
����������
�������

Citation: Blatt, S.; Schröger, S.-V.;

Pabst, A.; Kämmerer, P.W.; Sagheb,

K.; Al-Nawas, B. Biofunctionalization

of Xenogeneic Collagen Membranes

with Autologous Platelet

Concentrate—Influence on

Rehydration Protocol and

Angiogenesis. Biomedicines 2022, 10,

706. https://doi.org/10.3390/

biomedicines10030706

Academic Editor: Célia F. Rodrigues

Received: 11 February 2022

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Biofunctionalization of Xenogeneic Collagen Membranes with
Autologous Platelet Concentrate—Influence on Rehydration
Protocol and Angiogenesis
Sebastian Blatt 1,*, Saskia-Vanessa Schröger 1, Andreas Pabst 2, Peer W. Kämmerer 1 , Keyvan Sagheb 1,†

and Bilal Al-Nawas 1,†

1 Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz,
Augustusplatz 2, 55131 Mainz, Germany; saskia.schroeger@unimedizin-mainz.de (S.-V.S.);
peer.kaemmerer@unimedizin-mainz.de (P.W.K.); keyvan.sagheb@unimedizin-mainz.de (K.S.);
al-nawas@uni-mainz.de (B.A.-N.)

2 Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170,
56072 Koblenz, Germany; andreas.pabst@uni-mainz.de

* Correspondence: sebastian.blatt@unimedizin-mainz.de; Tel.: +49-6131-173022
† Keyvan Sagheb and Bilal Al-Nawas share senior authorship.

Abstract: Background: The aim of this study was to analyze possible interactions of different xeno-
geneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM
rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials
and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®,
Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood,
saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process
in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the
combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and
branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical
staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points
in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure
native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each
p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24
and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number
and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05)
was shown. After 72 h, CM in combination with PRF induced a statistically significant addition
to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native
pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance
CM vascularization.

Keywords: platelet-rich fibrin; collagen matrix; in ovo yolk sac; angiogenesis; pH value; guided
bone regeneration

1. Introduction

The demand of further development of tissue regeneration techniques and materials
in oral regeneration has been increased continuously [1]. In general, components used
in tissue regeneration, such as stem cells, cytokines, and growth factors, are embedded
in 3D (three-dimensional) structures in an attempt to replicate and restore the injured
soft and hard tissues [2]. Since their introduction, resorbable, naturally derived collagen
membranes (CM) of xenogeneic origin have been widely used in guided bone and tissue
regeneration (GBR/GTR) procedures. The proven biocompatibility and ability of CM to
promote wound healing has been cited as a major advantage [3]. In recent approaches, CM
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were successfully used as tissue-engineered 3D structures (e.g., tissue grafts, biomaterials,
cell-assembled tissue equivalents) that have the capacity to deliver in a localized and
sustained manner viable cell populations and/or bioactive/therapeutic molecules for
regeneration processes [4]. However, the possible lack of or delayed blood vessel supply
after implantation can lead to insufficient oxygen and nutrient supply, and potentially
to necrosis and failure of the equivalent that remains a significant clinical limitation [2].
A key challenge is the establishment of a rapid and sufficient vascularization for tissue
constructs, guaranteeing long-term survival and function [5]. Here, pro-angiogenic features
are of special interest as a synergism of physical-chemical stimuli to enhance angiogenesis
and therefore local blood supply that initially delivers oxygen and all other nutrients
to fuel osteogenesis simultaneously [6]. However, translation of these approaches into
a clinical workflow is limited, mainly due to restrictive reasons. As a clinical method
to emphasize pro-angiogenic features of the respective biomaterials, autologous platelet
concentrates (PC) are in special focus of different research approaches [7]. Platelets contain
high quantities of key growth factors, such as vascular endothelial growth factor (VEGF),
that stimulates relevant cell features, such as proliferation, differentiation and migration [8].
This leads to the recruitment of incoming regenerative cells in the defective locations, not
only after clinical procedures such as tooth extractions but also for tissue engineering
methods [9,10]. Furthermore, growth factors play a key function in the intravascular innate
immune system [11] originating from fibrin glues firstly described 40 years ago for wound
healing. In the first generation, PC blood is collected with anticoagulants during surgery
and immediately processed by centrifugation to separate the blood into red blood cells,
acellular plasma and the ‘buffy coat’ layer in between, in which platelets are concentrated.
Depending on different protocols, this phase is applied to the surgical site with a syringe,
together with thrombin and/or calcium chloride (or similar factors) to trigger platelet
activation and fibrin polymerization [8]. As a further development, second generation
PC, such as platelet-rich fibrin (PRF), are manufactured without any anticoagulants or
biochemical modification of the blood and are therefore subject to a natural coagulation
process that allows subsequent release kinetics of growth factors in accordance with natural
wound healing phases [12]. In this process, the dense fibrin network acts as a reservoir
for tissue growth factors at injured sites [13]. Furthermore, the presence of leukocytes
in second generation PCs appears to play an important role in wound healing [14], that
may be used inter alia for regeneration of periodontal intrabony defects [15] and gingival
tissue regeneration [16]. The combination of PRF and CM seems promising for clinical
application [17,18]. Here, especially in maxillary sinus augmentation and dental implant
restorative procedures, the combination of PRF and CM did show positive results [19].
It was found that the degree of porosity, hydrophilic nature and surface polarity seem
to be major factors in the absorption of the liquid PRF [20]. In addition, Transforming
Growth Factor β (TGF-β) directly adsorbs to CM [21]. In a recent study that focused on
initial interaction between PRF and CM, it was demonstrated that the combination of
PRF and three different porcine CM led to a significantly increased growth factor release
in vitro after 24 h for all PRF-activated CM in comparison with native CM at a similar
level to PRF alone. Furthermore, a significantly increased angiogenic potential was seen
in vivo after 24 h [22]. Beside the early pro-angiogenic benefits of the combination of
PRF and CM, PRF incubation could also serve as a method to adequately rehydrate the
respective CM before its clinical use. Rehydration is recommended by the manufacturers,
but regarding rehydration, both the medium and period are often vague with a lack of
evidence. It was demonstrated that the rehydration protocol can significantly affect the
biomechanical properties of CM [23]. So far, it does not seem to be elucidated if changes in
pH value occur depending on chosen incubation medium, such as saline solution, blood, or
autologous platelet concentrates, for the CM during rehydration protocol, e.g., by leaching
chemical residuals of the processing procedures. As acidity/alkalinity can influence wound
healing via regulation of angiogenesis, the formation of collagen and the cellular activity of
macrophages [24], and combination of CM with PRF could not alone effect pro-angiogenic
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features directly, but also influence blood vessel formation indirectly during rehydration
process when used for CM incubation. In this context, there is rising evidence that pH levels
directly influence neovascularization [25]. The aim of this study was to analyze possible
changes in pH values in CM rehydration with PRF and to compare the combination of PRF
with CM of bovine and porcine origin concerning the pro-angiogenic potential at different
times in vivo.

2. Materials and Methods
2.1. Collagen Membranes

Bio-Gide® (Geistlich Biomaterials Vertriebsgesellschaft mbH, Baden-Baden, Germany)
is a porcine-derived collagen matrix (CM) without any artificial cross-linking. It has a
native bilayered structure derived from porcine peritoneum with a good liquid uptake
that provides fibroblast and osteoblast proliferation within its porous structure [26,27].
Symbios® (Dentsply Sirona Deutschland GmbH, Bensheim, Germany) is a bovine-derived,
nonfriable CM that contains highly purified type I collagen fibres. All CM were prepared
in a size of 4 × 4 mm (±0.1 mm) by using a sterile scalpel. The parameters were controlled
by a sterile caliper. All procedures were performed under sterile conditions.

2.2. Platelet-Rich Fibrin Protocol

To produce platelet-rich fibrin (PRF), venous blood was collected from two healthy
volunteers who gave informed consent as previously described [28]. Briefly, special vacu-
tainer systems (A- and i-PRF+; Process for PRF, Nice, France) with a volume of 10 mL were
used, and the tubes were placed immediately in the centrifuge according to the protocol
(1200 rpm for 8 min, relative centrifugal force 177× g at a fixed angle rotor with a radius
of 110 mm; Duo centrifuge, Process for PRF, Nice, France). The stable PRF was pressed
manually with its appropriate PRF-box (Process for PRF, Nice, France) for 60 s and cut into
pieces of 4 × 4 mm in size by using a sterile scalpel under sterile conditions. For biofunc-
tionalization, Bio-Gide® and Symbios® CM were pressed together with the PRF scaffolds.
The following samples were analyzed: native Bio-Gide® matrix (BM), native Symbios®

matrix (SM), combination of PRF and Bio-Gide® matrix (BBI), combination of PRF and
Symbios® matrix (SBI), and PRF alone. All procedures were conducted in accordance with
the Declaration of Helsinki and approved by the Ethics Committee of Landesärztekammer
Rhineland-Palatine (no. 2019-14705_1).

2.3. Measurements of Differences in pH Value during Rehydration

To test changes in pH value during the rehydration of the CM, samples were incubated
for 20 min with the following media (5 mL): venous blood, buffer solution with a fixed pH
value of 7, saline solution, and PRF. The following groups were analyzed: native saline,
saline with Bio-Gide® matrix, saline with Symbios® matrix, native pH 7 solution, pH 7
solution with Bio-Gide® matrix, pH 7 solution with Symbios® matrix, native PRF, PRF
with Bio-Gide® matrix, PRF with Symbios® matrix, native blood, blood with Bio-Gide®

matrix, blood with Symbios® matrix. The pH value was measured every 5 min with a
glass pH electrode (pH-Meter CG840; Schott, Mainz, Germany). To avoid clotting of the
venous blood, 2 mL of heparin was added (25,000 IU/5 mL solution; LEO Pharma GmbH,
Neu-Isenburg, Germany). Before every testing, calibration with buffer solutions of pH
value 4 and 7 was performed. The experiment was repeated nine times per CM and media.

2.4. Yolk Sac Membrane Assay for Vessel and Branching Point Quantification

Pro-angiogenic properties of the respective CM (native and in combination with
PRF) in comparison to PRF alone and a negative yolk sac membrane (YSM) control were
evaluated in vivo (Figure 1). An experimental, standardized protocol was designed for
each series of tests as previously described [22]. Briefly, fertilized Leghorn chicken eggs
(LSL Rhein-Main, Dieburg, Germany) were first cleaned, marked at the pointed pole, and
numbered. They were incubated in a special incubator (Janeschitz, Hammelburg, Germany)
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at a temperature of 37.5 ◦C and constant humidity. Three days after incubation, eggs were
cleaned again, and a transparent adhesive strip was attached to the marked poles. With
a single syringe, 8–10 mL of egg clear was collected from the marked pole. Afterwards,
the pole was closed again with transparent adhesive tape to avoid contamination. On the
upper surface, an oval 3 × 3 cm opening into the surface was cut with sterile scissors. For
further incubation, the whole was closed with parafilm. The following day, CM to be tested
were cut into approximately 4 × 4 mm pieces and inserted under sterile conditions onto
the YSM, embryo-distant, near the vessels. The YSM alone was used as negative control
group (native) and the eggs further sealed with parafilm and incubated as described above.
At subsequent time points after 24, 48, and 72 h, the vascularization near the CM was
photo-documented by centering the middle of the CM with a digital microscope at 50- and
100-fold magnification (VHX-1000; Keyence, Neu-Isenburg, Germany, Figure 1). The same
region of interest (ROI) of 500 × 500 µm was standardly applied for every experiment
(n = 9 per respective CM, in total n = 135), the number of vessels and the branching points
per mm2 of the ROI were analyzed with the corresponding software (CV-H1X Software;
Keyence, Neu-Isenburg, Germany, Figure 2). CM were removed together with the YSM
under sterile conditions after 24, 48 and 72 h, placed on weighing paper and positioned in
an embedding cassette in Roti-Histofix 4.5% for further histological preparation. Care was
taken to ensure that the embryos were euthanized quickly by the separation of the main
vessels after the experiments.

Figure 1. Example of microscopic analysis. (A) Bio-Gide® matrix, (B) PRF matrix, (C) Symbios®

matrix after 24, 48 and 72 h in the YSM assay. Magnification: 50-fold.
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Figure 2. Example of microscopic analysis of vessel and branching points. After centering the matrix,
the same region of interest (ROI) of 500 × 500 µm was standardly applied for every experiment. The
number of vessels and the branching points (highlighted in blue) per mm2 of the ROI were counted
manually. Magnification: 50-fold.

2.5. Histological Preparation

The tissue fixed in Roti-Histofix 4.5% was cut according to the standard instructions for
paraffin embedding, placed in embedding capsules, and transferred to the single-embeds
machine. For further histological processing and archiving, the samples were cast, placed
in the right cutting direction, and cooled. The blocks were then cut into 5 µm-thick slices
using a HistoCare-autocut (Leica Biosystems, Wetzlar, Germany). They were first inserted
into a cold water bath made of aquadest and then into a 40 ◦C hot water bath to unfold.
The samples (n = 9 per respective CM, in total n = 135) were transferred to a slide and
prepared for staining and drying. For immunohistochemical stains, coated slides were
used, and uncoated slides were used for the hematoxylin-eosin (H&E) stains. Before the
actual staining, all histological samples were deparaffined and placed 3 × 15 min in xylene.

2.6. Hematoxylin-Eosin Staining

For H&E-staining (Merck, Darmstadt, Germany) the samples were placed 5 min in
haematoxylin (1:10 diluted), then 10 min under running tap water and 1–2 min in eosin as
previously described [11]. After a short time in aquadest, the slides were briefly swung
in 70% alcohol and in 96% alcohol. Afterwards, they were placed in 100% alcohol for at
least 5 min and in xylene for 5–10 min. With the help of thin cover glasses and eukitt, the
cuts were covered and sealed. In the end, nuclei were stained blue and cell plasma was
stained red.

2.7. Anti-Alpha Smooth Muscle Actin Antibody(1A4) (α-SMA-Staining)

For α-SMA staining the antibody A2547 mouse (1:1000; Sigma-Aldrich, St. Louis,
MO, USA) was used [11]. The samples were inserted in a descending range of alcohol:
2 × 100%, 96%, 70% and 50% ethanol, for 5–10 min each. Then, they were placed in
phosphate-buffered salt solution (PBS; Sigma-Aldrich, St. Louis, MO, USA) for 20 min. For
unmasking, the slides were inserted 20–40 min into the steam pot, which was filled with
sodium-citrate buffer of a pH value of 6. All cuts were washed 10 min before the peroxidase
block (Dako, Jena, Germany) was applied for 5 min. After a further 10 min, washing using
PBS and the Dako protein block (Dako, Jena, Germany) was added for 10 min. The primary
antibody was applied and after 1 h incubation, marked polymer-HRP anti mouse (Dako,
Jena, Germany) was added on the cuts for 30 min. After 10 min of washing with PBS, a
DAB substrate was applied to the slides for up to 10 min. After 5 min in haematoxylin,
running water was poured over them for 5 min and the slides were treated in an ascending
range of alcohol (70%, 96%, 100%). They were placed in xylene for 5 min, covered with
eukitt and sealed with thin cover glasses.
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2.8. Immunofluorescence CD105 Anti-Chicken Antibody

For CD105 staining (Biorbyt, Cambridge, England) samples were placed in in a de-
scending range of alcohol: 2 × 100%, 96%, 70% and 50% ethanol, for 5–10 min. They
were treated for 20 min with phosphate buffered salt solution (PBS). According to proto-
col [22], the following steps were performed: 3 × 5 min washing in PBS, 5 min adding of
Triton-X-100 0.1% (10 mL PBS + 10 µL Triton-X-100; Sigma-Aldrich, St. Louis, MO, USA),
2 × 5 min PBS. Blocking was performed 5 min with PBS/BSA 5% (Sigma-Aldrich, St. Louis,
MO, USA), PBS/Goat NS block (Dako, Jena, Germany) and 5 min PBS afterwards. CD105
anti-chicken antibody was added for 1 h (diluted 1:750 with PBS/BSA 1%), 3 × 5 min PBS
and 60 min a second antibody alpha-rabbit 488 (diluted 1:100 with PBS/BSA 1%; Invitrogen,
Carlsbad, CA, USA). After another 3 × 5 min in PBS cell nucleus staining was performed
with DAPI (1:1000; ThermoFischer, Waltham, MA, USA) covered with fluorescence mount
medium (Dako S3023; Dako, Jena, Germany).

2.9. Microscopic Analysis

The resulting stained specimens were examined and photo-documented using the
Keyence Biorevo BZ-9000 microscope (Keyence, Neu-Isenburg, Germany) and its corre-
sponding BZII-Viewer-Analyzer program (Brightfield HF and Phako, microscope position
2 Plan Apo Na.10; Keyence, Neu-Isenburg, Germany) as previously described (Figure 3) [22].
The pictures were analyzed using the application Hybrid-Cell-Count and Brightfield &
Single extraction. With the subsequent adjustment of tolerance and transparency, the ratio
of strongly stained sections of histological tissue to less stained areas could be calculated as
a portion (in percentage) of the whole sample.
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2-fold.

2.10. Statistical Analysis

For statistical analysis, SPSS (version 27; IBM, Ehningen, Germany) was used. Initially,
a Kolmogorov–Smirnov and Shapiro–Wilk test were applied to verify the condition for
parametric tests. The graphic representation of histograms, boxplots, Q-Q plots, skewness,
and kurtosis was also examined. After all parameters showed no normal distribution,
further analysis was carried out using Kruskal–Wallis test to identify significant differences
between the different CM, but also to identify differences within the individual groups
in time. If differences could be verified, pairwise comparisons were carried out using
single-factor ANOVA according to Kruskal–Wallis. For pH value analysis, the Friedman
test was used to identify differences within the measurements within 20 min. Differences
between the CM were also verified with a single-factor ANOVA, according to the Kruskal–
Wallis test. Boxplots were used for data illustration. p-values p < 0.05 were considered
statistically significant.

3. Results
3.1. pH Value Analysis

The average pH value after 20 min of incubation of the analysed media were in saline
solution 4.95 (±0.451 SD), in pH 7 solution 6.98 (±0.042 SD), in blood 7.52 (±0.082 SD) and
in PRF 7.76 (±0.115 SD). The pH values in the saline and pH 7 solutions stayed constant,
even after inserting the different membranes and for all different time points. PRF group
displayed a significant decrease in the measured pH value during the observation time
of 20 min (Symbios®: p < 0.05, Bio-Gide®: PRF alone: p < 0.001). Blood combined with
Symbios® membrane also showed a significant difference; a lesser pH value was shown
than in the native form (p < 0.01). Significantly higher values were found at all points
in time in PRF and its combined variants with Bio-Gide® and Symbios® compared with
native saline solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). Blood
also showed higher pH values over time in comparison with saline solution (p < 0.05).
In addition, PRF achieved higher pH values over time compared with the pH 7 solution
(p < 0.05, Figure 4).
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Figure 4. Cont.
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Figure 4. Differences in pH value during 20 min of rehydration of the respective CM depending on
the media: (A) saline solution, (B) ph 7 solution, (C) blood, (D) PRF. Blue column: negative control
media, orange column: media plus Symbios® (_S), grey column: media plus Bio-Gide® (_B). * marks
statistically significant differences (p < 0.05; for details, please see the responding paragraph).

3.2. Yolk Sac Membrane Assay

Comparing all groups (native vs. CM in combination with PRF vs. PRF alone vs.
YSM alone) microscopically with each other, the statistical analysis of vessels (Figure 5)
and branching points (Figure 6) per mm2 showed no significant differences at 24 and
48 h after incubation (each p > 0.05). After 72 h, CM in combination with PRF induced
statistically significant more vessels and branching points per mm2 in comparison to native
YSM (p < 0.01) but not vs. their native pendants (p > 0.05). However, there was a not
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significantly but descriptive increase in vessels and branching points per mm2 in time
for the bovine-derived membrane in combination with PRF. For PRF alone, however, a
significant increase in vessels and branching points per mm2 between 24 and 48 h (each
p < 0.05) and between 24 and 72 h (each p < 0.05) was shown.

Figure 5. Cont.
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Figure 5. YSM assay and analysis of the vessels per mm2 for the respective matrix (BG + PRF: Bio-
Gide® with PRF, BG: native Bio-Gide®, SM + PRF: Symbios® with PRF, SM: native Symbios®), PRF
negative control. (A) 24 h, (B) 48 h, (C) 72 h of incubation. * marks statistically significant differences
(p < 0.05; for details, please see the responding paragraph).

Figure 6. Cont.
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Figure 6. YSM assay and analysis of the branching points per mm2 for the respective matrix
(BG + PRF: Bio-Gide® with PRF, BG: native Bio-Gide®, SM + PRF: Symbios® with PRF, SM: na-
tive Symbios®, PRF, negative control). (A) 24 h, (B) 48 h, (C) 72 h of incubation. * marks statistically
significant differences (p < 0.05; for details please see the responding paragraph).

3.3. Immunohistochemically Analysis

The immunohistochemically stained specimens (Figures 7 and 8) showed for PRF
alone compared with native YSM within 24 h a statistically significant increase in vessels
in HE, αSMA and CD105 (each p < 0.05). After 72 h, statistically more vessels were found
for PRF alone in comparison to native YSM in CD105 staining (p < 0.05). Compared with
native YSM, a significant increase in vessel formation was found for native bovine CM in
CD105 (p < 0.01) and αSMA staining (p < 0.05) after 24h and for bovine CM in combination
with PRF (αSMA and HE staining between 24h and 72h, each p < 0.05). Native porcine CM
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demonstrated an increased number of vessels in αSMA staining compared with bovine CM
in combination with PRF (p < 0.01) after 24 h. Native bovine CM showed higher number of
vessels in CD105 staining compared with porcine CM in combination with PRF (p < 0.01).
A statistically significant increase was also found in αSMA staining (p < 0.05) and CD105
staining (p < 0.01) after 24 h when PRF was compared with bovine CM in combination with
PRF and in comparison with PRF and the combination of bovine-derived CM and PRF in
CD105 after 48 h (p < 0.05)

Figure 7. Cont.
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Figure 7. Analysis of aSMA immunohistochemical staining for the respective matrix (BG + PRF:
Bio-Gide® with PRF, BG: native Bio-Gide®, SM + PRF: Symbios® with PRF, SM: native Symbios®,
PRF, negative control). (A) 24 h, (B) 48 h, (C) 72 h of incubation. * marks statistically significant
differences (p < 0.05; for details, please see the responding paragraph).

Figure 8. Cont.
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Figure 8. Analysis of CD105 immunohistochemical staining for the respective matrix (BG + PRF:
Bio-Gide® with PRF, BG: native Bio-Gide®, SM + PRF: Symbios® with PRF, SM: native Symbios®,
PRF, negative control). (A) 24 h, (B) 48 h, (C) 72 h of incubation. * marks statistically significant
differences (p < 0.05; for details, please see the responding paragraph).

4. Discussion

In this study, the impact of PRF for rehydration process of different xenogeneic colla-
gen membranes as well as possible pro-angiogenic effects of the combination of different
CM with PRF were analyzed. As a major result, significantly increased pH values were
found at all points in time in PRF alone and its combined variants with Bio-Gide® and
Symbios®, compared with pure native saline solution and pH 7 solution. However, a
significant trend to acidity in the observation time after 20 min was seen for PRF and its
combined variants. Furthermore, PRF alone significantly increased vessel numbers and
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branching points in the YSM. After 72 h, CM in combination with PRF induced statistically
significant more vessels and branching points compared with native YSM, but not vs. its
native pendants. The immunohistochemical staining confirmed the results showing for
PRF alone compared with native yolk sac membrane within 24 h a statistically significant
increase in vessels. In context of wound healing, the pH value of the skin has also a central
role, depending on the test localization and age pH values range from 4 to 6 [29]. In
addition to vascular analysis, the present study aims to investigate changes in pH values
due to the rehydration process of CM into different rehydration media. The pH value
is defined as a measure of degree to which a solution is acidic or alkaline (scale ranges
between 0 to 14). In blood, the pH values can vary from 7.35 to 7.45 [30]. A study by
Nagaraja et al. investigated the effect of pH value changes on wound healing when liquid
PRF was applied. Initially alkaline, it changed pH value to acidic on day 5. Thus, PRF may
contribute to epithelialization and angiogenesis and promote wound healing [31]. However,
PRF as matrix showed alkaline behavior and increased in alkalinity over 5 days. It can be
concluded that it is best used for suppurative wounds, where the pH value is significantly
acidic and PRF matrices can increase the pH value and produce normal levels [32]. In one
review, positive wound healing associated with the use of PRF was found in 58% of the
studies examined [33]. This is consistent with studies demonstrating an antimicrobial effect
of PRF against bacteria in anaerobic milieus such as the dental root canal [34] or a local
pyoderma gangrenosum [35]. This highlights the capacity of PRF to alter pH values even
under anaerobic conditions [31]. In line with these results, the present study found the
average pH value of PRF matrices did start at alkaline level but display acidity over time.
The addition of Bio-Gide® or Symbios® CM did increase this effect. However, considering
the different initial values in the media in the present study it is not surprising that there
are significant differences in the comparisons between all groups. It must be pointed out
that the saline solution did show significant lower pH values especially in combination
with the respective CM in comparison to PRF with or without the addition of the CM.
Since saline solution is regularly used in the clinical set up for rehydration protocols this is
of direct clinical interest. Following above mentioned hypothesis of the influence of PRF
to optimize pH values at wound healing sites, PRF seems more suitable for rehydration
protocols of tested CM. Here, 5 min of rehydration seems feasible to avoid a subsequent
decrease in pH values. In this context, CM of porcine and bovine origin are acellular and
avascular compared with autologous scaffolds due to its multistage manufacturing process.
Therefore, biofunctionalization by pro-angiogenic factors could be suitable to overcome this
limitation. Proangiogenic effects of PRF or platelet concentrates could be based on growth
factor release, such as VEGF, PDGF and FGF [10,36]. VEGF could induce endothelial cell
proliferation and migration and the differentiation of precursor to mature endothelial cells.
Next, progenitor cell stimulation could induce CM neovascularization. A stimulation of
pre-existing vessels of the surrounding tissues could be possible, resulting in an increased
sprouting and intussusceptive angiogenesis, and therefore an enhanced CM vascularization.
On the other hand, an improved vascularization of CM and therefore VEGF release could
even be associated with an improved bone remodeling since VEGF can increase endothelial
cell activities and indirectly stimulate osteogenesis [37]. It can even be discussed whether
an accelerated and improved vascularization of CM is without limitations. In comparison
to others [38], the tested CM are not used as alternatives to oral soft tissue grafts from the
palate for soft tissue regeneration, such as the coverage of periodontal recessions. These
membranes were developed to cover and stabilize bone grafts, e.g., in the context of GBR.
Next, these membranes could separate the bone grafts from the surrounding tissues and
therefore delay soft tissue ingrowth to the bone grafts. This effect could be reduced by an
accelerated vascularization, and therefore a fastened bio-degeneration. In this study, an
already established model of chick embryo yolk sac membrane assay was used to examine
the influence of platelet-rich fibrin, collagen membranes and its biologized variants on
vascularization to accelerate and improve wound healing [39]. From some authors, the
assay is seen as a possible bioreactor to culture and study the regeneration of human living
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bone [40]. Due to the high vessel density, the model is well suited for studying angiogenesis,
which some current studies are taking advantage of. In particular, the effect of PRF seems
to be very interesting. As in a previous study by our research group, a positive effect of
PRF on angiogenesis was shown [22,41]. Ratajczak et al. could also improve the increase in
vessels with PRF treatment using a similar assay, namely the chorion allantois membrane
model (which consists of the same egg model in a later development state) [42]. The results
are consistent with the present results: PRF alone significantly increased vessel numbers
and branching points in the YSM. However, it must be admitted that due to the different
PRF preparation protocols in different studies, a clear comparison is difficult [24]. In recon-
structive surgery, artificial biomaterials such as bone substitutes or collagen membranes are
used as a valid alternative to the autologous gold standard. However, with the wide range
of offered products, it is often difficult finding the optimal scaffolding material. CM, such as
Bio-Gide® and Symbios®, the first one porcine-derived and the second one bovine-derived
CM, represent such tools for regeneration techniques. One limitation of these procedures
is the insufficient vascularization of the biomaterials, which makes integration into the
recipient organism difficult and can cause possible immune reactions [32,43,44]. The innate
and acquired immune system plays a decisive role in this [45]. In a study by Al-Maawi et al.
Symbios® CM were implanted subcutaneously in Wistar rats, to examine the tissue wound
healing. After 30 days multinucleated giant cells were found on the matrix’s surfaces of the
test group whereas only mononuclear cells and no vessels were found within the central
region of the membranes. In the control group there were no multinucleated giant cells
found, so that a foreign body reaction could be assumed in the test group. The effect of
liquid PRF on CM was also investigated ex vivo. It was able to penetrate the membranes
after 15 min. The study critically questioned the role of biomaterials and whether the
cells are desirable in the context of vascularization or should be considered pathologi-
cal [46]. Autologous platelet concentrates, such as the second generation of platelet PRF
preparations, represent a “clinical” possibility for the pre-vascularization and function-
alization of biomaterials [22,41,47]. Furthermore, the anti-inflammatory activity of PRF
may support wound healing [48]. CM are used in clinical routine to enhance periodontal
regeneration. However, neither various animal studies nor human clinical trials could
show a complete regeneration [3]. In our study biologized variants of the membranes could
achieve a descriptive increase in vessels and branching points in time but no advantage or
disadvantage of Bio-Gide® or Symbios® CM could be found. The results could be explained
with similar findings by another study of Al-Maawi et al. were only partial or superficial
invasion of liquid PRF into the porcine CM was found [49]. On the other hand, in the
presented results, both CM retained microscopically their shape and surface structure for
72 h, showed biocompatibility and its benefit in stability in comparison to PRF which is in
accordance with other studies on biodegradation pattern of CM [38]. This is the novelty
of the presented work in comparison to others: later time points could be observed that
were not measured in earlier studies [22]. In addition, effect of PRF for rehydration process
was scientifically assessed for the first time. In summary, further studies need to be carried
out, to explore the full mechanisms, especially in biofunctionalization of membranes. This
study suffers from some major limitations: First, one may question if the small number
of experiments seems representative enough to reflect the complexity of the model and
therefore, results should be interpreted with caution. As for the rehydration experiments,
the experiment was not conducted with a bicarbonate buffer with the exact specification of
the blood buffer to determine and analyze the activity of the bicarbonate buffer present
in the blood serum. Furthermore, although an approved in vivo model was applied, the
CAM assay has some errors such as uncontrollable external factors (transport and storage
as well as incubation of the eggs, outside temperatures and different sizes of the eggs) that
may have affected the values. Due to the individual characteristics of the eggs (size, shape,
formation of the vessels, and movement of the embryo), the removal of the membranes
could not be completely standardized. Thus, some of the membrane samples were not of
the same size. Furthermore, the staining (technique?) is a limitation. The different sections
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are not fully comparable with each other due to their different gating. Lastly, the evaluation
of the branching points and the number of vessels was carried out manually. In addition,
vessel growth could only be assessed superficially and not in depth or underneath the
matrix in one plane and one dimension, nor in their three-dimensional shape with the
applied method. Overall, within the named limitations of the study, the presented study
provides evidence for the use of autologous platelet concentrates in tissue regeneration
procedures without the claim to fully reflect the whole complexity of angiogenic processes.

5. Conclusions

In summary, this study could contribute to optimize future treatment concepts and im-
plement the biofunctionalization of collagen membranes with PRF. However, the limitations
of this study mentioned above (mainly small number of experiments, external/internal
factors of CAM, superficial manual vessel counting, staining technique) must be consid-
ered. Furthermore, the illustrated in vivo effects are just a small aspect of the real effects in
wound healing and tissue regeneration in humans. Further standardized clinical studies
needs to be carried out, e.g., regarding the immigration and activation of granulocytes and
how exactly PRF plays its role in vascularization and wound healing [50]. Therefore, the
role of the pH value in context to wound healing and the application of different forms of
PRF in acute or chronic wounds has also to be illuminated in detail. Here, future research
could also include additive manufacturing of biocompatible scaffolds in combination with
PRF, further improving bioengineering properties in cranio-maxillofacial surgery.
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Abbreviations

◦C degree Celsius
% percent
3D three-dimensional
α-SMA anti-alpha smooth muscle Actin antibody (1A4)
µm micrometer
BM Bio-Gide®

CD105 Immunofluorescence anti-chicken antibody
CM Collagen membranes
cm centimeter
cm2 square centimeters
Dako marked polymer-HRP anti mouse



Biomedicines 2022, 10, 706 19 of 21

GBR/GTR guided bone- and tissue regeneration
h hours
HE Hematoxylin-eosin
min minute
mL milliliter
mm millimeter
mm2 square millimeter
n sample number
p likelihood
PBS phosphate buffered salt solution
PC platelet concentrates
ph pH value
PRF platelet-rich-fibrin
s second
SD standard deviation
SM Symbios Matrix®

VEGF vascular endothelial growth factor
YSM yolk-sac-membrane

References
1. Bartold, P.M.; Gronthos, S.; Ivanovski, S.; Fisher, A.; Hutmacher, D.W. Tissue engineered periodontal products. J. Periodontal Res.

2015, 51, 1–15. [CrossRef] [PubMed]
2. Masson-Meyers, D.S.; Tayebi, L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J. Tissue Eng.

Regen. Med. 2021, 15, 747–762. [CrossRef]
3. Bunyaratavej, P.; Wang, H.-L. Collagen Membranes: A Review. J. Periodontol. 2001, 72, 215–229. [CrossRef]
4. Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.;

Raghunath, M.; et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019,
31, e1801651. [CrossRef] [PubMed]

5. Laschke, M.; Menger, M. Vascularization in Tissue Engineering: Angiogenesis versus Inosculation. Eur. Surg. Res. 2012, 48, 85–92.
[CrossRef]

6. Rather, H.; Jhala, D.; Vasita, R. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering.
Mater. Sci. Eng. C 2019, 103, 109761. [CrossRef] [PubMed]

7. Zumarán, C.C.; Parra, M.V.; Olate, S.A.; Fernández, E.G.; Muñoz, F.T.; Haidar, Z.S. The 3 R’s for Platelet-Rich Fibrin: A
“Super&rdquo” Tri-Dimensional Biomaterial for Contemporary Naturally-Guided Oro-Maxillo-Facial Soft and Hard Tissue
Repair, Reconstruction and Regeneration. Materials 2018, 11, 1293. [CrossRef] [PubMed]

8. Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of platelet concentrates: From pure platelet-rich plasma
(P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [CrossRef]

9. Giudice, A.; Esposito, M.; Bennardo, F.; Brancaccio, Y.; Buti, J.; Fortunato, L. Dental extractions for patients on oral antiplatelet: A
within-person randomised controlled trial comparing haemostatic plugs, advanced-platelet-rich fibrin (A-PRF+) plugs, leukocyte-
and platelet-rich fibrin (L-PRF) plugs and suturing alone. Int. J. oral Implant. 2019, 12, 77–87.

10. Kobayashi, E.; Flückiger, L.; Fujioka-Kobayashi, M.; Sawada, K.; Sculean, A.; Schaller, B.; Miron, R.J. Comparative release of
growth factors from PRP, PRF, and advanced-PRF. Clin. Oral Investig. 2016, 20, 2353–2360. [CrossRef] [PubMed]

11. Eriksson, O.; Mohlin, C.; Nilsson, B.; Ekdahl, K.N. The Human Platelet as an Innate Immune Cell: Interactions Between Activated
Platelets and the Complement System. Front. Immunol. 2019, 10, 1590. [CrossRef] [PubMed]

12. Dohan Ehrenfest, D.M.; Bielecki, T.; Jimbo, R.; Barbé, G.; Del Corso, M.; Inchingolo, F.; Sammartino, G. Do the Fibrin Architecture
and Leukocyte Content Influence the Growth Factor Release of Platelet Concentrates? An Evidence-based Answer Comparing
a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Curr. Pharm. Biotechnol. 2012, 13,
1145–1152. [CrossRef] [PubMed]

13. Miron, R.J.; Zucchelli, G.; Pikos, M.A.; Salama, M.; Lee, S.; Guillemette, V.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.; Wang,
H.-L.; et al. Use of platelet-rich fibrin in regenerative dentistry: A systematic review. Clin. Oral Investig. 2017, 21, 1913–1927.
[CrossRef] [PubMed]

14. Brancaccio, Y.; Antonelli, A.; Barone, S.; Bennardo, F.; Fortunato, L.; Giudice, A. Evaluation of local hemostatic efficacy after dental
extractions in patients taking antiplatelet drugs: A randomized clinical trial. Clin. Oral Investig. 2021, 25, 1159–1167. [CrossRef]
[PubMed]

15. Miron, R.J.; Moraschini, V.; Fujioka-Kobayashi, M.; Zhang, Y.; Kawase, T.; Cosgarea, R.; Jepsen, S.; Bishara, M.; Canullo, L.;
Shirakata, Y.; et al. Use of platelet-rich fibrin for the treatment of periodontal intrabony defects: A systematic review and
meta-analysis. Clin. Oral Investig. 2021, 25, 2461–2478. [CrossRef]

http://doi.org/10.1111/jre.12275
http://www.ncbi.nlm.nih.gov/pubmed/25900048
http://doi.org/10.1002/term.3225
http://doi.org/10.1902/jop.2001.72.2.215
http://doi.org/10.1002/adma.201801651
http://www.ncbi.nlm.nih.gov/pubmed/30126066
http://doi.org/10.1159/000336876
http://doi.org/10.1016/j.msec.2019.109761
http://www.ncbi.nlm.nih.gov/pubmed/31349418
http://doi.org/10.3390/ma11081293
http://www.ncbi.nlm.nih.gov/pubmed/30050009
http://doi.org/10.1016/j.tibtech.2008.11.009
http://doi.org/10.1007/s00784-016-1719-1
http://www.ncbi.nlm.nih.gov/pubmed/26809431
http://doi.org/10.3389/fimmu.2019.01590
http://www.ncbi.nlm.nih.gov/pubmed/31354729
http://doi.org/10.2174/138920112800624382
http://www.ncbi.nlm.nih.gov/pubmed/21740377
http://doi.org/10.1007/s00784-017-2133-z
http://www.ncbi.nlm.nih.gov/pubmed/28551729
http://doi.org/10.1007/s00784-020-03420-3
http://www.ncbi.nlm.nih.gov/pubmed/32613433
http://doi.org/10.1007/s00784-021-03825-8


Biomedicines 2022, 10, 706 20 of 21

16. Liu, Y.-H.; To, M.; Okudera, T.; Wada-Takahashi, S.; Takahashi, S.-S.; Su, C.-Y.; Matsuo, M. Advanced platelet-rich fibrin (A-PRF)
has an impact on the initial healing of gingival regeneration after tooth extraction. J. Oral Biosci. 2021, 64, 141–147. [CrossRef]
[PubMed]

17. Egle, K.; Salma, I.; Dubnika, A. From Blood to Regenerative Tissue: How Autologous Platelet-Rich Fibrin Can Be Combined with
Other Materials to Ensure Controlled Drug and Growth Factor Release. Int. J. Mol. Sci. 2021, 22, 11553. [CrossRef]
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