fed with HFD or HFDt [18]. Moreover, the
testicular metabolic profile had clear differences according to the ancestral exposure to HFD.
In this study, and similarly to mice founders, the grand-offspring of mice fed with HFDt
had a limited number of differently expressed sperm sncRNA compared to CTRL mice,
and the grand-offspring of HFD had no changes compared to CTRL (Figure 5). Moreover,
all the differently expressed sperm sncRNAs in this generation are miRNAs. Interestingly,
the disruption of miRNA in mouse germline due to conditional knockout of DROSHA,
an enzyme involved in miRNA processing, decreased sperm counts [56]. In mammals,
miRNAs are involved in the post-transcriptional regulation of mRNA, inhibiting the trans-
lation of gene transcripts by base-pair complementarity binding [57]. The biological impact
can therefore be estimated by the complementary to gene transcripts—targets. Due to this
mechanism, sperm miRNAs have been particularly associated with embryonic develop-
ment, although the size of this effect in mammals is controversial. Moreover, sperm miRNA
content is influenced by the transcription during spermatogenesis. Similarly to previous
studies [12], we have estimated the potential targets of the differently expressed miRNAs
to evaluate the potential biological impact according to GO annotation (Figure 6). Despite
the limited number of differently expressed miRNAs, their targets are related to biological
processes involved in spermatogenesis (regulation of cell differentiation), blood–testis
barrier (cell–cell adhesion) and lipid metabolism (regulation of fatty acid metabolic process
and phospholipid metabolic process). Nevertheless, the results of this analysis must be
discussed critically, as we cannot predict the effects of the differently expressed miRNAs in
the grand-grand-offspring, nor prove the expression of miRNA targets in the cell precursors
of the collected epidydimal spermatozoa.

With this project we have demonstrated the conditional inheritability of phenotypes
related to ancestral exposure to HFD (Figure 7B). The exposure to HFD and the reversion
from HFD to chow are the stimuli driving phenotypic changes and, therefore, epigenetic
remodeling in somatic cells of the founder mice (Generation F0). This remodeling will also
impact the sncRNA content of mature spermatozoa that will originate the offspring. Sperm
of the HFD-exposed founder will likely carry other epigenetic signatures of HFD, such
as changes in DNA methylation pattern, in protamine retention, and in histone modifi-
cation [5,6], that will contribute to the phenotype of the offspring from early embryonic
development [7,8]. In this study we observed changes in sperm tiRNA and repRNA content,
although those changes were unable to induce an evident phenotype in the offspring [18,19].
However, this stimulus has produced a response, likely in the epigenome of somatic cell,
that caused several changes in sperm RNA content. Both the offspring of HFD and the
offspring of HFDt have differences in repRNA sequences, eliciting an impact of paternal
HFD in the ability to silence transcripts from transposable elements of DNA. This inability
may, by its turn, be a result of upstream dysfunction of the repeat-silencing mechanisms,
namely piRNAs and tRFs. This sperm sncRNA signature, in addition to other epigenetic
features carried by the offspring sperm, will be the first environmental stimulus of the
grand-offspring of mice founders. This stimulus was able to induce a phenotype in sperm
parameters and testicular metabolism [18,19]. As a result, sperm of grand-offspring carry
another unique sncRNA signature that will provide the first epigenetic stimulus of the
following generation.

5. Conclusions

In summary, we have shown that HFD causes a “rippling effect” in HFD-related
phenotypes of testicular function and sperm sncRNA content. The “inherited metabolic
memory” of ancestral exposure HFD results from a complex interaction between the inher-
ited epigenome and stochastic events that creates a new epigenetic landscape that may not
be associated with an evident phenotype, yet produces a new sperm epigenetic signature
which will influence the epigenome of the following generation (Figure 7B). However,
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to support this inheritance mechanism, future studies must investigate other epigenetic
factors carried by sperm in response to HFD and HFD-related adiposity, as well as the
impact of HFD and adiposity on the epigenome of germ cells and testicular cells, notably
Sertoli cells. Moreover, the impact of altered sperm sncRNA content in embryo develop-
ment could be further studied, for instance, by injecting sperm sncRNAs isolated from
HFD-exposed individuals into naïve zygotes [7]. Additionally, qRT-PCR could be used to
validate our sncRNA candidates, increasing the number of biological replicates. Although
NGS and qRT-PCR are distinct techniques, especially regarding normalization and statisti-
cal analyses, it has been demonstrated that the results are comparable, even for miRNA
expression [58]. Despite these limitations, we described the complexity of the epigenetic
inheritance mechanisms in mammals, and we showed the relevance of sperm sncRNAs
to sperm parameters and testicular metabolism. For instance, transcripts from repeating
elements have been implicated with success rates of Intracytoplasmatic Sperm Injection
(ICSI) [59]; thus, knowing the family history of metabolic disease may help the decision-
making process of the best suited Assisted Reproduction Technique (ART) of the infertile
couple. However, further studies are needed to translate our findings to human health.
Now, we suggest that sperm sncRNAs are a potentially meaningful marker of metabolic
and functional changes in testes due to ancestral exposure to HFD. Acknowledging these
detrimental effects opens new therapeutical opportunities in idiopathic male infertility to
improve the efficiency of ARTs and to curb the perpetuation of acquired metabolic disease.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biomedicines10040909/s1. Figure S1: Mice epididymal
sperm swabs stained by eosin–nigrosin dye and observed by ×400 magnification using an optical mi-
croscope. Figure S2: Representative sperm RNA diagnosis statistics obtained by SPORTS 1.1. Figure
S3: Gene ontology of the targets of differently expressed sperm sncRNAs, according to molecular
function. Figure S4: Gene ontology of the targets of differently expressed sperm sncRNAs, according
to cellular component. Table S1: Detailed list of differently expressed sperm sncRNAs.
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